skip to main content
10.1145/3394486.3403277acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Sub-Matrix Factorization for Real-Time Vote Prediction

Authors Info & Claims
Published:20 August 2020Publication History

ABSTRACT

We address the problem of predicting aggregate vote outcomes (e.g., national) from partial outcomes (e.g., regional) that are revealed sequentially. We combine matrix factorization techniques and generalized linear models (GLMs) to obtain a flexible, efficient, and accurate algorithm. This algorithm works in two stages: First, it learns representations of the regions from high-dimensional historical data. Second, it uses these representations to fit a GLM to the partially observed results and to predict unobserved results. We show experimentally that our algorithm is able to accurately predict the outcomes of Swiss referenda, U.S. presidential elections, and German legislative elections. We also explore the regional representations in terms of ideological and cultural patterns. Finally, we deploy an online Web platform (www.predikon.ch) to provide real-time vote predictions in Switzerland and a data visualization tool to explore voting behavior. A by-product is a dataset of sequential vote results for 330 referenda and 2196 Swiss municipalities.

Skip Supplemental Material Section

Supplemental Material

3394486.3403277.mp4

mp4

373.9 MB

References

  1. R. Bamler and S. Mandt. Dynamic word embeddings. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 380--389, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. L. H. Bean. How to predict elections. 1948.Google ScholarGoogle Scholar
  3. E. Belanger. Finding and using empirical data for vote and popularity functions in France. French Politics, 2 (2): 235--244, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  4. R. M. Bell and Y. Koren. Scalable collaborative filtering with jointly derived neighborhood interpolation weights. In Seventh IEEE International Conference on Data Mining (ICDM 2007), pages 43--52. IEEE, 2007.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. D. Bertsimas, C. Pawlowski, and Y. D. Zhuo. From predictive methods to missing data imputation: an optimization approach. The Journal of Machine Learning Research, 18 (1): 7133--7171, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. Blumenthal. The poblano model, 2008. URL https://web.archive.org/web/20090414152429/http://www.nationaljournal.com/njonline/mp_20080507_8254.php. Accessed: 2020-02-13.Google ScholarGoogle Scholar
  7. S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  8. M. Brand. Incremental singular value decomposition of uncertain data with missing values. In European Conference on Computer Vision, pages 707--720. Springer, 2002.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. Brand. Fast online svd revisions for lightweight recommender systems. In Proceedings of the 2003 SIAM International Conference on Data Mining, pages 37--46. SIAM, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  10. M. Choy, M. Cheong, M. N. Laik, and K. P. Shung. US presidential election 2012 prediction using census corrected Twitter model. arXiv preprint arXiv:1211.0938, 2012.Google ScholarGoogle Scholar
  11. P. Diaconis and R. L. Graham. Spearman's footrule as a measure of disarray. Journal of the Royal Statistical Society: Series B (Methodological), 39 (2): 262--268, 1977.Google ScholarGoogle ScholarCross RefCross Ref
  12. N. Dwi Prasetyo and C. Hauff. Twitter-based election prediction in the developing world. In Proceedings of the 26th ACM Conference on Hypertext & Social Media, pages 149--158, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychometrika, 1 (3), 1936.Google ScholarGoogle Scholar
  14. V. Etter, J. Herzen, M. Grossglauser, and P. Thiran. Mining democracy. In Proceedings of the second ACM Conference on Online Social Networks, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. V. Etter, M. E. Khan, M. Grossglauser, and P. Thiran. Online collaborative prediction of regional vote results. In 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), 2016.Google ScholarGoogle ScholarCross RefCross Ref
  16. F. Franch. (wisdom of the crowds) 2: 2010 uk election prediction with social media. Journal of Information Technology & Politics, 10 (1): 57--71, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  17. T. Hastie, R. Tibshirani, G. Sherlock, M. Eisen, P. Brown, and D. Botstein. Imputing missing data for gene expression arrays. 1999.Google ScholarGoogle Scholar
  18. R. Kennedy, S. Wojcik, and D. Lazer. Improving election prediction internationally. Science, 355 (6324): 515--520, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  19. Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42 (8): 30--37, 2009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. B. Kristensen, T. Albrechtsen, E. Dahl-Nielsen, M. Jensen, M. Skovrind, and T. Bornakke. Parsimonious data: How a single Facebook like predicts voting behavior in multiparty systems. PloS one, 12 (9), 2017.Google ScholarGoogle Scholar
  21. M. S. Lewis-Beck. Election forecasting: Principles and practice. The British Journal of Politics and International Relations, 7 (2): 145--164, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  22. L. v. d. Maaten and G. Hinton. Visualizing data using t-SNE. Journal of machine learning research, 9 (Nov): 2579--2605, 2008.Google ScholarGoogle Scholar
  23. MIT Election Data and Science Lab. U.S. President 1976--2016, 2017. URL https://doi.org/10.7910/DVN/42MVDX. Accessed: 2020-02-06.Google ScholarGoogle Scholar
  24. K. P. Murphy. Machine learning: a probabilistic perspective. The MIT Press, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Norwegian Centre for Research Data. German parliamentary elections, 2020. URL https://nsd.no/european_election_database/country/germany/parliamentary_elections.html. Accessed: 2020-06-16.Google ScholarGoogle Scholar
  26. J. Ramteke, S. Shah, D. Godhia, and A. Shaikh. Election result prediction using Twitter sentiment analysis. In 2016 international conference on inventive computation technologies (ICICT), volume 1, pages 1--5. IEEE, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  27. S. E. Rigdon, S. H. Jacobson, W. K. Tam Cho, E. C. Sewell, and C. J. Rigdon. A Bayesian prediction model for the US presidential election. American Politics Research, 37 (4): 700--724, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  28. N. Silver. Pollster ratings v3.0, 2008. URL https://fivethirtyeight.com/features/pollster-ratings-v30/. Accessed: 2020-02--13.Google ScholarGoogle Scholar
  29. The Swiss Confederation. Democracy, 2019 a. URL https://www.ch.ch/en/demokratie/. Accessed: 2020-02-04.Google ScholarGoogle Scholar
  30. The Swiss Confederation. Popular vote, 2019 b . URL https://www.admin.ch/gov/en/start/documentation/votes.html. Accessed: 2020-02-04.Google ScholarGoogle Scholar
  31. The Swiss Federal Statistical Office (via opendata.swiss). Real-time data on referenda on vote days, 2020. URL https://opendata.swiss/en/dataset/echtzeitdaten-am-abstimmungstag-zu-eidgenoessischen-abstimmungsvorlagen. Accessed: 2020-02-11.Google ScholarGoogle Scholar
  32. O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Botstein, and R. B. Altman. Missing value estimation methods for DNA microarrays. Bioinformatics, 17 (6): 520--525, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  33. A. Tumasjan, T. O. Sprenger, P. G. Sandner, and I. M. Welpe. Election forecasts with Twitter: How 140 characters reflect the political landscape. Social science computer review, 29 (4): 402--418, 2011.Google ScholarGoogle Scholar
  34. T. Vepsäläinen, H. Li, and R. Suomi. Facebook likes and public opinion: Predicting the 2015 Finnish parliamentary elections. Government Information Quarterly, 34 (3): 524--532, 2017.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Sub-Matrix Factorization for Real-Time Vote Prediction

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          KDD '20: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
          August 2020
          3664 pages
          ISBN:9781450379984
          DOI:10.1145/3394486

          Copyright © 2020 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 20 August 2020

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate1,133of8,635submissions,13%

          Upcoming Conference

          KDD '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader