
Distributed Spectrum Assignment for Home

WLANs

Julien Herzen

EPFL, Lausanne, Switzerland

julien.herzen@epfl.ch

Ruben Merz

Swisscom, Strategy & Innovation

ruben.merz@swisscom.com

Patrick Thiran

EPFL, Lausanne, Switzerland

patrick.thiran@epfl.ch

Abstract—We consider the problem of jointly allocating chan-
nel center frequencies and bandwidths for IEEE 802.11 wireless
LANs (WLANs). The bandwidth used on a link affects sig-
nificantly both the capacity experienced on this link and the
interference produced on neighboring links. Therefore, when
jointly assigning both center frequencies and channel widths,
there is a trade-off between interference mitigation and the
potential capacity offered on each link. We study this trade-
off and we present SAW (spectrum assignment for WLANs), a
decentralized algorithm that finds efficient configurations.

SAW is tailored for 802.11 home networks. It is distributed,
online and transparent. It does not require a central coordinator
and it constantly adapts the spectrum usage without disrupting
network traffic. A key feature of SAW is that the access points
(APs) need only a few out-of-band measurements in order to
make spectrum allocation decisions. Despite being completely
decentralized, the algorithm is self-organizing and provably
converges towards efficient spectrum allocations. We evaluate
SAW using both simulation and a deployment on an indoor
testbed composed of off-the-shelf 802.11 hardware. We observe
that it dramatically increases the overall network efficiency and
fairness.

I. INTRODUCTION

802.11 WLANs are presently experiencing a tragedy of the

commons. In urban environments, with the exploding number

of devices using unlicensed spectrum and with the dominating

usage of 802.11 in home networks, several dozens of WLANs

often have to share a limited spectrum [4], [11]. Furthermore,

capacity-intensive applications are pushing for newer 802.11

standards that use wider bandwidths (up to 40 MHz for

802.11n and up to 160 MHz for the newer 802.11ac), thereby

increasing the amount of spectrum consumed by each WLAN.

This increase in spectrum usage, however, can also create more

interference and have adverse effects. If two wireless nodes

are close enough and share some portion of the spectrum,

they interfere with each other, which reduces their available

capacity.

802.11 currently offers several channels in the unlicensed

2.4 GHz ISM and 5 GHz U-NII bands. These channels

have a bandwidth of 20 MHz (802.11a/g/n). In practice, each

channel can overlap its close-by neighboring channels, and the

interference depends on the amount of overlap [21]. Although

channels can be configured, measurements from [4] and [11]

suggest that a vast majority of WLANs use default channel

assignments, which is definitely sub-optimal.

Several approaches exist to efficiently assign channels

to nodes in order to increase network performances (see

e.g., [15], [16], [19], [20], [23]). In general, when all channels

have the same width, the goal is to introduce as much spectral

separation as possible between potentially interfering links.

However, it has recently been pointed out that commodity

802.11 hardware can operate on various channel bandwidths

(5, 10, 20 and 40 MHz) [10]. Even on a single link, using

different bandwidths can radically change the observed per-

formance. Wider bandwidths offer potentially more capacity

and throughput. For a fixed transmit power, however, narrower

bandwidths increase the power per Hertz and the SNR, which

can potentially increase the communication range [10].

When several interfering links are present, adapting the

bandwidth provides an important additional degree of freedom.

Obviously, if a link uses a narrow width, it creates less interfer-

ence to neighboring links in the frequency domain. However,

using a narrow width potentially reduces the capacity of this

link. In addition, it takes more time to send a packet when

using a narrow width, which increases the airtime consumption

of this link and can create more interference in the time

domain, similarly to the rate anomaly [13]. It is therefore

clear that the problem of jointly allocating center frequencies

and bandwidths is significantly different from allocating only

center frequencies. In particular, our goal is not only to reduce

interference, but rather to conciliate an efficient global packing

of spectrum chunks with the local benefits of using appropriate

bandwidths.

We focus on home networks, i.e., residential WLANs with

APs deployed in a chaotic fashion by individuals or different

administrative entities. These networks are typically dynamic

on relatively coarse timescales (say, hours), and they lack a

global infrastructure to run centralized solutions. Hence, we

target decentralized algorithms.

In addition to finding efficient configurations, a dynamic

spectrum allocation mechanism must therefore be (1) decen-

tralized, but also (2) online in order to adapt to changing

network conditions, (3) transparent to minimize disturbances

to ongoing traffic, and (4) usable on off-the-shelf hardware.

The design of a truly decentralized scheme should rely only on

local measurements. This raises a fundamental issue: the nodes

regularly need to probe the availability of other channels and

bandwidths. However, they have only one wireless interface1

1We assume that only one wireless interface is available. Most consumer-
level APs have only one interface, and requiring a dedicated interface for the
control plane changes the nature of the problem.

978-1-4673-5946-7/13/$31.00 ©2013 IEEE

2013 Proceedings IEEE INFOCOM

1621

2

to perform such out-of-band measurements.

Our main contribution is the design and evaluation of SAW

(Spectrum Assignment for WLANs), a practical algorithm

for online and distributed channel frequency and bandwidth

assignment. SAW runs at the AP of a WLAN and relies

exclusively on inter-neighbor measurements, without gener-

ating additional traffic. It is transparent and operates while the

network is up and running. Nevertheless, it provably converges

towards optimal allocations, in a sense that will be defined

later. Finally, SAW improves the performance, even when only

a subset of the interfering WLANs use it, therefore providing

incentives for incremental deployment.

The remainder of the paper is organized as follows. Sec-

tion II discusses related work. The operation of SAW and

its convergence is described in Section III. A simulation

evaluation is given in Section V, complemented by testbed

experiments in Section V. Finally, some concluding remarks

are given in Section VI.

II. RELATED WORK

The problem of channel allocation without considering

channel bandwidth has been largely studied in the context

of cellular networks (see e.g. [2]). It is commonly cast as

graph-coloring [7] where an edge corresponds to interference

between two cells, and the set of available colors corresponds

to the set of channels. Because graph-coloring is NP-hard

for general graphs, heuristics are used to solve it (typically,

techniques based on [7]). These techniques have been adapted

to 802.11 WLANs as well [26]. Their primary drawbacks are

that they require a centralized knowledge of the interference

graph and usually fail to capture much of the granularity of

the interference between any two cells [3].

Some channel-allocation schemes have been developed

specifically for WLANs. [19] explicitly takes into account

interference at the clients of each WLAN. However, it does

not provide any optimality guarantee and it requires all the

APs to be under a single administrative domain. MAXchop

is a distributed algorithm that runs at the APs and computes

channel hopping sequences [20]. Unfortunately, it can get

stuck in a local minimum, and there is no guarantee that the

allocation patterns minimize interference across the network.

In addition, MAXchop is not transparent, as it requires APs

to periodically scan all the channels. Scanning can take up to

several seconds and heavily disrupts communications. In [23],

the authors show that accounting for traffic demands when

assigning channels can yield better performance. However,

their algorithm is centralized. [15] proposes a provably optimal

distributed channel-assignment algorithm that uses a Gibbs

sampler [8]. Because it requires APs to run full channel

scans to discover all the channels used by their neighbors, the

algorithm is not appropriate for online operation. These scans

are necessary to compute the so-called partition function of the

Gibbs measure used by APs to choose a new channel. Gibbs

samplers have been used for distributed resource allocation in

different contexts [6], [9], [18].

A distributed algorithm for channel assignment is presented

in [16], which does not require communication between access

points, as in our work. The approach is based on decentralized

constraint satisfaction [12], and it provably solves the graph

coloring problem in a distributed way if the number of

available orthogonal channels is at least the chromatic number

of the underlying interference graph. Graph coloring only

accounts for the presence or absence of interferers on a given

band, irrespectively of the actual interference levels.

Compared to the above works, SAW provably converges

towards the stationary distribution of a Markov random field,

but compared to [15], we avoid the costly computation of

the Gibbs partition function by using a Metropolis sampler

(see Section III-B). SAW is also traffic-aware, in the sense

that it explicitly accounts for the airtime consumed by each

link when computing the interference. But most importantly,

SAW allocates bandwidths jointly with center frequencies,

which none of the channel-allocation techniques does: these

techniques solve a fundamentally different problem, which

consists in maximizing the separation between the channels

used by neighboring nodes. Because the channel bandwidth

directly impacts the experienced capacity, this goal cannot be

considered in isolation in our case.

Recent work has shown that the channel bandwidth has

quite an impact on interference and overall performance [10].

Shortly after [10], the work in [22] formulates frequency and

channel-width assignment as an integer linear program and

proposes efficient centralized heuristics. More recently, [24]

proposes a centralized spectrum assignment algorithm and

gives useful information on the trade-offs involved when

tuning channel center frequencies and bandwidths. Here again,

both [22] and [24] target enterprise networks, as they rely on

the presence of a centralized coordinator. Such a coordinator

does not exist for residential WLAN deployments

The problem of spectrum allocation has also been studied in

the context of cognitive radios for white space networks [5],

[27]. In particular, [27] considers the problem of efficiently

packing time-spectrum blocks. The authors propose a dis-

tributed algorithm, but it requires a dedicated control channel.

Such a channel is not available in the context of unplanned

WLAN deployments.

III. ALGORITHM DESCRIPTION

In the following, we will use the term band to denote a

particular combination of channel frequency and bandwidth.

A. Preliminaries: WLANs Modeling

SAW builds on an interference metric (Section III-A3). In

order to formally define this metric, we need to describe

neighborhood relationships. This is achieved in two steps, in

Sections III-A1 and III-A2. We first build a link-centric model,

and then extend it to the specifics of WLANs, with APs and

clients.

1) Link-centric Model and Neighborhood System: Let L
define a set of links, F a finite set of frequencies and B a

finite set of channel bandwidths. Each link l ∈ L comprises

1622

3

two nodes, acting as a transmitter or receiver for this link.

Each node has only one wireless transceiver. Therefore, the

transmitter and receiver of a given link must use the same band

in order for communication to take place2. For a link l, fl ∈ F ,

respectively bl ∈ B, denotes the frequency, respectively the

channel bandwidth. We assume that traffic at transmitters is

stationary3. Finally, for link l, µl ∈ [0, 1] denotes the average

proportion of time during which a node occupies the medium

(namely, the airtime ratio of l). In practice, µl depends on the

802.11 time sharing mechanism, the physical rates used on

link l, and bl.
For any pair of links l, k, we say that l and k are mu-

tual neighbors (and interfere) if there exists a configuration

(fl, bl, fk, bk) such that two of the four nodes composing

l and k belong to different links and receive frames from

each other. Then Nl is the set of neighbors of link l. By

definition, the neighborhood relationship is symmetric, i.e.,

k ∈ Nl ⇔ l ∈ Nk. Note that this does not imply symmetric

interference levels: as specified in Section III-A3, two neigh-

bors can mutually interfere to a different extent. With this

model, a link is considered as a neighbor if its transmitter

is in the communication range of any node of another link.

In this sense, it captures both exposed and hidden terminal

situations. However, it does not capture interferers that are not

within communication range, as it relies on the ability of the

interferers to decode each other’s frames. Detecting interferers

outside the communication radius in a distributed setting is

an interesting – and orthogonal – problem on its own (see

e.g. [17]), which we do not address in this paper.

2) From Link to WLANs: BSS-centric Model: We now tailor

our model to co-existing and possibly interfering BSSs4. A

BSS is a set of nodes, where one node is an AP and those

remaining are clients. Compared to isolated links, all traffic

goes either to or from the AP. Therefore, all nodes of a BSS

must use the same band. We assume the AP is in charge of

choosing the band for its BSS.

Let A be a set of N BSSs. For a BSS A ∈ A, a link l
belongs to A (and we write l ∈ A) if both nodes of l belong
to A. In this case, one node of l is of course the AP of A.
Then, two BSSs A and B are neighbors if there exist two links

l ∈ A and k ∈ B such that l ∈ Nk. If A and B are neighbors,

we write A ∈ NB . The symmetry of the link neighborhoods

implies A ∈ NB ⇔ B ∈ NA.

In addition, we write fA ∈ F and bA ∈ B for the

center frequency and channel bandwidth used by the BSS

A, respectively. We denote by F ∈ FN and B ∈ BN the

center frequencies and the bandwidths used by the N BSSs,

respectively.

3) Interference Metric: SAW needs a metric to quantify

the amount of interference between any two links. For two

2Although it could be possible for a receiver to decode a signal sent with
a narrower width, this would require special non-commodity hardware.

3SAW does not rely on this assumption to function, but it is needed to
establish convergence.

4We use the term BSS (Basic Service Set) to designate WLANs here, as
this is the usual 802.11 nomenclature.

frequency

time
power

fl
fk

Fig. 1: The interference Il(k) (Eq. (1)) can be seen as the
average sum of the volumes spanned by the channel overlaps
over time. The time intervals without volume correspond to the
intervals during which k is idle.

links l and k, let Il(k) denote the link-interference created

by k on l. In addition, let IF (l, k) denote the interference

factor (see [21]). This factor describes the amount of overlap

between the two spectrum masks used on links l and k. Then,
we define

Il(k) =

{

µk · IF (l, k) if k ∈ Nl

0 otherwise
(1)

with

IF (l, k) =

∫ +∞

−∞

Sk(f)Sl(f − |fl − fk|)df,

where Sk is the transmit mask of link k, and Sl is the mask

used on link l. The 802.11 standard defines the characteristics

of masks [1]. They change with channel bandwidth: for a given

transmit power, the emitted power per unit Hz increases as the

channel bandwidth decreases (see [10]). Note that Il(k) is not
equal to Ik(l) in general.

Equation (1) requires some discussion. With partially over-

lapping channels, IF (l, k) accurately capture the interference

between l and k (also confirmed for 802.11n with channel

bonding [25]). In Eq. (1), we augment this interference factor

and multiply it by the proportion of time a given interfering

link is active (µk). This naturally extends the notion of

interference to both the spectral and temporal domains (see

Figure 1), and accounts for the fact that a link is more likely

to cause interference if its airtime is high. It is also used as

a way to account for the difference in airtime consumption

at different widths. Note that a natural extension could be

to modulate Il(k) by the power that link l receives from

an interfering neighbor. However, a consistent estimation of

power requires careful calibration of the cards, which is often

not the case for off-the-shelf hardware. We therefore leave this

extension for future work.

Finally, let IA(B) be the BSS interference that a BSS A
experiences from a BSS B ∈ NA. Using the link-interference,

IA(B) =
∑

l∈A

∑

k∈B

Il(k). (2)

Again, generally, IA(B) 6= IB(A).

B. SAW Algorithm

Recall that an efficient joint allocation of center frequencies

and bandwidths needs to balance a global minimization of

interference with the use of locally appropriate bandwidths.

1623

4

We therefore formulate the center frequency and bandwidth

allocation task as a network-wide cost minimization problem,

where the cost is the sum of the BSS interference plus a

penalty that each BSS attributes to the exploitation of a

given bandwidth. As will become clear later, this formula-

tion conveniently exhibits optimal solutions that can be well

approximated by the steady state of a Markov chain, whose

transitions are precisely given by our algorithm. Formally, let

the energy of the network be

E(F,B) =
∑

A∈A

∑

B∈NA

IA(B) +
∑

A∈A

costA(bA), (3)

where costA(bA) is the cost that BSS A attributes to using

bandwidth bA. An AP can choose a cost function that favors

larger bandwidths (and hence provides greater theoretical

capacity) or it can decide to favor narrow bandwidths if some

of its links have poor SNRs. This formulation is similar to

the energy of a magnetic system in statistical physics, where

the local spin interactions correspond to the interference, and

an external field favors ”better” bandwidths. The optimization

problem is then

minimize E(F,B) over F,B ∈ {F × B}N . (4)

Algorithm 1 SAW algorithm at BSS A

1: Initialization:
2: Setup an exponential timer of mean wake-up time λ
3: Pick a temperature T > 0
4: Pick a random configuration (fA, bA) ∈ {F × B}
5:

6: When the timer fires:
7: Pick a random configuration (fnew, bnew) ∈ {F × B}
8: Measure Ki,A :=

∑

B∈NA
(IA(B) + IB(A)) + costA(bA),

when A does use the configuration (fA, bA)
9: Measure Kj,A :=

∑

B∈NA
(IA(B) + IB(A)) + costA(bnew), if

A were to use the configuration (fnew, bnew)
10: Compute

βij =

{

e(Ki,A−Kj,A)/T if Kj,A ≥ Ki,A,

1 if Kj,A < Ki,A.

11: Set (fA, bA) = (fnew, bnew) with probability βij

12: Reschedule the timer

SAW is described in Algorithm 1. The algorithm runs at

the AP of each BSS. In the next section, we show that with

SAW running at each AP, the spectrum allocation converges

towards the minimum of Problem (4). The algorithm uses two

real parameters, the average wake-up time λ and a temperature

T , whose role is explained in Section III-C. At the AP

of a BSS A, SAW is executed repeatedly, at random time

intervals. During an execution, the AP randomly samples a

center frequency and a channel bandwidth (fnew, bnew). The AP
measures Ki,A (line 8), the local sum of (a) the interference

currently experienced by the BSS A, (b) the interference

caused by the BSS A on its neighbors with the current band

(fA, bA), and (c) the cost that A attributes to using bA. It then
measures Kj,A (line 9), the same sum if the BSS A were to

use (fnew, bnew) instead. We explain how to measure Ki,A and

Kj,A in Section III-D, and we give more information on the

influence of the function costA(bA) in Section IV-C. If the

new band (fnew, bnew) sampled by the AP appears better than

(fA, bA) (in the sense of Eq. (3)), it is accepted and the BSS

A switches to this new band. If it is worse, a chance is left

to this band, and it is accepted with a non-zero probability

by the AP. The acceptance probability depends on how bad

the band is: bands that appear very bad are less likely to be

accepted by the AP. Having a non-zero probability to accept

worse bands is necessary in order to ensure that the algorithm

does not get stuck in a local minimum of Problem (4).

SAW is a Metropolis sampler for the channel center fre-

quency and bandwidth. Compared to Gibbs samplers [15],

the main advantage of SAW is that it only needs to assess

two configurations at a time. In particular, when considering

the channel width in addition to the center frequency, an

AP running a Gibbs sampler would need to assess all the

|F ×B| possible configurations. This does not scale when the

number of possible combinations for the center frequency and

bandwidth is large. SAW retains similar asymptotic conver-

gence properties, but the number of measurements that are

required in each time step is scalable with respect to the set

of possible configurations, which allows for a practical and

online implementation, even when the channel bandwidth is

considered.

C. Convergence Analysis

Let us discretize time. A time slot is started immediately be-

fore any one AP fires its timer5. We denote byXn ∈ {F×B}N

the global state of the network at time slot n. The following

theorem states that the probability distribution taken by Xn

converges towards a steady distribution that largely favors the

states producing low energies.

Theorem 3.1: Consider a network where all the BSSs run

SAW with a given temperature T > 0. Then Xn converges in

distribution to

πi(T) =
e−E(i)/T

Z
, (5)

where Z is an appropriate normalizing constant.

Due to space constraints, we give the proof in [14]. In addition,

a classic Markov chain argument shows that the convergence

to steady state happens at geometric speed.

The distribution (5) puts ”exponentially” more mass on con-

figurations that produce low global energies, especially if T is

small. Indeed, consider the set of global minima of problem (4)

H = {i ∈ {F × B}N : E(i) ≤ E(j) ∀ j ∈ {F × B}N},

then πi(T) is maximal on H , and

lim
T↓0

πi(T) =

{

1
|H| if i ∈ H,

0 if i /∈ H.

(see Example 8.6, Chapter 7, in [8]).

5Note that the time slots have variable durations that are only determined
by the stochastic sequence of the timer events.

1624

5

The temperature T represents a trade off between explo-

ration and exploitation. In particular, a small value of T
ensures near asymptotic convergence to the global minima of

problem (4). Larger values of T can be used to introduce more

randomness that can help to avoid being trapped in a local

minimum. However, as we observe in Section IV-B, realistic

network topologies convey enough natural randomness so that

T ∼ 0 yields the best results in practice. This also directly

implies that the algorithm converges to global minima of

Problem (4).

D. Interference Measurements

All the decisions taken by SAW rely on the measurements

of Ki,A and Kj,A at lines 8 and 9 of Algorithm 1. At the

AP of BSS A, computing Ki,A,Kj,A requires to measure the

link-interference between links belonging to A and links in

neighboring BSSs. If any neighbor of A uses a band that

partially overlaps with A and comprises some links with a

non-zero airtime, it contributes to the interference term. Thus,

in order to evaluate Ki,A, respectively, Kj,A, the algorithm

needs to measure the link-interference in all the bands that

overlap with (fA, bA), respectively, with (fnew, bnew). We refer

to these measurements as out-of-band measurements, because

to be performed they require tuning to different bands. Note

that this is not an artifact of our algorithm, and similar out-of-

band measurements need to be performed by any decentralized

spectrum-assignment algorithm.

1) Micro-Sensing: We enable out-of-band measurements by

implementing what we call micro-sensing operations. After

randomly picking a new band, the AP of a BSS A computes

the list of all bands that can potentially interfere with the

current band (fA, bA) and the sampled band (fnew, bnew)
(knowing F , B and the spectrum masks defined in [1], this

list is straightforward to obtain). The AP then tunes to each

of these bands for a short amount of time. Now, instead of

scanning all of these bands at once, the AP comes back to the

operating band (fA, bA) between each individual scan. The

whole procedure is depicted in Figure 2. The amount of time

spent in out-of-band sensing must be large enough for the

nodes to have a fair chance of efficiently monitoring the band,

and small enough so as not to disrupt traffic. This duration also

depends on the bandwidth of the configuration currently being

scanned: the time required to send a packet at a given rate

is inversely proportional to the channel bandwidth. Therefore,

larger bandwidths can be monitored faster. We denote by tm−s

the overall time taken by one micro-sensing operation. As

a micro-sensing operation requires switching back and forth

between the operational and the monitored band, we have

tm−s = 2tswitch + tsensing, (6)

where tswitch is the time required to tune to the target center

frequency and bandwidth, and tsensing is the time spent

monitoring, which depends on the channel bandwidth. In our

implementation, we set tsensing = 240/b ms, where b is the

bandwidth of the band to monitor in MHz. This duration is

long enough to capture packets sent at low rates, but short

enough (below 50 ms) to accommodate delay-sensitive traffic,

even when a 5 MHz band is being sensed.

There is a trade-off between the amount of sensing and the

accuracy of the interference estimation. As one micro-sensing

operation is fast and inexpensive, our implementation senses

each band several times to increase the probability of detecting

potential neighbors, even if they do not transmit back-to-back

packets. Even in this case, the algorithm could miss some

neighbors that send only sporadic traffic and occupy little

airtime. Note however that, by definition, these neighbors do

not consume a significant portion of the available capacity,

and missing them is less critical.

During each micro-sensing period, the AP monitors the

medium and gathers link statistics. For each packet that it

overhears, the AP records the corresponding band, a link ID

(namely, the pair of source-destination MAC addresses), and

it keeps an estimation of the airtime ratio of the link by

computing the airtime consumed by the packet. This airtime

is computed from the length of the packet, its physical rate,

and the bandwidth that it occupies

2) Client-Aware Extension: Up to this point, the measure-

ments are performed at the AP only. This is indeed a desirable

feature, as it does not require client-side modification. In

this case however, the AP could miss hidden nodes that

interfere with some of its clients. This problem can be impor-

tant in practice, as observed in works proposing centralized

channel-assignment schemes [19], [23]. For this reason, and

to remain consistent with our link neighborhood definition of

Section III-A1, we propose an optional extension of SAW

that performs monitoring at the clients as well. When the

timer of an AP fires, this AP broadcasts a modified beacon

that contains the sampled frequency band and a schedule for

the corresponding micro-sensing operations. When the clients

receive this beacon, they schedule the micro-sensing of the

bands accordingly. Once they have monitored all the required

bands, the clients wait a small, random amount of time (in

order to avoid inter-client collisions) and send back to the AP

all the statistics for the links that they overheard. This feature

mitigates the impact of links that are hidden to the APs, but

it comes at the price of client-side modifications. We imple-

mented SAW both with (“client-aware”), and without (“client-

agnostic”) client monitoring. We compare the performance of

the two versions in Section V.

IV. SIMULATION RESULTS

A. Simulation Setup

Before giving a detailed evaluation of SAW on an indoor

802.11 testbed in the next section, we investigate by using

simulation its self-organization properties on large ecosystems

of interfering WLANs. To this end, we developed our own

simulator in Python. We do not simulate at the packet level,

which would not scale well to such large networks. Instead, we

use simpler models for computing interference and capacity.

We assume Gaussian white noise, so that a link l enjoys

a theoretical capacity Cl = bl · log(1 + SINRl), where

SINRl refers to the signal to interference-plus-noise ratio

1625

6

compute list of bands to scan

optionally: inform clients

micro-sensing

optionally: receive

link stats from clients

decision

time time

init. switch

block traffic

init. switch back

tm-s

tswitch tswitchtsensing

tm-s unblock traffic

timer fires

Fig. 2: Implementation of out-of-band monitoring with micro-sensing.

at the receiver of l. For any two nodes i and j within

interference range, we compute the power received by j from

i to be proportional to d(i, j)−α · IF (i, j), where d(i, j) is

the Euclidean distance between i and j, α is the path loss

exponent - that we take equal to 3 in our simulations - and

IF (i, j) is the corresponding interference factor [21]. Note

that this simple formulation for the capacity captures the

trade-off between interference mitigation and the usage of

larger bandwidths, through the logarithmic and pre-logarithmic

terms, respectively. Unless otherwise stated, we take the local

cost function to be costA(bA) = 1/bA for each BSS, where

bA is the bandwidth in MHz. Such a function favors wider

bandwidths, and we evaluate its effect in Section IV-C.

Unless otherwise stated, we consider a 1000m × 1000m
square grid, divided in 100 square cells. Each cell is occupied

by one BSS, which is composed of one AP and two clients.

The AP and the clients are placed uniformly at random within

their cell. The interference radius is R = 100m. The results

are insensitive to the scale of the units, and this setting can,

for instance, be thought of as a simple model for residential

WLANs, where each cell corresponds to an apartment in

a building. We simulate downlink traffic. The APs transmit

100% of the time and the clients are idle. We consider a

2.4 GHz scenario, with eleven channels and four possible

channel bandwidths (5, 10, 20 and 40 MHz). At initialization,

each BSS picks a random channel and uses the largest width.

We evaluate three metrics: (1) the total amount of inter-

ference in the network. This is the first term of the energy

function E given by Eq. (3); (2) the sum of capacities of

links in the network; and (3) the Jain fairness index of the

capacities experienced by each BSS. This is
(
∑

A∈A
CA)

2

N
∑

A∈A
C2

A

, with

CA denoting the sum of the link capacities of BSS A. We show

the median values over 50 simulation runs, and the error bars

on the plots are the 95% confidence intervals for the median.

B. Influence of the Temperature T

The temperature T represents a trade-off between the like-

lihood to remain stuck in a local optimum and the asymptotic

efficiency of SAW (see Section III-C). To understand this

trade-off, we perform simulations with various temperatures

spanning six orders of magnitude. Each simulation runs until

each AP performed on average 30 iterations of SAW. In order

to conveniently display the three metrics on a common plot,

we normalize the capacity and the interference by their largest

values. Figure 3a shows that SAW performs better with respect

to all the metrics when T is small. In practice, this implies

that the risk to remain trapped in a local optimum is very low

and small values of T can be used. Such values also ensure

the best asymptotic performance of SAW. We use T = 0.1 in

the sequel.

C. Capacity vs Interference

In this section, we explore the influence of the weight

that each BSS puts on its local cost function. We consider

a scenario where each BSS A uses the function costA(bA) =
c/bA, where c is a parameter that we vary. The BSSs can

use different cost functions, according to the local benefit of

each bandwidth. However, we study this particular function

in detail because it is decreasing with the bandwidth bA, and
therefore exhibits well the inherent conflict existing between

interference mitigation and maximization of theoretical capac-

ity. It is also a practical function, which the BSSs can use

whenever using a larger bandwidth would give them a better

throughput. This is often the case in practice, when the links

have sufficiently good SNRs [10].

We show the influence of c on our three performance

metrics in Figure 3b. When c is zero, no weight is given

to the local preferences of the BSSs, and the scheme targets

only global interference minimization. In this case, it indeed

finds interference-free configurations in a distributed way. This

setting is well suited for fixed-width channel allocation, but it

is not appropriate for varying bandwidths. Indeed, up to a 66%
increase in capacity can arise when using configurations with

a low, but a non-zero, interference level (with 1 ≤ c ≤ 6).
Using too large a value for c, however, decreases the benefits

of all three metrics. Such configurations give much weight on

local costs, which creates prohibitive interference levels.

Intuitively, the best operational setting should depend on

the network density: for networks that are spatially dense,

it makes sense to give priority on interference mitigation.

Whereas for sparse networks where the nodes have few or

no neighbors, it is advantageous to give more priority on local

preferences. This is illustrated on Figure 3c, where we plot

the total capacity when the spatial density of the network

varies, for several values of c6. As expected, c = 0 performs

the best on dense networks, and a large c is best for sparse

networks. However, an intermediate value of c obtains the best
performance in all regimes. This implies that such energy

functions allow the algorithm to operate at the best spot of

the interference-capacity trade-off, using a fixed parameter c,
irrespective of the spatial node density.

D. Performance

We evaluate the three metrics as functions of the number of

iterations of SAW executed by the BSSs. Figure 4 considers

6For this particular experiment, in order to vary the spatial density, we do
not simulate one BSS per cell of the grid. Instead, we draw the coordinates
of each AP uniformly at random in the 1000m ×1000m area, and each client
is randomly placed in the disc of radius R = 100m centered at its AP.

1626

7

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

temperature T

0.0

0.2

0.4

0.6

0.8

1.0

1.2

n
o

rm
a

liz
e

d
va

lu
e

capacity

fairness

interference

(a)

0 2 4 6 8 10
c

0.0

0.2

0.4

0.6

0.8

1.0

n
o

rm
a

liz
e

d
va

lu
e

fairness

capacity

interference

(b)

0 50 100 150 200 250 300 350 400

average spatial density [BSS/km2]

1000

2000

3000

4000

5000

6000

7000

8000

to
ta

l
c
a

p
a

c
it
y

c = 0

c = 100

c = 1

(c)

Fig. 3: The three metrics as functions of T (a) and c (b). (c) shows the evolution of the total network capacity as a function of the
spatial node density, for several values of c. The plots are obtained after each AP completed 30 iterations of SAW on average.

6 channels: 11 channels:

0 10 20 30 40 50 60

average iterations per AP

0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

a
liz

e
d

va
lu

e

Capacity, c+w

Interference, c

Capacity, c

Interference, c+w

0 10 20 30 40 50 60

average iterations per AP

0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

a
liz

e
d

va
lu

e

Capacity, c+w

Capacity, c

Interference, c

Interference, c+w

0 10 20 30 40 50 60

average iterations per AP

0.3

0.4

0.5

0.6

0.7

0.8

fa
ir

n
e
ss

in
d
e
x

Fairness, c+w

Fairness, c

0 10 20 30 40 50 60

average iterations per AP

0.3

0.4

0.5

0.6

0.7

0.8

fa
ir

n
e
ss

in
d
e
x

Fairness, c+w

Fairness, c

Fig. 4: Capacity, interference and fairness as functions of the
number of iterations. We show the values obtained when SAW
tunes both the channel center frequency and bandwidth (c+w),
and when it tunes only the center frequency (c).

two cases, with 6 or 11 channels available (the latter is the

2.4 GHz spectrum case). In addition, we compare with a case

where SAW only tunes the center frequency (and not the

bandwidth). We make the following observations:

• By tuning both the center frequency and the bandwidth,

SAW drastically improves all three metrics. Interference is

completely mitigated with 11 channels and nearly mitigated

with 6 channels. The capacity is multiplied by a factor 2
to 4 compared to random channel allocations.

• Jointly tuning the center frequency and the bandwidth

offers drastic improvements compared to center frequency

only, especially when the available spectrum is scarce.

• SAW quickly finds efficient allocations (even though the

exact convergence is asymptotic). Besides, an iteration of

SAW only involves the assessment of two configurations

and is inexpensive to realize in practice.

E. Influence of the Proportion of BSSs Running SAW

We evaluate scenarios where SAW runs on randomly chosen

subsets of BSSs. We then compute capacity increase and inter-

ference decrease observed by the BSSs running SAW, compared

to the initial random allocations of fixed bandwidth channels.

Figure 5 shows results when the proportion of BSSs running

SAW varies from 0% to 100%, after 5 and 20 iterations per

AP on average. The capacity always increases for the BSSs

running SAW. Note that after 5 iterations, this capacity gain is

after 5 iterations: after 20 iterations:

0 20 40 60 80 100
percentage of BSSs running SAW

0

20

40

60

80

100

120

140

p
e

rc
e

n
ta

g
e

im
p

ro
ve

m
e

n
t

% interference
decrease

% capacity increase

0 20 40 60 80 100
percentage of BSSs running SAW

0

50

100

150

200

250

300

p
e

rc
e

n
ta

g
e

im
p

ro
ve

m
e

n
t

% interference
decrease

% capacity increase

Fig. 5: Percentage of improvement (compared to random
allocations of fixed bandwidth channels), as a function of the
percentage of BSSs using SAW.

not monotonic with respect to the proportion of BSSs running

SAW. We attribute this to the larger convergence time due to

the competition between an increased number of BSSs running

SAW. Waiting for more iterations allows the APs to explore

more configurations and attenuates this effect. Overall, even

a small percentage of BSSs running SAW quickly produces

a significant capacity increase, giving users incentives for

incremental deployments.

V. TESTBED RESULTS

A. Testbed and Implementation Description

We use a testbed of 21 wireless nodes, which form 10
BSSs spread over a campus building floor (see Figure 6 left).

Each node is a PCEngine Alix 2D2 equipped with an Atheros

AR9220 IEEE 802.11 mini-PCI adapter, running OpenWrt

with the ath9k driver. This driver allows for using channel

bandwidths of 5, 10 and 20 MHz (40 MHz is not currently

available). We modified ath9k and added a debugfs entry to

the Linux kernel, in order to accept live reconfiguration of the

operating band in a few tens of milliseconds. We give more

details on these timings in Section V-C. We performed all

experiments during the night in the 2.4 GHz spectrum using

802.11g and the default rate adaptation mechanism of ath9k

(Minstrel). The 5 GHz spectrum contains more channels, but

we use the 2.4 GHz spectrum in order to create interference-

rich scenarios with overlapping channels, where efficient spec-

trum assignments are non-trivial. We used a signal analyzer

to measure the actual spectrum masks used by our cards

at different bandwidths (see [14] for more details). SAW is

implemented in userspace using the Click modular router. We

created four Click elements, which in total consist of about

2500 lines of C++ code. A schematic view of the role of each

element within the networking stack of an AP is shown in

1627

8

40 m

65 m

Network interface

Wireless medium

Priority scheduler

Link

tracker

monitor

links

stats.

0 1

SAW

links

stats.

Traffic

blocker

on/

off

Outgoing

queue

Application

beacons

Fig. 6: Left: Map of the 21-node testbed. The BSSs are shown
with arrows directed from the APs to their clients. Right:
Implementation of SAW at an access point.

Figure 6 (right). The core logic of the algorithm is fed by link

statistics that come from a link-tracker module, and optionally

from the clients of the BSS. When performing micro-sensing,

SAW temporarily blocks outgoing traffic, in order to reduce

packet losses. Control traffic between AP and clients (switch

announcements, scanning requests and scanning replies) is

prioritized over data traffic in order to increase the accuracy of

the scheduled switching times. Note that such control traffic is

required by any distributed channel-assignment scheme and,

in practice, it can be integrated within addendum of the IEEE

standards (e.g., 802.11h).

All BSSs use costA(bA) = 1/bA, the temperature is T = 0.1
and the mean wake-up period is λ = 4 minutes. Such a value

offers a good trade-off between stability and reactivity to, for

instance, the apparition or disappearance of a neighboring

network. The interval between two micro-sensing is set to

500 ms, and each band is sensed five times.

B. Performance of SAW

We performed several experiments on four scenarios: with

UDP or TCP and with the client-agnostic or client-aware

versions of SAW. Traffic is backlogged and downlink, from

APs to their clients. This represents a frequent use case where

all the capacity is used, for instance when several clients are

downloading simultaneously from the Internet. We present

more results with uplink traffic in [14]. All BSSs start in

channel 6 with a bandwidth of 20 MHz. As a benchmark,

we use a centralized channel assignment based on graph-

coloring7. Specifically, we build an inter-BSS interference

graph by having all the APs broadcast one packet (of size

1000B), each second during one hour. Two BSSs are neighbors
if one of their APs receives at least P% of the beacons sent by

the other AP. Then, using the DSATUR graph-coloring algo-

rithm [7], we take the largest value of P such that this graph

is 3-colorable. Finally, we use the corresponding coloration to

assign one of the three non-overlapping channels (channels 1,
6 and 11) to each BSS. This procedure is centralized and is

a reasonable upper-bound of what can possibly be achieved

with an unplanned deployment.

7Note that with 11 · 3 channel-width combinations and 10 BSSs, the state
space has size 33

10. An exhaustive search for the ”real” best configuration
is therefore impossible.

UDP traffic, client-agnostic: UDP traffic, client-aware:

0 1000 2000 3000 4000
time [s]

20

30

40

50

60

70

80

to
ta

l
th

ro
u
g
h
p
u
t

[M
b
p
s
]

Bench

0 1000 2000 3000 4000
time [s]

20

30

40

50

60

70

80

to
ta

l
th

ro
u
g
h
p
u
t

[M
b
p
s
]

Bench

TCP traffic, client-agnostic: TCP traffic, client-aware:

0 1000 2000 3000 4000
time [s]

20

25

30

35

40

45

50

55

60

65

to
ta

l
th

ro
u
g
h
p
u
t

[M
b
p
s
]

Bench

0 1000 2000 3000 4000
time [s]

20

25

30

35

40

45

50

55

60

65

to
ta

l
th

ro
u
g
h
p
u
t

[M
b
p
s
]

Bench

Fig. 7: Sum of the link throughputs obtained by the 10 BSSs with
downlink traffic. SAW is started at 600 seconds. The ”Bench”
line is the average throughput obtained with a centralized graph
coloring approach that uses the 3 non-overlapping channels with
a width of 20 MHz.

0 1000 2000 3000 4000
time [s]

0.50

0.55

0.60

0.65

0.70

0.75

0.80

J
a
in

’s
fa

ir
n
e
s
s

in
d
e
x

Bench

0 50 100 150 200
time [ms]

0.0

0.2

0.4

0.6

0.8

1.0

e
m

p
ir

ic
a

l
C

D
F

tm−s

2tswitch

Fig. 8: Left: Jain’s fairness index for the scenario with UDP
traffic and client-agnostic version. Right: Empirical CDFs of the
switching times and the micro-sensing times.

Figure 7 shows the average sum and the standard devia-

tions (over 20 independent runs) of the throughputs achieved

by each link. We also show the average obtained with the

benchmark. In each scenario, SAW starts at 600 seconds. The

client-aware version performs slightly better, both for UDP and

TCP traffic. In general, SAW settles to spectrum assignments

that are equivalent or better than centralized graph-coloring.

The extra gain is due to the fact that SAW adapts both the

frequency and bandwidth of the channel. In these experiments,

much of the gain already comes after one or two iterations

of SAW per BSS (iterations happen every 240 seconds on

average), and the algorithm settles to efficient allocations

after approximately 3 iterations per BSS on average. We

emphasize that these results are obtained by using a completely

decentralized and online implementation.

This increase in network capacity does not come at the cost

of fairness. In particular, it is not obtained by starving some of

the BSSs for the benefit of others. For the first scenario, UDP

traffic with the client-agnostic version of SAW, Figure 8 (left)

shows the evolution of the average Jain’s fairness index of the

throughput achieved by all the BSSs over time. Fairness in

the remaining scenarios showed similar trends and we do not

show them due to space constraints. The increase in capacity

is spread fairly among the BSSs.

1628

9

0 20 40 60 80 100 120

time [s]

0

2

4

6

8

10

12

14

16

th
ro

u
g
h
p
u
t

[M
b
p
s
] Link 1 starts sensing

Link 1 switches band

TCP link 1

TCP link 2

Fig. 9: Micro-sensing with TCP traffic.

C. Micro-Sensing Evaluation

We evaluate the potential disturbance produced by the

micro-sensing procedures. Because traffic is blocked while the

AP (and optionally the clients) perform out-of-band monitor-

ing, frames can experience an additional delay of up to tm−s

(see Eq. (6)). Figure 8 (right) plots the CDFs of 2tswitch

and tm−s during the experiments of Section V-B. Although

tm−s typically remains below 150 ms, this could still be non-

negligible for delay-sensitive traffic. However, this delay is

mostly due to the hardware switching time, which is relatively

high on our cards. Indeed, Atheros and other manufacturers

report switching times of 2 ms or less for newer 802.11

chipsets8. With such chipsets, switching overhead becomes

negligible, and the additional delay of the micro-sensing

procedure can be upper-bounded by about 50 ms. This is low

enough to be tolerated by most delay-sensitive applications.

We now show the impact of micro-sensing on TCP traffic.

Figure 9 shows the throughput of two close-by links, each with

fully backlogged TCP traffic. At the beginning, both links use

channel 1 with a bandwidth of 20 MHz. After 60 seconds,

the AP of link 1 (the transmitter of this link) fires its timer

and samples a new band (channel 11, 20 MHz). From 60 to

75 seconds, the AP of link 1 performs micro-sensing for all

the bands that partially overlap with channel 1 or channel 11
(micro-sensing interval is 500 ms). At 75 seconds, the AP

of link 1 decides to switch to the new band. From 75 to 90
seconds, it broadcasts modified beacons containing the time of

the scheduled switch, which takes place at 90 seconds. Out-of-

band sensing temporarily slightly reduces the TCP throughput.

However, the throughput degradation is only marginal, even

though the hardware has a relatively high switching latency.

VI. CONCLUSION

We have presented SAW, a decentralized algorithm that

finds efficient variable-width spectrum configurations for

WLANs. We have thoroughly validated its performance with

testbed experiments and simulations. The spectrum allocation

problem is formulated as the global optimization of an energy

function, which is composed of neighbor interactions and

local bandwidth preferences. When the network conditions do

not change, SAW converges towards global minima of this

function. In real dynamic settings, SAW constantly adapts

spectrum usage. We have identified simple energy functions

that enable the algorithm to solve the capacity-interference

trade-off, irrespectively of the network spatial density. Thanks

8For instance, the chipset AR9390. See: http://www.qca.qualcomm.com/
technology/technology.php?nav1=47&product=90

to its underlying Metropolis formulation, where only one new

configuration is sampled at a time, SAW scales nicely with

the total number of available channels and bandwidths. This

property suggests that some of the concepts presented in this

paper could be applicable to white space networks.

REFERENCES

[1] IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-1999), 2007.
[2] K. Aardal, S. Hoesel, A. Koster, C. Mannino, and A. Sassano. Models

and solution techniques for frequency assignment problems. 4OR: A

Quarterly Journal of Operations Research, 1(4):261–317, 2003.
[3] N. Ahmed, U. Ismail, S. Keshav, and K. Papagiannaki. Online estimation

of RF interference. In ACM CoNEXT 08, pages 4:1–4:12, 2008.
[4] A. Akella, G. Judd, S. Seshan, and P. Steenkiste. Self-management in

chaotic wireless deployments. In ACM Mobicom 05, pages 185–199.
[5] P. Bahl, R. Chandra, T. Moscibroda, R. Murty, and M. Welsh. White

space networking with wi-fi like connectivity. In ACM SIGCOMM 09.
[6] S. Borst, M. Markakis, and I. Saniee. Distributed power allocation and

user assignment in OFDMA cellular networks. In Allerton 2011.
[7] D. Brélaz. New methods to color the vertices of a graph. Commun.

ACM, 22:251–256, April 1979.
[8] P. Bremaud. Markov Chains: Gibbs Fields, Monte Carlo Simulation,

and Queues. Springer-Verlag New York Inc., corr. edition, Feb. 2001.
[9] I. Broustis, K. Papagiannaki, S. V. Krishnamurthy, M. Faloutsos, and

V. P. Mhatre. Measurement-driven guidelines for 802.11 WLAN design.
IEEE/ACM Trans. Netw., 18:722–735, June 2010.

[10] R. Chandra, R. Mahajan, T. Moscibroda, R. Raghavendra, and P. Bahl.
A case for adapting channel width in wireless networks. In ACM

SIGCOMM 08, pages 135–146, 2008.
[11] L. Di Cioccio, R. Teixeira, and C. Rosenberg. Characterizing home

networks with homenet profiler. Technical report, Technicolor CP-PRL-
2011-09-0001, September 2011.

[12] K. R. Duffy, C. Bordenave, and D. J. Leith. Decentralized constraint
satisfaction. CoRR, abs/1103.3240, 2011.

[13] M. H. Franck, F. Rousseau, G. Berger-sabbatel, and A. Duda. Perfor-
mance anomaly of 802.11b. In In IEEE Infocom, pages 836–843, 2003.

[14] J. Herzen, R. Merz, and P. Thiran. Distributed spectrum assignment for
home wlans (technical report).

[15] B. Kauffmann, F. Baccelli, A. Chaintreau, V. Mhatre, K. Papagiannaki,
and C. Diot. Measurement-based self organization of interfering 802.11
wireless access networks. In INFOCOM 07, pages 1451–1459, 2007.

[16] D. J. Leith, P. Clifford, V. Badarla, and D. Malone. WLAN channel
selection without communication. Computer Networks, Jan. 2012.

[17] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. Analyzing the
mac-level behavior of wireless networks in the wild. SIGCOMM ’06,
pages 75–86, New York, NY, USA, 2006. ACM.

[18] V. Mhatre, K. Papagiannaki, and F. Baccelli. Interference mitigation
through power control in high density 802.11 WLANs. In IEEE

INFOCOM 07, pages 535 –543, may 2007.
[19] A. Mishra, V. Brik, S. Banerjee, A. Srinivasan, and W. Arbaugh. A

client-driven approach for channel management in wireless lans. In
INFOCOM, 2006.

[20] A. Mishra, V. Shrivastava, D. Agarwal, S. Banerjee, and S. Ganguly. Dis-
tributed channel management in uncoordinated wireless environments.
In ACM Mobicom 06, pages 170–181, 2006.

[21] A. Mishra, V. Shrivastava, S. Banerjee, and W. Arbaugh. Partially
overlapped channels not considered harmful. In SIGMETRICS 06, 2006.

[22] T. Moscibroda, R. Ch, Y. Wu, S. Sengupta, P. Bahl, and Y. Yuan. Load-
aware spectrum distribution in wireless lans. In IEEE ICNP 08, 2008.

[23] E. Rozner, Y. Mehta, A. Akella, and L. Qiu. Traffic-Aware channel
assignment in enterprise wireless LANs. In IEEE ICNP 07, Oct. 2007.

[24] S. B. Shravan Rayanchu, Vivek Shrivastava and R. Chandra. FLUID:
Improving throughputs in enterprise wireless lans through flexible chan-
nelization. In ACM Mobicom 11, 2011.

[25] V. Shrivastava, S. Rayanchu, J. Yoonj, and S. Banerjee. 802.11n under
the microscope. In ACM IMC 08, pages 105–110, 2008.

[26] E. G. Villegas, R. V. Ferré, and J. Paradells. Frequency assignments in
IEEE 802.11 WLANs with efficient spectrum sharing. Wirel. Commun.

Mob. Comput., 9:1125–1140, August 2009.
[27] Y. Yuan, P. Bahl, R. Chandra, T. Moscibroda, and Y. Wu. Allocating

dynamic time-spectrum blocks in cognitive radio networks. In ACM

MobiHoc 07, 2007.

1629

