skip to main content
10.1145/3292500.3330831acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Pairwise Comparisons with Flexible Time-Dynamics

Published:25 July 2019Publication History

ABSTRACT

Inspired by applications in sports where the skill of players or teams competing against each other varies over time, we propose a probabilistic model of pairwise-comparison outcomes that can capture a wide range of time dynamics. We achieve this by replacing the static parameters of a class of popular pairwise-comparison models by continuous-time Gaussian processes; the covariance function of these processes enables expressive dynamics. We develop an efficient inference algorithm that computes an approximate Bayesian posterior distribution. Despite the flexbility of our model, our inference algorithm requires only a few linear-time iterations over the data and can take advantage of modern multiprocessor computer architectures. We apply our model to several historical databases of sports outcomes and find that our approach outperforms competing approaches in terms of predictive performance, scales to millions of observations, and generates compelling visualizations that help in understanding and interpreting the data.

References

  1. A. Agresti. 2012. Categorical Data Analysis(third ed.). Wiley.Google ScholarGoogle Scholar
  2. A. Birlutiu and T. Heskes. 2007. Expectation Propagation for Rating Players in Sports Competitions. In Proceedings of PKDD 2007. Warsaw, Poland.Google ScholarGoogle Scholar
  3. D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. 2017. Variational Inference: A Review for Statisticians. J. Amer. Statist. Assoc. 112, 518 (2017), 859--877.Google ScholarGoogle ScholarCross RefCross Ref
  4. R. A. Bradley and M. E. Terry. 1952. Rank Analysis of Incomplete Block Designs:I. The Method of Paired Comparisons.Biometrika39, 3/4 (1952), 324--345.Google ScholarGoogle Scholar
  5. S. Chen and T. Joachims. 2016. Modeling Intransitivity in Matchup and Comparison Data. San Francisco, CA, USA.Google ScholarGoogle Scholar
  6. R. Coulom. 2008. Whole-History Rating: A Bayesian Rating System for Players of Time-Varying Strength. In Proceedings of CG 2008. Beijing, China. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. P. Dangauthier, R. Herbrich, T. Minka, and T. Graepel. 2007. True Skill Through Time: Revisiting the History of Chess. In Advances in Neural Information Processing Systems 20. Vancouver, BC, Canada. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. D. Duvenaud. 2014.Automatic Model Construction with Gaussian Processes. Ph.D. Dissertation. University of Cambridge.Google ScholarGoogle Scholar
  9. A. Elo. 1978. The Rating Of Chess Players, Past & Present. Arco Publishing.Google ScholarGoogle Scholar
  10. L. Fahrmeir and G. Tutz. 1994. Dynamic Stochastic Models for Time-Dependent Ordered Paired Comparison Systems.J. Amer. Statist. Assoc. 89, 428 (1994),1438--1449.Google ScholarGoogle ScholarCross RefCross Ref
  11. W. A. Glenn and H. A. David. 1960. Ties in Paired-Comparison Experiments Using a Modified Thurstone? Mosteller Model. Biometrics 16, 1 (1960), 86--109.Google ScholarGoogle ScholarCross RefCross Ref
  12. M. E. Glickman. 1993.Paired Comparison Models with Time-Varying Parameters. Ph.D. Dissertation. Harvard University.Google ScholarGoogle Scholar
  13. M. E. Glickman. 1999. Parameter estimation in large dynamic paired comparison experiments. Journal of the Royal Statistical Society, Series C (Applied Statistics)48, 3 (1999), 377--394.Google ScholarGoogle ScholarCross RefCross Ref
  14. S. Guo, S. Sanner, T. Graepel, and W. Buntine. 2012. Score-Based Bayesian Skill Learning. In Proceedings of ECML PKDD 2012. Bristol, United Kingdom.Google ScholarGoogle Scholar
  15. J. Hartikainen and S. Särkkä. 2010. Kalman filtering and smoothing solutions to temporal Gaussian process regression models. In Proceedings of MLSP 2010. Kittilä, Finland.Google ScholarGoogle Scholar
  16. R. Herbrich, T. Minka, and T. Graepel. 2006. TrueSkill?: A Bayesian Skill Rating System. In Advances in Neural Information Processing Systems 19. Vancouver, BC, Canada. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. D. Karlis and I. Ntzoufras. 2009. Bayesian modelling of football outcomes: using the Skellam's distribution for the goal difference. IMA Journal of Management Mathematics 20, 2 (2009), 133--145.Google ScholarGoogle ScholarCross RefCross Ref
