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Abstract. In this paper, we introduce a navigation privacy attack,
where an external adversary attempts to find a target user by exploiting
publicly visible attributes of intermediate users. If such an attack is suc-
cessful, it implies that a user cannot hide simply by excluding himself
from a central directory or search function. The attack exploits the fact
that most attributes (such as place of residence, age, or alma mater) tend
to correlate with social proximity, which can be exploited as navigational
cues while crawling the network. The problem is exacerbated by privacy
policies where a user who keeps his profile private remains nevertheless
visible in his friends’ “friend lists”; such a user is still vulnerable to our
navigation attack. Experiments with Facebook and Google+ show that
the majority of users can be found efficiently using our attack, if a small
set of attributes are known about the target as side information. Our
results suggest that, in an online social network where many users reveal
a (even limited) set of attributes, it is nearly impossible for a specific
user to “hide in the crowd”.

1 Introduction

Over the last few years, online social networks (OSNs) have revolutionized the
way people behave and interact with each other over the Internet. OSNs enable
the majority of users to not just be passive consumers of the Web, but to become
active producers of content, and to be storytellers of their own lives for the first
time online. The other side of the coin is that privacy breaches are intrinsically
bound to OSNs, and new forms of surveillance and control have emerged with
OSNs. Recruiters are now known to look up Facebook profiles of job applicants,
and hiring discrimination based on OSNs has become a serious threat [2,10].
Some employers and colleges even request the Facebook passwords of job appli-
cants and student athletes in order to get full access to their profiles [36]. OSNs
have also been exploited by government agencies of authoritarian regimes to infil-
trate protesters’ social networks. Several Syrian activists have notably reported
having been arrested and forced to reveal their Facebook passwords [35]. These
practices are only the tip of the iceberg of privacy erosion caused by OSNs.
The first, straightforward method for finding an individual in an online social
network is to rely on a central directory, if available. Obviously, a user u trying



2 M. Humbert et al.

to keep his profile private would opt not to be listed in such a directory or, if this
privacy option is not available,’ make use of a pseudonym. The second method
to reach w is to rely on the social links between users and to navigate via these
links towards u. This approach works if some of u’s friends show their friend lists
publicly (thereby exposing u), which is the default setting in most OSNs.

In order to find a hidden user, an attacker could search the whole public
social graph. However, such an exhaustive search, despite guaranteeing to find
any user in the giant component,? would certainly be too expensive for OSNs that
contain hundreds of millions users, notably because of the anti-crawling features
deployed by virtually all OSNs. To reduce the search cost, the attacker can
decide to crawl only a targeted subset of OSN users. In this paper, we evaluate
the feasibility of such an attack for large networks and ultimately answer the
following question: Is it possible to find a target profile by navigating a small
fraction of the whole network, by relying on public attributes of queried profiles?
Answering this question is crucial for privacy, because reaching the target profile
or its neighborhood is the necessary precondition for any targeted attack such
as the inference of hidden attributes (e.g., political or religious views) through
other personal attributes [7,29], or through friends’ public attributes [8,22,33].

To the best of our knowledge, this is the first work proposing to find a target
profile in an OSN by making use of social links between users. Our navigation
attack is generic in order to apply to any attribute-enhanced OSN (such as Face-
book, Google+, or Twitter). We propose a search algorithm that relies on a space
of attributes and distance heuristics based on A* search [17]. The categories of
attributes and their priorities can be adapted to any kind of OSN. Given the
OSN visibility, privacy policies, and the users’ privacy choices, we show how
the attack can be efficiently carried out, by implementing it in the two largest
OSNs, Facebook and Google+. For these OSNs, building upon results on nav-
igation and routing in social networks, the attack first relies on geographical
attributes only, then making use of additional types of attributes (such educa-
tion or work) as soon as it reaches the target’s city. Our results demonstrate
that 66.5% of Facebook users are findable by crawling a median number of users
smaller than 400; and 59% of Google+ users are findable by crawling a median
number of users small than 300. This shows that it is very difficult to hide in an
OSN, however large it is and to prevent targeted attacks and/or to deny the ex-
istence of a profile. Moreover, targets’ cities are reached in 92% and 93.5% of the
cases by crawling a median number of 13 and 8 users, in Facebook and Google+,
respectively. This shows the efficiency of geographic navigation in Facebook and
Google+. We propose two main explanations for the failed cases. First, the users
least likely to be discovered are those who have a small number of friends, or
privacy-cautious friends (who do not reveal too much information), or friends
whose revealed information is not similar to their own information. Second, users

1 It is the case of Facebook since the end of 2012.

2 This holds if the search starts from the giant component and the target is in this
component too. This is a fair assumption for current OSNs; for example, in Facebook,
99.91% of users belong to the giant component [39].
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living in larger cities tend to be harder than others to discover in Facebook. Al-
though the latter reason is inherent to the structure of the OSN and to the limit
we impose on the number of crawled users, the former is essentially due to the
privacy settings of the targets’ friends and the OSN dynamics. Our results show
that homophily in social networks [5,30] does not only allow us to infer hidden
attributes of OSN users locally, but also allows us to efficiently navigate toward
the target. Note that we do not assume any prior knowledge about the network
structure and the users’ distribution in the network. Moreover, by starting the
navigation from a random user in the network, we consider the worst-case sce-
nario for the attacker and provide a lower-bound on the attack efficiency. It is
clear that the use of advanced search filters or source users closer to the target
can only further benefit the attacker. We briefly show how this can dramatically
reduce the search cost. Finally, we show that simple countermeasures exist and
could be implemented upstream by the OSN operators.

2 Related Work and Background

We present here the most closely related work on privacy threats in OSNs, show-
ing how our paper complements existing attacks. We also discuss the background
on navigation in social networks.

2.1 Privacy issues in OSNs

Acquisti and Gross were among the first to mention the potential risks induced
by information sharing in OSNs in their seminal papers [1,13]. They study in
detail the Facebook privacy settings and data visibility, and they emphasize the
potential threats caused by weak privacy settings (used by most users). In [23]
and [24], Krishnamurthy and Wills study what types of information are shared
with whom, by default or not, and what kind of privacy settings are available for
various pieces of personally identifiable information. They show that, among 12
OSNs, 10 publicly reveal social links by default and 1 reveals them always (i.e.,
without any possibility of changing the settings). 7 reveal by default the user’s
location and 5 always reveal it. 8 reveal the attended schools by default and 6
the employers. These statistics are relevant for our work as they show what kind
of attributes are publicly revealed, and thus can be used for the navigation.

He et al. [18] were among the first to propose inference attacks based on
the users’ neighborhood. They make use of Bayesian inference and multi-hop
inference to predict private attributes based on the friends, and friends of friends
of the targeted users. The authors apply their analytical findings to a LiveJournal
dataset with hypothetical attributes. In the same vein, Lindamood et al. propose
to infer political affiliation (binary attribute: liberal or conservative) based on
a modified Naive Bayes classifier [27]. Their results show that simply sanitizing
user attributes or links is not enough to prevent inference attacks. Johnson [20]
also emphasizes that social links can leak very sensitive information about a
specific Facebook user, for instance whether a certain user is homosexual or not.
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Zheleva and Getoor [43] propose novel inference attacks based on social links
and group memberships, which they apply in four different social networks. An-
other work on inference of undisclosed attributes proposes to rely on any of
the user’s public attributes, and on any of the aggregates of his friends’ at-
tributes [22]. Finally, Chaabane et al. [7] show how music interests can be used
to infer private sensitive attributes of Facebook users. Their approach does not
rely on users’ social links or group memberships, but only on users’ attributes.

Thomas et al. [37] examine how the lack of joint privacy controls can put
a user’s privacy at risk. Notably, they highlight the inherent interdependent
privacy risks due to friends in Facebook, and the fact that a user had no control
over his friends’ friend lists. They present inference techniques that, based on wall
posts and friends, present improvements compared to previous work by relying
only on friends to infer private attributes. Yamada et al. [42] also emphasize the
impact of conflicting privacy policies on users’ privacy. They propose 3 different
attacks: friend-list, profile and wall-post recovery attacks. Dey et al. [8] estimate
the leakage of age information in Facebook, either by relying on the target’s
profile directly, or by using information released by the targets’ friends.

While these previous papers exploit the notion of homophily to infer hidden
attributes of a user from the visible attributes of his neighbors, our work exploits
the global structure of visible attributes to navigate efficiently towards a target.
While the former is a purely local operation, ours exploits a macroscopic property
of the social network. It complements existing work by showing how to efficiently
find anyone in an OSN, necessary condition for any targeted inference attack.

Finally, Jain and Kumaraguru propose an integrated system which uses ma-
jor dimensions of a user identity (profile, content and network) to search and
link a user across multiple social networks [19]. Our work notably differs in the
method used to search for a user. Our navigation attack does not require the
targeted user to be present in multiple OSNs, and does not assume the target
profile to be known in one OSN in order to find him in another.

2.2 Navigation in Social Networks

The seminal experiment by Milgram [31] shows that any arbitrarily selected in-
dividuals can reach any other person through a short chain of acquaintances.
There generally exists a short path from any individual to another, thanks to a
few long-range social links. However, knowing that short chains exist does not
tell us how arbitrary pairs of strangers are able to find them. Since Milgram’s
experiment, there have been many theoretical and experimental papers that ex-
plain how people can find short paths, and thus navigate, in social networks [26].
Travers and Milgram ask 296 arbitrarily selected individuals in the United States
to generate acquaintance chains (using postal mail) to a single target person.
Out of the 296 starting chains, 64 reach the target (22% of completion rate)
with a mean number of intermediaries between the sources and the target of
5.2 [38]. They also show that chains converge essentially by using geographic
information; but once in the target’s city, they often circulate before entering
the target’s circle of acquaintances. Dodds et al. propose a similar social-search
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experimental approach except that they rely on e-mails instead of classic postal
service to reach a target [9]. They show that geography clearly dominates the
routing strategies of senders at early stages of the chains and is less frequently
used than other characteristics (such as occupation) after the third step.

Liben-Nowell et al. study the role of geography in order to route messages in
social networks and provide a theoretical model to explain path discovery [26]. To
the best of our knowledge, they are the first to analyze routing in an online social
network (LiveJournal). However, they limit themselves to the problem of reach-
ing the target’s city. They show that geography remains a crucial factor in online
connections and is thus very helpful when trying to reach a target. Lattanzi et
al. extend this one-dimensional approach based on geographical proximity to a
multidimensional space of interests relying on a model of social networks called
“affiliation networks” [25]. In contrast with these contributions, our work studies
large OSNs that allow users to finely tune their privacy settings to protect their
privacy. Our paper notably shows that privacy policies remain weak and do not
protect enough the privacy-cautious users, notably against navigation attacks.

Knowing that acquaintances’ and social networks show small-world proper-
ties, we now question whether current OSNs do so as well. Mislove et al. already
provided a piece of the answer to that question in 2007 [32]. The considered OSNs
exhibit power-law degree distributions, a densely connected core of high-degree
nodes linking small groups of strongly clustered nodes and, as a result, short path
lengths. A crucial step in providing evidence about the small-world characteris-
tics of OSNs has recently been achieved with the publication of two reports by
Facebook researchers on the Facebook full social graph [6,39]. Their dataset of
721 million users shows the main small-world properties: 99.91% users belong to
the largest component, the distribution of nodes degree follows a power-law dis-
tribution, and the average distance between users equals 4.7, showing that OSNs
are even smaller than real-world social networks. We can thus predict that, by
relying on users’ attributes, most OSNs should also be navigable. However, how
to efficiently navigate on them was until now an open question. Furthermore,
Facebook reports considered the full social graph, with all social links, whereas
the attacker assumed in this work would not have access to all those links. In this
paper, we study if the public subgraph induced by the users’ privacy settings on
their social links is navigable by relying on publicly revealed attributes.

3 Model

OSN Model Online social networks can be described as social links between on-
line users who own a personal profile. Formally, an OSN can be defined as a graph
G = (V, E), where the vertex set, V, represents the set of users® and E, the edge
set, their social links. Each user u € V is endowed with a set of attributes A,
that is a subset of the set A of the available attributes (gender, birthdate, educa-
tion, city, ...). OSNs with symmetric social links requiring mutual consent, such

3 In the rest of the paper, we will alternatively write user, node or vertez to refer to
a member of the OSN.
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as Facebook or LinkedIn, can be modeled as undirected graphs, whereas OSNs
with asymmetric social links, such as Twitter or Google+, can be represented
as directed graphs.*

In most OSNs, users can decide to what extent and with whom they share
information by appropriately tuning their privacy settings. For instance, in Face-
book users can reveal personal attributes to friends only, to friends of friends,
or to everyone in the OSN. The same settings are generally available for their
list of social links. A%, = () denotes that a particular attribute A’ is not publicly
revealed by user u. Embedding users’ privacy settings on their social links into
the original social graph G induces a directed public subgraph D, where directed
edges are those whose tail vertices have publicly available social links. Formally,
D = (V,Ey), with Eq = {(u,v)|(u,v) € E, '(u) # 0}, where I'(u) represents the
out-neighbors of u € D. Note that we make the conservative assumption that all
privacy settings except the public one (e.g., everyone in Facebook) are private
(e.g., friends, friends of friends), as we cannot access the information if we are
not part of a user’s close neighborhood.

Attacker Model The attacker can be any external curious entity that wants to
collect data or infer information about a target t. We assume that the attacker
controls at least one node and can thus have access to information publicly
visible in the OSN. In order to reach his target, the attacker will search the
public subgraph D, relying on all public social links and other public personal
attributes (such as place of residence and work, educational affiliations, hobbies,
etc.). We assume this attacker to have prior knowledge on the values of a subset
A} of t’s personal attributes, that he will use to navigate towards the target.
As the attacker will reach the target through the target’s social links (friends,
friends of friends, ...), he will also discover at least one friend of the target, which
can be useful for friend-based inference attacks [8,33,42]. Finally, note that the
attacker we consider in this work is passive, in that he does not subvert any user
account or interact with other OSN users, e.g., to create social ties with them.

4 Approach

We present here our navigation attack and algorithm. This attack is generic in
order to apply to any attribute-enhanced OSN. We suppose that the attacker
cannot rely on any search directory to find the target or to jump towards any user
close to the target and that the navigation’s starting point is randomly selected.
This helps us evaluate the feasibility of a navigation attack in the worst-case
scenario, and provide an upper-bound on the number of nodes that need to be
crawled before reaching a target in general. In Subsec. 6.2, we nevertheless show
how the attacker can take advantage of search filters to quicken the navigation.

In the generic scenario, the attacker navigates from user to user through
public social links, until he reaches the target. He makes an informed decision

4 Note that Facebook now also allows asymmetric social links, by enabling users to
become subscribers of other users.
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Algorithm 1 TargetedCrawler

1: F « s % Initializing the frontier with the source user
2: FE + @ % The explored set is initially empty

3: repeat

4 if F'= 2 then

5: Failure

6: else

7 Select the user u* € F with the lowest estimated cost to the target ¢ and

remove it from F

8: E +u”

9: if ¢t € I'(u") then

10: Return t’s profile and the path from s to ¢
11: else

12: for all w € I'(u”) do

13: Cu = dhop (8, u) + drem (u, t)

14: if u¢ F AND u ¢ E then

15: F + (u,cq)

16: else if uw € F AND ¢, < ¢4 then

17: cﬁld =cuy

18: Replace the former parent of u by u*
19: end if
20: end for
21: end if
22: end if

23: until ¢ reached

about the next user to visit by relying on information publicly revealed by users
at each hop towards the target and on his prior knowledge about the target.
Whereas in Milgram’s experiment every participant in the chain could rely on
his own local information about his acquaintances to make a decision about the
next user to select, the attacker here relies on global information bounded by
the attributes publicly revealed by users on the path. Our navigation attack is
represented by Algorithm 1, called TargetedCrawler. This generic algorithm relies
on a heuristic model inspired by A* search [17].

The TargetedCrawler’s inputs are (i) the source user s, from which the attacker
will start crawling, (ii) the target user ¢ that he has to reach, (iii) a subset of
the target’s attributes A; C A; known a priori by the attacker, (iv) the distance
functions for each attribute, and (v) the priority of the attributes. The priorities
depend essentially on the OSN and on the prior knowledge about the target’s
attributes. For instance, we will give higher priority to profession or workplace
attributes in job-oriented OSNs (such as LinkedIn), to interests in microblogging
OSNs (like Twitter), or to geographical attributes for mobile OSNs. The highest-
and lowest-priority attributes will be represented as A' and A", respectively.
The algorithm outputs t’s profile and the shortest discovered path from s to ¢.

The total estimated cost ¢, (line 13) from the source to the target at some
node w on the path is divided into (i) the cost from the source to u, dhop(s,u)



8 M. Humbert et al.

(hop distance), and the estimated remaining cost from u to the target, dyem (u, t),
that is expressed as

kndn (AR AR) if dj(A),A]) =0V <h

1
kidi (AL, A})  otherwise e

drem (u,t) = {

where dj, (A", A?) is the distance function between users u and ¢ in the attribute
h (attribute with A*® priority). The distance functions can be represented by
(i) binary values (e.g., 0 or 1 for last names), (ii) real values (e.g., difference for
ages, or geographical distance for locations), or (iii) integers based on hierarchical
decompositions (e.g., half the tree distance for tree-based hierarchies). kj, is a
normalization parameter translating the attribute distance into a hop distance.
kp should decrease with h, as the more attributes we share, the closer to each
other we should be. With d,ep,, the targeted crawler will reach a user sharing the
same first-priority attribute as the target before considering the second-priority
attribute, then reach a user sharing a second-priority attribute before considering
the third-priority attribute, and so on. We conjecture that OSN users share
certain categories of attributes more than others (depending on the OSN) and
that these attributes affect the way users cluster different OSNs. Thus, in order
to increase the search efficiency, we prioritize different categories of attributes
depending on the type of OSN.

5 Experiments

As the current largest OSN (1.1 billion users as of March 2013), Facebook is the
most representative candidate for evaluating our attack. Moreover, its privacy
policies are notoriously designed to encourage public disclosure: the default pol-
icy for many important user attributes is everybody, i.e., full public visibility.?
We also implemented our attack in Google+ in order to validate our findings in
Facebook. This OSN is now the second largest OSN, after Facebook [40], and
shares many privacy features with Facebook. It also reveals the users’ social links
by default but, contrary to Facebook, allows users to be not searchable by name.

5.1 Implementation in Facebook and Google+

Gathering Source-Target Pairs Before beginning the navigation attack, we had
to collect source users from which to start and target users to be reached. To
further evaluate the paths’ symmetry, we chose to select pairs of users that would
act both as source and target. In order to have representative and meaningful
results, we wanted to avoid sampling biases as much as possible. Unfortunately,
as Facebook and Google+ IDs are encoded over 64 bits, there is a very small
probability that a randomly generated ID corresponds to an existing profile.

5 As of this writing, this is the case for the following attributes: current city, hometown,
sexual orientation, friend list, relationship status, family, education, work, activities,
as well as music, books, movies, and the sports users like.
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For this reason, to gather source and target profiles, we decided to sample on
the Facebook directory, as in [7]. The Facebook directory® has a tree structure,
and profiles are sorted in first-name alphabetical order. The first layer of the tree
is divided into Latin characters and non-Latin characters. Then, all subsequent
layers are divided by alphabetical order into at most 120 subcategories, until the
fifth layer, where we can actually select users’ profiles. At each layer of the direc-
tory tree, we randomly selected one branch, until we reached the last layer, where
we randomly selected one profile. Unfortunately for us, Google+ does not pro-
vide such a public directory. Thus, we decided to sample source and target users
by relying on a random walk method. Our method starts by walking through
50 different profiles in order to reach a random profile in the network [34]. Once
we have reached this profile, we select a node with a probability inversely pro-
portional to its (bidirectional) degree, to be added to the source-target set. This
probability compensates the random-walk bias towards high-degree nodes [11].
Finally, we only retain profiles with at least two publicly accessible attributes,
assuming these to be part of the attacker’s prior knowledge.” We discuss the
representativeness of our target set in Subsection 5.2.

Navigating in Facebook and Google+ Because of the very limited Facebook API,
we had to implement our own crawler of users’ friend lists. With the standard
HTTP request to access the friend list, Facebook provides only the first 60 friends
of a user. Then, it dynamically provides the rest of the friends if the Web user
scrolls down the friend list’s page. While the user is scrolling down, his Web
browser actually sends an Ajax request to get the subsequent 60 friends in the
friend list. The server replies in about 2 seconds with a JSON (JavaScript Object
Notation) object that contains the next 60 friends in the list. We parsed the list
of user IDs of each JSON object, as well as the additional piece of information
(if any) provided right below each friend’s name that would be used for the
navigation. We also implemented our own crawler for Google+. We could get
both of all outgoing and incoming social links with only two HTTP requests.
Both requests returned a JSON object with the social links (names), and some
attributes (including location, employer, education) useful for the navigation.
Several lessons can be learned from previous work on navigation in social
networks: (i) Geography and occupation are the two most crucial dimensions
in choosing the next hop in a chain [21]; (ii) geography tends to dominate in
the early stages of routing [9]; (iii) adding non-geographic dimensions once the
chain has reached a point geographically close to the target can make the routing
more efficient [38,41]; and (iv) seeking hubs (highly connected users) seems to
be effective in some experiments [4,38] and to have limited effect in others [9)].
As Facebook and Google+ share many properties with real social networks, we
incorporate these findings into our navigation attack in order to maximize its

5 http://www.facebook.com/directory

" This does not mean that a target without any publicly available attributes could not
be found. We need this information here to replace the prior knowledge the attacker
is assumed to have.
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efficiency. We select location (current city or hometown) as the first-priority at-
tribute in Algorithm 1, and education, employer/workplace, and last name as
second-priority attributes. We make this choice also because of the OSN struc-
ture and design. All aforementioned attributes are those most publicly shared
by the Facebook and Google+ users. Location (current city or hometown), ed-
ucation and work are publicly revealed by around 35%, 30%, and 25% of the
Facebook users, respectively [7,14]. In Google+, location, education, and em-
ployer are publicly shared by 26%, 27%, and 21% of the users, respectively [28].
Moreover, all these attributes are directly available from the social links” JSON
objects, thus hindering us from crawling all friends’ profiles individually, and
thus dramatically decreasing the number of HTTP requests and crawling time.

We propose relying on two different types of distance function to evaluate
the similarity between two locations. The first metric is computed as half the
tree distance, where the tree is defined by a discrete geographical hierarchy:
di (AL, Al) is equal to 3, 2, 1, or 0, if user u shares a continent, a country, a
region/state or a city, respectively, with the target t. di (AL, A}) = 4 if u and
t are from different continents. The second distance metric relies on the real
geographical distances between two locations and d; (AL, A}) is then defined as

di(AL A} = max (0, log(dgeo(u, t) /) (2)

where the logarithm is base-10, dgeo is the great-circle distance (in km), and «
is a normalization constant set to 1 km. We notice that this distance is very
close to the discrete-hierarchy distance (first metric). In order to infer detailed
geographical information from any location attribute, we relied on GeoNames®,
a Web service with a database containing over 10 million geographical names.
More precisely, we used GeoNames (i) to find the region, country and continent
associated with a city in the first distance metric and (ii) to compute the distance
between two locations in the second metric. ky is set to 2 to get a maximal
(theoretical) hop distance of around 8.

We give all non-geographical attributes second priority. We make these de-
sign choices mainly because we can only access a single attribute in the Facebook
users’ friend lists (below each friend’s name). These structural constraints, im-
posed by the OSN architecture, lead us to trade off some of Algorithm 1’s steps
against efficiency. Moreover, we make use of a binary distance function for these
second-priority attributes (0 if two attributes match, 1 otherwise) because (i)
we believe it is more efficient to directly select users based on whether they
share the same attribute with the target once we have reached the same city,
and (ii) it is particularly complex to build more elaborate distance functions for
last names, employers, high schools or universities. k3 can be set to any number
strictly smaller than 2; we chose ky = 1.

For simplicity, we verify whether we have reached the target profile by check-
ing his ID or alias, which both uniquely identify users. An attacker who is not
supposed to know such identifiers will have to check the target’s first and last
names that, in addition to the location, should uniquely identify most of the

8 http://www.geonames.org/
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Fig. 1. Empirical complementary cumulative distributions of (a) the targets’ city sizes,
and (b) the targets’ degrees.

people. In case there are multiple matching targets, the attacker could, for in-
stance, just check the profile pictures of these few potential targets in order to
select the correct target. Facial recognition could be further used to automatize
the targets’ check for targets making use of pseudonyms.’

5.2 Dataset Description

We ran our experiments on Facebook from April to November 2012, not too
intensively, with a crawler having a behavior similar to an energetic human user,
in order to avoid overloading the system. Despite this, we attempted to reach
200 targets, collecting approximately 393k different friend lists. We also targeted
200 different users in Google+, during Spring 2013, collecting 398k friend lists.
For the Google+ crawler, we took similar precautions as for Facebook.

In both Facebook and Google+, we gathered targets in 42 different countries
spread over all continents. North America encompasses 33.5% of the targets in
Facebook and 44% in Google+, Asia 26% in Facebook and 31% in Google+,
Europe 18% and 15%, South America 13.5% and 8%, Africa 7.5% and 1%, and
Oceania 1.5% and 1%. The continent distribution is quite close to the actual
distribution of users’ continents, except for North America that is a bit over-
represented with respect to Europe and Asia. USA represents 26% of the targets
in Facebook, followed by Indonesia, Brazil, and India, with 9.5%, 8.5%, and
8%, respectively. Almost the same sequence appears in Google+, with USA
representing 38% of the targets, India 13%, Brazil 4%, and Indonesia 4%.

Regarding the targets’ cities, we can notice in Figure 1(a) that the popula-
tions’ distributions of Facebook and Google+ follow a similar shape, Google+’s
targets living in cities with slightly more inhabitants than Facebook’s. The av-
erage and the median city populations are equal to 870k and 233k, respectively,
in Facebook, and to 2.6M and 440k, respectively, in Google+.

9 Face recognition has been shown to be very accurate and efficient for subject re-
identification in OSNs [3].
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Table 1. Success rates and numbers of crawled nodes for all continents.

Facebook Google+

Continent % success[# nodes: mean[median % success[# nodes: mean[median
North America| 71.6 1,065 467 67.1 668 272
Asia 51.9 1,061 658 49.2 565 179
Europe 86.1 513 144 53.3 348 72
South America| 59.3 1,275 445 56.3 667 628
Africa 60 1,500 1,608 67 805 100
Oceania 66.7 2,270 553 100 92 14

Regarding the targets’ degrees (friends’ or social links’ numbers), we clearly
notice a phase transition in the degree distribution (Fig. 1(b)) in Facebook,
which is very similar to the one shown in [39]. Moreover, the average target
has 291 friends, which is fairly close to the global average that was around
278 in April 2012 according to [16]. The targets’ degree distribution is more
scattered in Google+, with more targets having degrees smaller than 100 and
greater than 1000. The median number of social links is equal to 71, smaller
than Facebook, but its average is 424, greater than Facebook. It is hard to
link these numbers with other studies, as Google+ is a recent OSN evolving
rapidly [28]. The geographical distance between sources and targets is quite
uniformly distributed between 450 km (shortest distance) and 18,962 km (longest
distance) in Facebook, and between 285 km and 15,814 km in Google+.

6 Results

In this section, we will first exhibit the results of our generic navigation attack,
showing its success rate and efficiency. We will also provide some explanations
for the failed cases. We will then mention how, by using some search filters, we
can drastically reduce the crawling effort.

6.1 General Results

Our objective is not to launch a brute-force attack by crawling millions of nodes,
which would demand a lot of resources. We rather aim to develop an algorithm
that can reach a specific target in the network in a limited amount of time.
For this reason, we decided to stop the attack after a certain number of crawled
nodes, even if the frontier F' is not empty. We choose a limit of 4,000 users, which
takes about 14 hours in Facebook (much slower than in Google+). We assume
this is the maximum bearable time for an attacker attempting to reach someone
in Facebook and, for consistency, we keep the same limit with Google+. Despite
this limit, our attack successfully reaches its target in 66.5% of the cases in
Facebook, and 59% of the cases in Google+. Using the Clopper-Pearson interval
in order to evaluate the confidence interval for this success rate, we find that
95% of the users are reachable with a success rate in the intervals [59.5%, 73%)
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Fig. 2. Success rates (and their 95% confidence intervals) with respect to (a) the tar-
get’s city size, and (b) his number of friends.

and [52%,66%] for Facebook and Google+, respectively. The Clopper-Pearson
interval is an exact method for calculating binomial confidence intervals. It is
quite conservative, thus the interval above might be wider than necessary in
order to achieve 95% confidence. Table 1 shows the success rates, average and
median numbers of crawled nodes, for each continent.

We notice that the North American targets are reached quite successfully in
both OSNs, whereas reaching Asian users is more challenging. We also note that
European targets are reached very successfully in Facebook but not in Google+.
Figure 2 helps us understand these discrepancies. In particular, Figure 2(a) shows
that in Facebook the success rate drops with the size of the target’s city, but
not in Google+. We note in Figure 2(b) that the success rate increases with
the target’s number of friends, especially in Google+. Lower success rates in
Facebook can be explained by comparing the average numbers of inhabitants
of the continents. We find that European and North American city populations
have averages far below 1M (217k and 449k, respectively), whereas Asia, South
America and Africa have average city sizes close to or above 1M (925k, 1.83M,
and 2.46M, respectively). This lower success rate is certainly due to the fact
that, in large cities, our algorithm has to crawl more nodes in order to cover
all the users living in these cities. Our 4,000-node limit is certainly too low for
such cities. However, this does not seem to explain the difference in success rates
in Google+. This is probably due to the fact that Google+ is more recent and
smaller than Facebook, there are less people publicizing the same city, hence
fewer people to potentially crawl. The number of friends of the targets seems
to have the highest impact on the success rate in Google+. For instance, the
median number of friends in Europe is equal to 33, whereas it is equal to 81 in
North America. This is certainly due to the young age of Google+, and lower
rate of adoption by European users. We must also mention that source users have
no effect on the success rate: all crawls successfully navigate out of the source
neighborhood, and the large majority of them (92% in Facebook and 93.5% in
Google+) reach the target’s city.
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Fig. 3. (a) Empirical CCDF of the number of crawled nodes in successful cases, (b)
number of crawled nodes with respect to the target’s city size (number of inhabitants).

We evaluate the nodes’ efficiency by looking at the number of nodes crawled
in our searches. Crawling a node in our experiment means crawling a user’s
friend list, not his personal profile. On average, 983 and 591 nodes needed to be
crawled before a target could be reached, in Facebook and Google+, respectively.
Half of the targets were attained in 380 and 291 or fewer nodes in Facebook and
Google+, respectively. European targets were especially rapidly reached, after
513 and 348 nodes on average, half of the targets being found after less than
144 and 72 crawled nodes in Facebook and Google+, respectively. We see in
Figure 3(b) that the number of crawled nodes is (positively) correlated to the
target’s city size. This is again due to the fact that more nodes will be seen
in larger cities, thus the target is reached after a higher expected number of
crawled nodes. Moreover, for all failed and successful cases, on average 44 and
28 nodes had to be crawled before we reached a user in the target’s city, and
in half of the searches we found a user living in the target’s city in less than 13
and 8 crawled nodes, in Facebook and Google+, respectively. This shows that
our search algorithm makes use of long-range social links to efficiently reach the
target’s city, and that the most challenging part of the search is the navigation
within the target’s city, when we have to narrow down the search using second-
priority attributes.

From each subgraph crawled during a successful attack, we reconstructed the
shortest discovered path from the source to the target. Figure 4(a) illustrates the
distribution of the shortest discovered path lengths. We notice that it goes from
4 to 18 hops in Facebook, with most of shortest paths being between 9 and 11-
hops long. This is around twice the distance found in [6] with the knowledge of
the full social graph. The shortest paths are between 3 and 11 hops in Google+,
most of them being 6 hops long. This result is similar to the diameter obtained
n [12], where 90% of the pairs were separated by a distance of 5, 6 or 7 hops.

We show in Figure 4(b) the evolution of the information that displayed by
the nodes on the shortest path (SP). It shows that the city is especially useful 3,
2, and 1 hop(s) before the target, for both OSNs. At 4 (and more) hops from the
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Fig. 4. (a) Histograms of the shortest discovered path lengths within the crawled sub-
graphs, and (b) evolutions of the information types used to navigate towards the target.

target, other (non-local) geographical attributes are used to navigate towards
the target. We also note that the crawler starts using other types of attributes
(education, work, or last name) 4 hops before the target (certainly once we have
reached the target’s city) and their influence is increasing while getting closer
to the target. At the latest hop before the target, the city is represented in
70% of cases in Facebook and 56% in Google+, non-geographical information
representing around 30% of cases in both OSNs. This shows that geographical
information remains crucial, but also that other types of information can still
be useful when we get close to the target, as it was already mentioned in [38].
Finally, we note that 25% of the targets in Google+ were found from a last hop
sharing no similar attributes with the target. These targets were reached from a
last user who is geographically close (at a median distance of 32 km) but does
not share the same location.

6.2 Jumping towards the Target

Facebook provides an additional feature in order to help people find their ac-
quaintances in the network: It allows users to apply search filters on location,
education or workplace. We did not want to rely extensively on this feature for
our navigation attack because we wanted to keep it generic and applicable to
other OSNs. However, we show here that the attacker can take advantage of
Facebook’s search filters to facilitate his attack.

We search for the last names and the cities of the targets using the Facebook
search filters, and then crawl the friend lists of the users found by the search
directory. We search for last names because users sharing same last names are
more likely to be relatives, thus to be friends. Our targets can also appear in the
users found by the search filters, as we chose targets that are in the Facebook
directory for our experiments. Searching for the last names and the cities of our
targets, we directly find the targets in 49.5% of the search results. As targets are
assumed to not be in the directory, we remove them from the list of users to be
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crawled. At least 10 users satisfying the search criteria are found in 30% of the
filtered searches, and the search requests output no user in 15% of the cases. By
crawling only the friend lists of users found by our filtered search, we reach the
targets with a success rate of 16.5%.

7 Countermeasures

Countermeasures should logically be developed and implemented by the OSN
operators themselves. An obvious solution, already advanced in [37], is to set
the visibility policy as the intersection of visibility policies selected by all users
involved in the published information. Although it is difficult to force a friend
to change his privacy settings on his personal attributes, it is possible to enforce
his social links’ privacy policy. Choosing the intersection of both users’ policies
on social links would mean that a user electing to reveal his social links to his
friends, or friends of friends only, would automatically enforce non-public social
links for his own friends. It would prevent any curious stranger from accessing
his profile by using his friends’ friend lists. OSN operators could also prevent
anyone from publicly showing his social links, as it is the case in LinkedIn. They
could at least design non-public default privacy settings on social links. Detailed
formal requirements to protect multilateral privacy are presented in [15].

If the OSN operators themselves do not re-design their privacy policies, the
users could also take action. The first option is to change the default privacy
settings on social links to more restrictive settings. For this option though, users
must collectively deviate from the default policy in order for it to be efficient.
Finally, if more users decided to hide their personal attributes (such as city,
education, ...), the attacker’s ability to navigate efficiently in the social graph
would decrease, thus reducing the threat presented in this paper.

8 Conclusion

We believe our navigation attack to be the first to rely on social links to find a
target’s profile. We describe a search algorithm that relies on public attributes
of users and distance heuristics, and that discovers 66.5% and 59% of the tar-
geted users, in a median number of crawled nodes smaller than 400 and 300, in
Facebook and Google+, respectively. Moreover, the targets’ cities are reached
in more than 90% of the cases, in a median number of 13 and 8 crawled nodes,
respectively, showing the efficiency of geographic navigation in these OSNs. The
navigation within the targets’ cities, which relies on more attributes, is less ef-
ficient and successful. One important reason for the failed cases is the privacy
behaviors of the target’s friends: the more friends with public attributes and
social links, the more likely the target is to be found.

In future work, we plan to propose other search algorithms, especially for once
we have reached the target’s city. We also plan to apply our navigation attack to
other OSNs, and build a theoretical model to support our experimental findings.
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