  18. M. E. Khan and W. Lin. 2017. Conjugate-Computation Variational Inference:Converting Variational Inference in Non-Conjugate Models to Inferences in Conjugate Models. In Proceedings of AISTATS 2017. Fort Lauderdale, FL, USA.Google ScholarGoogle Scholar
  19. M. J. Maher. 1982. Modelling association football scores. Statistica Neerlandica 36, 3 (1982), 109--118.Google ScholarGoogle ScholarCross RefCross Ref
  20. L. Maystre, V. Kristof, A. J. González Ferrer, and M. Grossglauser. 2016. The Player Kernel: Learning Team Strengths Based on Implicit Player Contributions. (Sept. 2016). Preprint, arXiv:1609.01176 {cs.LG}.Google ScholarGoogle Scholar
  21. D. McFadden. 1973. Conditional logit analysis of qualitative choice behavior. In Frontiers in Econometrics, P. Zarembka (Ed.). Academic Press, 105--142.Google ScholarGoogle Scholar
  22. T. P. Minka. 2001. A family of algorithms for approximate Bayesian inference. Ph.D. Dissertation. Massachusetts Institute of Technology. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. H. Nickisch and C. E. Rasmussen. 2008. Approximations for Binary Gaussian Process Classification. Journal of Machine Learning Research 9, Oct (2008), 2035--2078.Google ScholarGoogle Scholar
  24. H. Nickisch, A. Solin, and A. Grigorievksiy. 2018. State Space Gaussian Processes with Non-Gaussian Likelihood. In Proceedings of ICML 2018. Long Beach, CA,USA.Google ScholarGoogle Scholar
  25. A. O'Hagan. 1978. Curve Fitting and Optimal Design for Prediction. Journal of the Royal Statistical Society, Series B40, 1 (1978), 1--42.Google ScholarGoogle Scholar
  26. C. E. Rasmussen and C. K. I. Williams. 2006. Gaussian Processes for Machine Learning. MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. S. Reece and S. Roberts. 2010. An introduction to Gaussian processes for the Kalman filter expert. In Proceedings of ICIF 2010. Edinburgh, UK.Google ScholarGoogle Scholar
  28. Y. Saatçi. 2012. Scalable Inference for Structured Gaussian Process Models. Ph.D. Dissertation. University of Cambridge.Google ScholarGoogle Scholar
  29. M. J. Salganik and K. E. C. Levy. 2015. Wiki Surveys: Open and Quantifiable Social Data Collection. PLoS ONE10, 5 (2015), 1--17.Google ScholarGoogle Scholar
  30. M. Seeger, S. Gerwinn, and M. Bethge. 2007. Bayesian Inference for Sparse Generalized Linear Models. In Proceedings of ECML 2007. Warsaw, Poland. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. A. Solin. 2016.Stochastic Differential Equation Methods for Spatio-Temporal Gaussian Process Regression. Ph.D. Dissertation. Aalto University.Google ScholarGoogle Scholar
  32. A. Solin and S. Särkkä. 2014. Explicit Link Between Periodic Covariance Functions and State Space Models. In Proceedings of AISTATS 2014. Reykjavik, Iceland.Google ScholarGoogle Scholar
  33. H. Stern. 1992. Are all linear paired comparison models empirically equivalent? Mathematical Social Sciences23, 1 (1992), 103--117.Google ScholarGoogle Scholar
  34. S. Särkkä. 2013.Bayesian Filtering and Smoothing. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. L. L. Thurstone. 1927. A Law of Comparative Judgment. Psychological Review 34,4 (1927), 273--286.Google ScholarGoogle ScholarCross RefCross Ref
  36. M. J. Wainwright and M. I. Jordan. 2012. Graphical Models, Exponential Families,and Variational Inference. Foundations and Trends in Machine Learning 1, 1--2(2012), 1--305. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. E. Zermelo. 1928. Die Berechnung der Turnier-Ergebnisse als ein Maximum problem der Wahrscheinlichkeitsrechnung. Mathematische Zeitschrift 29, 1 (1928),436--460.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Pairwise Comparisons with Flexible Time-Dynamics

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          KDD '19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
          July 2019
          3305 pages
          ISBN:9781450362016
          DOI:10.1145/3292500

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 25 July 2019

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          KDD '19 Paper Acceptance Rate110of1,200submissions,9%Overall Acceptance Rate1,133of8,635submissions,13%

          Upcoming Conference

          KDD '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader