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Abstract—Consider a set of probes, called “agents”, who sample, based on opportunistic contacts, a population moving between a set

of discrete locations. An example of such agents are Bluetooth probes that sample the visible Bluetooth devices in a population. Based

on the obtained measurements, we construct a parametric statistical model to jointly estimate the total population size (e.g., the

number of visible Bluetooth devices) and their spatial density. We evaluate the performance of our estimators by using Bluetooth traces

obtained during an open-air event and Wi-Fi traces obtained on a university campus.

Index Terms—Population size and density estimation, opportunistic sampling, Bluetooth sampling

Ç

1 INTRODUCTION

ESTIMATING population size and population density finds
applications in various fields. For example, ecologists

and biologists are interested in estimating the population
sizes of certain animal species (refer to [1], [2], [3] for a
review). In the field of urban analysis, estimating popula-
tion density is important, e.g., to create evacuation paths, to
plan new locations for department stores (refer to [4], [5],
[6], [7], [8] and references therein). Social networking appli-
cations such as activity-hotspot detection [9], make use of
population density to pinpoint night-life hotspots to users
of the application.

In the above mentioned examples, the measurements for
population size and density estimation are obtained using
various techniques. For example, in the case of population
size estimation of certain animal species, traps are con-
structed to capture the animals. Upon capture, the animals
are marked and then released. This method, known as the
capture-recapture method [10], uses the number of times
that animals are recaptured to infer the population size. To
estimate crowd density for urban analysis, surveillance
cameras are installed in different locations in a given area;
computer-vision techniques are then applied to the cap-
tured data to count the people and to estimate the density
of the crowd in these different locations [7], [11]. Most of the
measurement techniques for estimating population size and
density, as will be reviewed in Section 2, come with at least
one of the following drawbacks or requirements: (i) invest-
ment in hardware (e.g., installing cameras in different posi-
tions, which also raises privacy issues [6]), (ii) deployment
constraints (e.g., requiring everyone to carry RFIDs [12]),
and (iii) proprietary issues (e.g., requiring cooperation with
another party such as a GSM operator [8], [9]).

The (spatial) density of a population is a measure of the
number of people present in different locations within an
area of interest (e.g., a campus or a city). By normalizing the
spatial densities such that they sum to one, we obtain
the relative spatial density that measures the relative
‘popularity’ of different locations. Most existing methods
essentially count the number of people in an area of interest
by using some ‘agents’ that ‘monitor’ the locations (e.g., sur-
veillance cameras). In practice, some locations might not be
monitored for some periods of time, because there might be
fewer agents than the number of locations for many reasons
such as those outlined above, or because agents might be
mobile and some locations might occasionally be empty of
agents. If the total population size in the area of interest is
known, then we can calculate the number of people in the
non-monitored locations: the total population size minus
the number of people in monitored locations gives us the
number of people present in non-monitored locations; this
gives us the overall density in the non-monitored locations.
However, if the total population size is unknown, then esti-
mating the spatial density becomes more challenging, as we
do not know the number of people present in the non-moni-
tored locations.

In this work, we consider the joint estimation of popula-
tion size and density for the case where measurements are
obtained based on opportunistic contacts between some
agents that monitor the population and the population mem-
bers. In particular, we consider the join estimation of popu-
lation size and density based on Bluetooth measurements.
Nearly every current mobile phone is equipped with a Blue-
tooth radio interface, each with a unique MAC address.
This technology includes a detection functionality, where
enabled devices can discover (detect) each other within a
small radius (typically 10-20 m), which is referred to as their
proximity. It has also been observed [13], [14], [15], [16], [17]
that a non-trivial fraction of mobile phone users leave the
detection feature of their phone turned on constantly
(“discoverable (visible) mode”). A particularly interesting
feature is that when they are in visible mode, phones broad-
cast their MAC address, which makes them uniquely identifi-
able. This possibility enables us to use mobile phones as
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sensing devices and to evaluate different features related to
the mobility patterns of the population.

Our contributions are as follows. On the theory side, we
develop a parametric estimator for the joint estimation of
population size and density. Our estimator is a “minimally
sufficient” estimator of population size and densities, i.e., an
estimator that uses optimally all available information col-
lected from the agents. It extends the population size estima-
tor that we introduced in [14]. On the practical side, we use
an opportunistic sampling of the population (e.g., Bluetooth
measurements) in contrast to other works where sampling is
systematic following a predefined planning. We only con-
sider the case wheremeasurements are performed bymobile
agents who move normally in the area of interest (i.e., agents
were given no specific movement instructions). On the
empirical side, as is explained later, instead of directly using
the detection patterns of the Bluetooth devices by the agents,
we use the contact patterns, which profoundly impacts our
estimator. In this setting, several questions need to be
answered: What kind of information do the agents need to
collect in order to estimate the density?When is it possible to
estimate with good accuracy the population density from
such traces? To the best of our knowledge, our work is
the first effort to use such measurements of opportunistic
nature for the joint estimation of population size and density.
Themain theoretical challenge of our approach is incorporat-
ing the mobility of the agents, which makes the computa-
tionsmore involved. A practical challenge in our approach is
knowing the percentage of visible Bluetooth devices in the
population. On average, close to 8:2 percent of people carry
Bluetooth devices with an activated detection functionality
[13], [14], [15], [16], [17], which is large enough tomake possi-
ble density estimations from Bluetoothmeasurements.

The rest of this paper is organized as follows. After a brief
literature review in the next section, we describe the experi-
ment we conducted at the Pal�eo Music Festival and the
obtained measurements in Section 3. We first revisit in more
detail the population size estimation model of [14] in
Section 4, and apply it to the Pal�eo measurements in
Section 5. We then extend our model to the joint-estimation
model of population size and density in Section 6, and apply
it to the Pal�eo measurements in Section 7. We apply our esti-
mators to a second dataset based onWi-Fi technology in Sec-
tion 8, and finally conclude the paper in Section 9.

2 RELATED WORK

The problem of the estimation of population size has a long
history (refer to [1], [2], [3] for a review); perhaps one of the
first estimators of population size is the Turing-Good esti-
mator presented in [2]. An important line of work in esti-
mating the population sizes of certain animal species is the
capture-recapture methods. In these techniques, traps are set
up to capture some individuals of the animal population,
after which they are marked and released. All the animals
are vulnerable to the sampling process by these traps during
the experiment. In the recapture process, some of the ani-
mals are captured again and the number of previously
marked animals will provide information that is used to
infer about the population size [10], [18]. In contrast to these
works, we do not place monitoring devices or traps at given

places, and we cannot start and stop the measurement cam-
paign at given times. In our case, the “sensing devices” are
carried by individuals from the population, with an uncon-
trolled, random, mobility pattern and who arrive and leave
the monitored area at different, random times. The individ-
uals are thus exposed to the sampling process for different
random times. Moreover, some methods [1], [18] when
applied to our problem, only account for whether an indi-
vidual has been discovered by an agent or not. Whereas, in
our estimator we make the best use of the information avail-
able, e.g., we process the pattern of contact between an indi-
vidual and an agent.

In the field of information theory, alphabet-size estimation
[19], pattern-likelihood maximization [20], and sequence-
probability estimation [21], [22] also address related prob-
lems. These works usually assume that an observed sequence
is drawn in an independent and identically distributed
(i.i.d.) manner from a source with an unknown underlying
distribution, and an unknown alphabet size, that is to be esti-
mated. In order to apply these methods to ourmeasurements,
wewould have to consider an agent as a source, and her Blue-
tooth trace as such a sequence. We would then have several
(more precisely, a number equal to the number of agents)
sequences drawn from several sources, that have the same
alphabet. However, to the best of our knowledge, there is no
methodological way to deal withmultiple sequences/sources
where the sources have the same alphabet. Furthermore, the
estimator in [19] assumes that the underlying distribution of
the source is uniform, which is not true in our case, because
individuals have different probabilities of being detected by
an agent due to their diversemobility patterns.

Recently, social networking applications have generated
interest in developing methods for estimating the number of
nodes in graphs based on some sampling of the graphs; the
interested reader can refer to [23] and references therein. In
these methods, at each step of the sampling process, exactly
one node in the graph is sampled (e.g., by one randomwalker
on the graph acting as an agent), and local information of the
node (such as its neighboring nodes) is measured. After
the sampling process runs for a certain number of steps, the
obtainedmeasurements are used to estimate the total number
of nodes in the graph. In contrast, in our measurement pro-
cess, at a step of the sampling process, i.e., Bluetooth scanning
by an agent, it could happen than (i) no Bluetooth device is
detected, or (ii) more than one Bluetooth device is detected.
These two cases occur when there are zero and several,
respectively, Bluetooth devices present in the proximity of
the agentwhen the Bluetooth scanning is performed.

Computer vision techniques have been widely used to esti-
mate population density [6], [7], [12], [24], [25]; the methods
presented use surveillance cameras to capture images of
crowds in order to count the number of people and estimate
density. Their performance is usually affected by factors such
as background lighting, the density of the crowd, and the
view angles of the camera. The difficulties of the computer
vision approaches, besides their cost, are in finding places to
install the cameras, and in avoiding privacy issues. In addi-
tion, these methods are able to estimate the density only in
themonitored locations, as the cameras act as static agents.

RFID-based techniques [26], [27], [28], [29] require the
population to wear special RFID tags. These tags are later
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localized in order to analyze the spread of the population
over different locations in order to estimate the density of
the population in a given region. Some techniques exploit
the wireless networking infrastructure in order to perform a
passive-density estimation [30], [31], [32]. These methods
model the change of the RSSI in the system in order to infer
the density of people. In order to estimate the density, some
algorithms use measurements (obtained via cellular phone
operators) that indicate the position of cellular subscribers
in different locations [8]. CitySense [9] clusters GPS and
WiFi data to indicate the hotspots of activity in San Fran-
cisco. There even exist hand-counting methods [4], which
need investment in personnel, and are intractable for large
areas of interest such as those considered in our experi-
ments. In [33] the authors used Bluetooth probes to estimate
crowd density at the town center of Kaiserslautern. Their
approach is based on the comparison and fusion of collected
data from different probes. In [34] static Bluetooth sensors
are deployed in a music festival in order to study group for-
mation and music preferences of attendees.

3 THE PAL�EO EXPERIMENT

In this section, we describe the experiment that we con-
ducted at Pal�eo Music Festival, which took place in July
2010 in Nyon, Switzerland.

3.1 Experiment Description

The Pal�eo Music Festival is one the major music festivals in
Europe: it attracts several tens of thousands of people per
day. It is an open-air festival, which allows for GPS coverage,
and takes place within a closed area with fixed entrance and
exit points. The surface of the festival covers around

280; 000 m2. These characteristics make this festival a good
environment for performing experiments related to popula-
tion sampling via Bluetooth. In order to have a better under-
standing of the environment of the festival, a map and a
snapshot of attendees listening to a concert are shown in
Fig. 1. Our idea is to sample the population by sending some
attendees as “agents” inside the festival. Each agent is
equipped with a mobile phone (Nokia N95) that is pro-
grammed to regularly scan for Bluetooth devices within its
range (10-20m). The phones then collect the Bluetooth MAC
addresses of mobile devices that have their Bluetooth visibil-
ity turned on. Bluetooth MAC addresses are unique to each
device and can be used as the identifiers of attendees. The
purpose is to use this information to estimate the population
size and density of the attendees (more precisely, of the sub-
set of those who carry visible Bluetooth devices).

In order to have the ground truth of the number of visible
Bluetooth devices at the festival, a Bluetooth scanning is
done at the entrances. Two mobile phones are installed at
the main entrance of the festival, and another phone is
installed at the back entrance. The position of these three
mobile phones is shown by markers in Fig. 1a. The same
gates are used both for the entrance and exit of attendees.
We refer to these three phones as the entrance phones.

In our experiment, 10 people (acting individually) took
part as agents. The agents’ phones and entrance phones
were programmed to perform Bluetooth scanning every
80 seconds. The agents’ phones were also programmed to

record GPS positions. The experiment was performed
during one day of the festival, and the duration of the fes-
tival (opening/closing of the entrance/exit gates) on that
day was 13 hours 15 minutes; from 15h00 until 4h15 on
the following day.

3.2 Obtained Measurements

In this section we discuss the measurements obtained in the
experiment.

3.2.1 Measurements at the Entrances

For the entrance phones, we consider only the Bluetooth
traces that were collected during the opening hours of the
festival. In total, 3,326 different Bluetooth devices were dis-
covered at the entrances. The estimated number of attend-
ees (obtained on the basis of the number of tickets sold and
the tickets punched at the entrance gates), which was pro-
vided to us by the organizers of the festival, is 40,536. From
these two numbers, we get 8:2 percent as the approximate
percentage of attendees who have visible Bluetooth devices.
This ratio depends on many factors such as the characteris-
tics of the population (e.g. age). Other estimated ratios
reported in the literature are as follows: 4:7 to 7 percent in a
campus bar [13], 8 to 12:5 percent in an airport [17], 11 per-
cent in a cultural and theater festival [15], and 13 percent in
a sports event [16].

As the entrance phones can discover all the visible Blue-
tooth devices upon their arrival and departure, we can com-
pute the empirical arrival/departure time distribution of
the visible Bluetooth devices, which is plotted in Fig. 2a.
The empirical marginal distributions of the visible Blue-
tooth devices’ arrival times, departure times, and the dura-
tion of stay on the festival grounds are plotted in Fig. 2b.

Fig. 1. (a) Pal�eo Music Festival map. The surface covers around
280; 000 m2. Position of the entrance phones is indicated by dark triangu-
lar markers. (b) Attendees listening to a concert in ‘Grande Scene’.
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The average (the 90 percent confidence interval) of the
visible Bluetooth devices’ arrival times is 18h56 (respec-
tively, ½15h00; 21h22�). The value for the visible Bluetooth
devices’ departure times is equal to 01h01 (respectively,
½22h25; 03h58�). The average (the 90 percent confidence
interval) of the visible Bluetooth devices’ duration of stay
on the festival grounds is equal to 365:4 min (respectively,
½102:4min; 591:6min�).

3.2.2 Measurements by Agents

For the agents’ phones, we consider only the Bluetooth
traces that were collected during the period when the agents
were on the festival grounds; we can determine these peri-
ods by using the obtained GPS traces from the agents’
phones. The 10 agents were able to discover 2; 637 out of
3; 326 of the Bluetooth devices discovered at the festival
entrances. This corresponds to 79:3 percent of the visible
Bluetooth devices. This ratio is referred to as the coverage in
the literature on animal species estimation [1]. We expect
this ratio to be less than 100 percent, because there were
only a few agents present for a short period of time at the
festival and the mobile phones have a short Bluetooth range.
Nevertheless, the coverage percentage is rather large.

Here we analyze in more detail the Bluetooth measure-
ments obtained by each agent. Fig. 3a shows the evolution
of the total number of discovered Bluetooth devices as a
function of time for each agent. The agents are numbered
in a decreasing order, according to the total number of dis-
covered Bluetooth devices. By looking at the evolution of
the curves in Fig. 3a, we observe that as soon as the agents
arrived at the festival, they began discovering Bluetooth
devices rapidly. All agents have however periods during
which the slope of the curve is quite flat. These periods
correspond, for example, to periods when the agents were
listening to the main concerts, hence, were not moving;
during these periods, they kept detecting the same Blue-
tooth devices, but discovered fewer new Bluetooth devi-
ces. Fig. 1a shows one such situation. Fig. 3b shows the
accumulated total number of discovered Bluetooth devices
by all the agents, the final value of the curve is equal
to 2; 637.

4 POPULATION SIZE ESTIMATION MODEL

Our goal is to estimate the total number of visible Bluetooth
devices and their spatial density at the festival, based on

agents’ traces. We start by defining our notation and intro-
ducing the population size estimation model.

4.1 Data Structure and Notation

4.1.1 Population

The population is comprised of attendees with visible
Bluetooth devices. We call the population members indi-
viduals, use variable i to index them, and use masculine
pronouns to refer to them. We assume that every individ-
ual carries one Bluetooth device with him at the festival.
Denote the population size by N and the festival duration
by Tfest. We shift the time origin such that the festival
opening time is at 0 and its closing time is at Tfest. Let ati
and dti denote, respectively, the arrival and departure
times of individual i to/from the festival; these variables
will be treated as random variables. We assume that the
tuple ðati; dtiÞ for every individual i is drawn in an i.i.d.
fashion from the probability density function (pdf)
fðat; dtÞ, on which we will elaborate later. The empirical
estimate of fðat; dtÞ is shown in Fig. 2a.

Note that in order to empirically verify the i.i.d. assump-
tion of tuples ðati; dtiÞ and ðatj; dtjÞ for individuals i and j,
we would need several realizations of the two tuples (e.g.
the measured arrival/departure times of the two individu-
als across different days of the festival). As we only have
one set of measurements of the individuals’ arrival/depar-
ture times, we cannot empirically verify the i.i.d. assump-
tion; but we argue that some individuals tend to arrive/
depart to/from the festival in groups. In such situations, the
arrival/departure times of the individuals within a group
will not be independent. The group sizes in which attendees
arrive/depart to/from the festival were rarely greater

Fig. 2. (a) Empirical distribution of the visible Bluetooth devices’ arrival/
departure times to/from the Pal�eo Music festival. (b) Empirical marginal
distributions of the visible Bluetooth devices’ arrival times (top), depar-
ture times (middle), and the duration of stay on the festival grounds
(bottom).

Fig. 3. Evolutions as a function of time of (a) the total number of different
Bluetooth devices discovered by each agent, and (b) the accumulated
total number of discovered Bluetooth devices by all the agents.
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than 6, yielding a probability of having more than one visi-
ble Bluetooth device in the group less than 0:08.

4.1.2 Agents

We denote the number of agents by M, use variable j for
indexing them, and use feminine pronouns to refer to them.

Let atAj and dtAj denote the arrival and departure times of

agent j to the festival. Note that agents’ arrival and depar-
ture times, unlike those of the individuals, are known to us.

Let tjati;dti denote the duration of time between the arrival

and departure of individual i, which is overlapped with the
arrival and departure of agent j. We have

tjati;dti ¼ max minðdtAj ; dtiÞ �maxðatAi ; atiÞ; 0
� �

: (1)

Intuitively, the chance that agent j discovers individual i

increases as the value of tjati;dti increases. We further assume

that when individuals arrive at the festival, they stay on the
festival grounds until they depart from the festival.

4.1.3 Detection

As described in the beginning of Section 3, the agents per-
form a Bluetooth detection every 80 seconds and record a
list of the MAC addresses of the visible Bluetooth devices in
their proximity, i.e., their Bluetooth communication range.
The data that each agent provides consists therefore of a list
of MAC addresses detected by the agent, together with the
corresponding detection times during her stay at the festi-
val. Denote by S the total accumulated number of discov-
ered MAC addresses by all the agents and map the
discovered MAC addresses to the set f1; 2; . . . ; Sg. In our
experiment, the value of S is equal to 2; 637.

Consider an individual who stays in the proximity of an
agent for some continuous period of time, but not before or
after that period. In this case, we say that the individual is
in contact with the agent during that period of time. Such
contact periods can be identified from the detection pattern
of the individual in the following way. During a contact
between the individual and the agent, he will be detected
by the agent at every 80 second interval when the Bluetooth
scanning is performed, resulting in a burst of consecutive
detections, each shifted by 80 sec. Thus every burst of conse-
cutive detections represents one contact period; a contact
starts at the first detection of a burst and finishes at the last
detection of the burst.

It will be clear later why we focus on the contacts that
occur between the agents and the individuals rather than
the detections. In particular, we denote by kij the number of
times that individual i is contacted by agent j. We denote by

ki ¼
PM

j¼1 kij the total number of times that individual i is

contacted. Note that individual i is discovered (i.e., is
among the S discovered individuals) if and only if ki > 0
(if he has been contacted by at least one of the agents).

4.2 Model Assumptions

In this work we adopt a parametric approach to the estima-
tion of population size and density. Following our intuition,

kij is an increasing function of tjati;dti given in (1), and for a

fixed agent j, we expect to observe different values of kij
across the individuals. This is because individuals have
diverse mobility patterns hence some of them are more eas-
ily contactable by the agent than the other individuals. In our
population size estimation model, we assume the following.

� Poisson contacts. The number of times agent j con-
tacts individual i, i.e., kij, is Poisson distributed with

mean equal to �it
j
ati;dti

, where �i is called the contact

rate of individual i.
� Independence. The random variable kij is indepen-

dent from ki0 j0 for i 6¼ i
0
and/or j 6¼ j

0
.

In other words, we set the mean number of contacts of
individual i by agent j to be proportional to the amount of
time during which both individual i and agent j are on the

festival grounds (tjati;dti ), following our intuitive expectation,

and to the specific contact rate (�i) of individual i:

kij � Poisson �i � tjati;dti
� �

: (2)

From (1), parameter tjati;dti is a function of agent j and indi-
vidual i’s arrival/departure times to/from the festival. Con-
sequently, if individual i’s exact arrival/departure times are

known, then the exact value of tjati;dti can be calculated. Oth-

erwise, if the distribution for individual i’s arrival/depar-

ture times is known, then the distribution of tjati;dti can be

computed. The contact rate �i represents how easily an indi-
vidual puts himself in a contactable position on the festival
grounds, which is analogous to the concept of abundance
level in the literature on the species estimation problem [1];
some individuals place themselves in one location which is
not frequently visited by others, and in particular by the
agents; others move from one place to another. Hence, we
assume that for individual i, �i is a random variable drawn
from a Gamma distribution with unknown parameters
a and b, independently from other individuals and from his
arrival and departure times. We use the Gamma prior,
because it is a flexible distribution and it is the conjugate
prior of the Poisson distribution. The probability density

function of �i is f�ið�i;a;bÞ ¼ bae�b�i�a�1
i =GðaÞ, where

GðaÞ ¼ R10 xa�1e�xdx. Its first two moments are E½�i� ¼ a=b,

and s2
�i
¼ a=b2.

4.2.1 Assumptions Verification

Before going into more detail about our Poisson-Gamma
model, we first verify it against the measurements. Based
on the Poisson-contact assumption in (2) and the indepen-
dence assumption, and given the values of �i, ati, and dti
for individual i, ki is also Poisson distributed, i.e.,

ki ¼
PM

j¼1 kij � Poissonð�i

PM
j¼1 t

j
ati;dti

Þ. Now consider the

values of k1; k2; . . . ; kS for the S discovered individuals;
these values follow a truncated Poisson distribution, because
the value of ki for individual imust be non-zero in order for
the individual to be observed. The solid curve in Fig. 4a
shows the empirical distribution of the observed ki for
i ¼ 1; 2; . . . ; S. As we have access to the arrival/departure
times of every individual (thanks to the entrance phones in

the Pal�eo dataset), we can compute tjati;dti from Equation (1)
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for i ¼ 1; 2; . . . ; S. Based on the model, we fit a truncated
Poisson-Gamma distribution to the measurements (see
details in Section 4.3). The dashed curve in Fig. 4a shows
the analytical distribution of ki based on the truncated Pois-
son-Gamma fit to the measurements. Fig. 4b shows the Q-Q
plot of the two distributions. These two figures verify that
our Poisson-Gamma model fits well to the observed meas-
urements based on the number of contacts. In particular,
the two probability distributions have similar tail behaviors.

We now consider the case where, instead of modeling the
number of contacts, we model the number of detections. We
repeat the above steps but replace kij with the number of
detections of individual i by agent j, i.e., number of detec-
tions instead of the number of bursts of detections. In fact,
the fit of the Poisson-Gamma model to the measurements
based on the number of detections is not good. In particular,
the empirical histogram of the detections and the corre-
sponding fitted Poisson-Gamma distribution have very dif-
ferent tail behaviors. The Pearsons chi-squared test for the
equality of the two distributions gives a p-value of

8:61� 10�9. We reject the equality assumptions of the two
distributions (i.e., the empirical histogram of the detections
and the corresponding fitted Poisson-Gamma distribution)
when the p-value is smaller than the predetermined signifi-
cance level a, which in practice is set to 0:01 or 0:05 [35].
Due to the lack of space, corresponding plots similar to
those of Fig. 4 are given in [36].

The reason for the poor fit when we model the detections
is that we are taking into account the duration of contacts
(i.e., duration of the bursts) between the agents and the indi-
viduals. The duration of a contact between an agent and an
individual is a complex variable driven, for the Pal�eo Festi-
val, by the duration of the concerts (which explains the shal-
low parts of the curves in Fig. 3a). By taking into account all
the detections in our model, we are taking into account
these factors, which complicates the observed measure-
ments, and as a result we obtain a poor fit. By taking into
account only the number of contacts of the individuals with
the agents, and thus neglecting the number of detections,
we capture the mixing that happens on the festival grounds
and discard irrelevant factors that complicate the process.

The Poisson-Gamma model has previously been used in
the literature to address problems related to population size
estimation [37], [38]. In these methods, all the population
members (e.g., animals) are vulnerable to the sampling pro-
cess (e.g., traps) for the entire duration of experiment. How-
ever, in our experiment, this assumption does not hold, and

we account for this by using the pdf fðdt; atÞ. Some other
methods [1], [18] could be applied to this problem, but they
will only account for whether individual i has been discov-
ered by agent j or not. In other words, they only take into
account the indicator function 11fkij > 0g, but not kij itself.

These methods address the problem by modeling the dis-
covering probability of an individual, and come with the
limitation that this discovering probability of an individual
does not scale linearly with time, hence the effect of time
cannot be readily included. In contrast, in the proposed
Poisson model, the average number of times agent j con-
tacts individual i scales linearly with time, as we would

expect. Moreover, parameters �i and tjati;dti have meaningful

interpretations. Finally, we use all the information of the
values taken by kij, and not only by 11fkij > 0g.

4.3 Likelihood Function

In order to derive the estimator forN , we compute the prob-
ability of observing the obtained measurements under the
model described above with parameters N;a;b. This is usu-
ally called the likelihood function. We then choose the set of
parameters, in particular N , that maximize this likelihood.
The likelihood function has the following form:

LðN;a;bÞ ¼ N

S

� �
1� pdscða;bÞð ÞN�S|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

L1ðN;a;bÞ

�
YS
i¼1

Pi|fflffl{zfflffl}
L2ða;bÞ

; (3)

where pdsc and Pi are given below. The first term (L1) is the
likelihood of the undiscovered individuals, and the second
term (L2) is the likelihood of the pattern of the discovered
individuals. Below, we discuss each of the two components
of the likelihood function. The computation makes use of
the following property of the Gamma distribution: for all
real positive x; y > 0,

E� e��x�y
� � ¼ Gðaþ yÞba

GðaÞðbþ xÞaþy : (4)

4.3.1 Likelihood of the Undiscovered

Let p
ðat;dt;�Þ
dsc be the probability that at least one of the M

agents discovers an individual having contact rate �, and
arrival and departure times at, dt. Using the Poisson contact
assumption, we have

p
ðat;dt;�Þ
dsc ¼ 1�

YM
j¼1

e
��t

j
at;dt ¼ 1� e

��
PM

j¼1
t
j
at;dt : (5)

As the contact rate � is a random variable, by taking the
expectation over � using (4) we have

p
ðat;dtÞ
dsc ða; bÞ ¼ E�½pðat;dt;�Þdsc � ¼ 1� b

bþPM
j¼1 t

j
at;dt

 !a

; (6)

and by computing the expectation of this probability over
the joint distribution of the arrival and departure times
fðat; dtÞ, we get

Fig. 4. The goodness of fit of truncated Poisson-Gamma distribution to
the measurements. (a) The probability distribution function and (b) the
Q-Q plot with respect to the empirical distribution of contacts.
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pdscða;bÞ ¼ 1� Eat;dt
b

bþPj t
j
at;dt

 !a" #
: (7)

The likelihood of the undiscovered individuals is equal to
the probability of not discovering N � S of the individuals:

L1ðN;a;bÞ ¼ N

N � S

� �
1� pdscða;bÞð ÞN�S

¼ N

S

� �
Eat;dt

b

bþPM
j¼1 t

j
at;dt

 !a" # !N�S

:

(8)

4.3.2 Likelihood of the Discovered

We first compute the probability of the observed pattern of
contacts by each agent for one of the discovered individuals.
Given that individual i has contact rate � and arrival and
departure times at, dt, the probability for him to be con-
tacted kij times by agent j for j ¼ 1; . . . ;M, is

P
ðat;dt;�Þ
i ¼

YM
j¼1

e
��t

j
at;dt

ð�tjat;dtÞkij
kij!

: (9)

By taking the expectation over � using (4) and after some
manipulations we have

P
ðat;dtÞ
i ¼ Gðaþ kiÞba

GðaÞðbþPM
j¼1 t

j
at;dtÞaþki

YM
j¼1

ðtjat;dtÞ
kij

kij!
; (10)

and by taking the expectation over at; dtwe get

Pi ¼ Eat;dt
Gðaþ kiÞba

GðaÞðbþPM
j¼1 t

j
at;dtÞaþki

YM
j¼1

ðtjat;dtÞ
kij

kij!

24 35: (11)

The second part of the likelihood is equal to the probability
of the observed pattern for all the discovered individuals.
Using the independence assumption we have

L2ða;bÞ ¼
YS
i¼1

Pi: (12)

4.3.3 Maximum Likelihood Estimator

The full likelihood is the product of the two likelihoods in
Equations (8) and (12):

LðN;a;bÞ ¼ N

S

� �
Eat;dt

b

bþPM
j¼1 t

j
at;dt

 !a" # !N�S

�
YS
i¼1

Gðaþ kiÞba

GðaÞ Eat;dt

QM
j¼1

ðtj
at;dt

Þkij
kij!

ðbþPM
j¼1 t

j
at;dtÞaþki

2664
3775

8>><>>:
9>>=>>;:

(13)

We define the maximum likelihood estimators for N;a;b as

ð bN; ba; bbÞ ¼ argmax
N;a;b

logLðN;a;bÞ; (14)

where LðN;a;bÞ is the full likelihood given by (13). bN is the
maximum likelihood estimator for the population size. In

the next section, we apply the above maximum likelihood
estimator on the Pal�eo measurements and compare its per-
formance with other existing methods.

5 RESULTS OF POPULATION SIZE ESTIMATION

5.1 Input Measurements for the Population Size
Estimator

For clarification purposes, we list in Table 1 the input to our
estimation model of population size, which is called a statis-
tic in usual terminology.

We have the following theorem, where proof is given in
[36] because of lack of space.

Theorem 1. The input quantities in Table 1 are minimally suffi-
cient statistics for estimating the population size in our model.

Theorem 1 means that the input contains the minimally
sufficient information for estimating the population size. In
other words, any more information is irrelevant for estimat-
ing N , and removing any information from the statistic
deteriorates the estimation ofN based on our model.

Here we elaborate on the choice of the model for arrival
and departure times fðat; dtÞ. As mentioned before, the
individuals’ arrival/departure times to/from the festival
are not known in general. We use three different arrival and
departure-time distributions, that we discuss below.

5.1.1 Deterministic

One extreme choice for fðat; dtÞ is a deterministic arrival
time and departure time for all the individuals. We choose
f1ðat; dtÞ ¼ dðatÞdðdt� TfestÞ, where dð�Þ is the Dirac func-
tion. This distribution assumes that all the individuals enter
at the beginning of the festival (time 0) and leave at the end
of the festival (Tfest), as in the studies in [18], [37], [38].

5.1.2 Actual Distribution

The opposite extreme choice for fðat; dtÞ is to use the Blue-
tooth traces obtained from entrance phones to estimate the
actual distribution of fðat; dtÞ. This information is in general
not available, but is used in our experiment for benchmark-
ing purposes. We computed the empirical distribution of
fðat; dtÞ, shown in Fig. 2a.

5.1.3 Low Informative

In practice, we do not have sufficiently detailed information
about arrival and departure times to estimate fðat; dtÞ. We
assume that we have access to the first two moments of indi-
viduals’ arrival/departure times. We then approximate

TABLE 1
Input Measurements for the Population Size Estimator
(resp. for the Population Size and Density Estimator)

� kij for i ¼ 1; 2; . . . ; S; j ¼ 1; 2; . . . ;M (resp. k
ðlÞ
ij for

i ¼ 1; 2; . . . ; S; j ¼ 1; 2; . . . ;M; l ¼ 1; 2; . . . ; K),

� ðatAj ; dtAj Þ for j ¼ 1; 2; . . . ;M (resp. atAj ; dt
A
j

� �
for

j ¼ 1; 2; . . . ;M, and agents’ trajectories),
� Individuals’ exact arrival/departure times to/from the
festival, or their distribution fðat; dtÞ or some approximation
of the distribution.
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individuals’ arrival and departure times by two independent
Gaussian distributions centered at the corresponding mean
arrival and departure timeswith the corresponding standard
deviations (refer to Fig. 2b). A tuple (at; dt) is valid if both ele-
ments fall within time period ½0; Tfest� and if dt> at.

5.2 Estimating the Population Size

For each of the three pdfs fðat; dtÞ described above, we com-
puted the maximum likelihood estimator of population size
given in (14). The result is given in Table 2.

We observe that the naive choice of deterministic arrival
and departure times gives a relatively large undershoot.
The explanation for this underestimation is that with deter-
ministic ðat; dtÞ, all the individuals arrive at the beginning
and leave at the end of the festival, and hence the overlap
time between agents and individuals is overestimated.
The discovering probability is overestimated, which results
in an undershoot. By using a non-deterministic fðat; dtÞ
instead, individuals are in contact with the agents on aver-
age for a smaller time duration, hence the discovering prob-
ability decreases and we have an increase in the estimated
population. We also observe that by estimating fðat; dtÞ
from the entrance-phone traces, we get surprisingly close to
the true value (N ¼ 3; 326). This is expected as the model
fits well to the observed measurements based on Figs. 4a
and 4b.

We also compare our method with the capture-recapture
method described in [18], with the pattern-maximum likeli-
hood (PML) method in [39], and with the method in [19].
The results are shown in Table 3; all methods exhibit an
undershoot, which is explained as follows. Recall that the
time duration that each individual is vulnerable to the sam-
pling process is random (according to his arrival and depar-
ture time), which is not taken into account in [18].
Therefore, the result has an undershoot similar to our
method for the choice of f1ðat; dtÞ. The method in [18]
assumes uniform sampling of the population, which is not
valid in our experiment and is the reason for the under-
shoot. We remark that the approximation used in the esti-
mator in [19] is not valid for our measurements, thus we
have used the exact expression provided in [19]. PML, a
nonparametric method described in [39], gives the best
result among the three. As explained in Section 2, no

method in the state of the art, copes with the randomness
both in the sampling process and in the arrival/departure
times of the actual measurement setting. For comparison
purposes, in particular with respect to the effect of these
additional random factors, it is however useful to evaluate
how they would perform on this dataset.

5.3 Results of Population Size Estimation by Using
a Subset of the Information

In this section, we apply our population size estimator to a
subset of the measurements. We use the estimator given in
(14) and use the actual distribution of individuals’ arrival
and departure times (f2ðat; dtÞ). In the first part, we consider
the measurements obtained by a subset of size m of the
agents. For each subset of size m, we consider all the possi-
ble combinations of the agents and estimate the population
size for each combination of m agents. The average esti-
mated population sizes and their 90 percent confidence
intervals for all the combinations of size m are shown in
Fig. 5a for m ¼ 5; 6; . . . ; 10. In the second part, we consider
the measurements obtained by all agents during an observa-
tion window of length w smaller than the festival duration.
Consider the agents’ arrival and departure times shown in
Fig. 3a; the observation window starting from the moment
when the first agent arrives at the festival (17h09 for agent
5), until the moment when the last agent departs from the
festival (4h01 for agent 1) is approximately 11 hours. We
partition this interval into slots 10-minutes in length. For an
observation window of length w, we consider all the conse-
cutive 10-minute slots with total length w, and we estimate
the population size based on the measurements obtained
during these slots. The average estimated population sizes
and their 90 percent confidence intervals are shown in
Fig. 5b for w ¼ 4; 5; . . . ; 11 hours. Note that for the right-
most point in both figures, there is only one estimate for the
population size, specifically, the one based on the entire

TABLE 2
Comparison of the Estimated Population Size with the
Ground Truth (3; 326) for Three Different Distributions of

Arrival/Departure Times

Choice of fðat; dtÞ ba bb bpdsc bN ðN � bNÞ=N
f1ðat; dtÞ 1:583 1670:5 0:849 3; 106 6:61%
f2ðat; dtÞ 1:868 1345:3 0:796 3; 311 0:45%
f3ðat; dtÞ 1:961 1774:5 0:805 3; 275 1:53%

TABLE 3
Comparison Results with Other Estimators

Method bN ðN � bNÞ=N
PML [39] 3,129 5.95%
Mth in [18] 3,013 9.46%
[19] 2,676 19.54%

Fig. 5. Estimated population size as a function of (a) the number of
agents and (b) the observation window length. The solid lines and the
bars show the average and the 90 percent confidence interval, respec-
tively. The dashed line shows the ground truth for the population size.
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measurements. Thus, the calculated confidence interval is
zero when m ¼ 10 (Fig. 5a) and w ¼ 11 hours (Fig. 5b). We
observe that as the number of agents decreases, the aver-
aged estimated population size increases. In [36] we have
plotted the average and the 90 percent confidence intervals
of the number of discovered individuals (S) as functions of
m and w.

5.4 Estimating the Total Number of Attendees

Remember that N in (14) is the number of attendees who
carry visible (i.e., discoverable) Bluetooth devices. In order
to estimate the entire number of attendees (with or without
a visible Bluetooth device), the ratio of attendees who carry
visible Bluetooth devices needs to be estimated. One way to
estimate this ratio is to compare visual counts of attendees
entering the gates with the number of discovered Bluetooth
devices during the same period. Several of these counts can
be performed at different time periods and the resulting
ratios averaged [15]. The same idea is used in the works of
[40], [41] to propose techniques to estimate the ratio of dis-
covered Bluetooth devices.

Let NTot be the total number of attendees and let r be the
ratio of attendees carrying visible Bluetooth devices, i.e.,
r ¼ N=NTot. Recall from Section 3.2.1 that in our experiment,

NTot ¼ 40; 536 and r ¼ 0:082. Let bN ¼ Nð1þ DNÞ andbr ¼ rð1þ DrÞ be the estimates for N and r, respectively,
with relative errors equal to DN and Dr. We have

bNTot ¼
bNbr ¼ Nð1þ DNÞ

rð1þ DrÞ : (15)

If jDN j � 1 and jDrj � 1 then, bNTot 	 NTotð1þ DN � DrÞ,
which means that in the worst case, the relative error in esti-
mating the total number NTot of attendees is approximately
equal to the sum of the relative errors DN and Dr in estimat-
ing N and r. Hence, in a setting where Dr is relatively small

(e.g., smaller than 20 percent), the choice of bN in Tables 2
and 3 has a measurable impact on the final error in estimat-

ing bNTot. For instance, in [41] the authors estimate the ratio
of visible Buetooth devices carried by pedestrians in a high-
traffic area that is similar to the entrance gates at Pal�eo.
They report a 9:2 percent visibility ratio with a relative error
of about 20 percent. Under such a setting, the relative error

in estimating bNTot in (15) by using f3 and f1 in Table 3
would be 21:5 and 26:7 percent, respectively.

Although estimating the entire population size of attend-
ees requires the knowledge of r, some population character-
istics, such as the relative density of attendees at different
locations, scales linearly with the size of the subset of visible
Bluetooth devices. Hence, studying this subset of attendees
gives us insight into the behavior of the entire population.
This is the topic of the next section.

6 JOINT POPULATION SIZE/DENSITY ESTIMATION

In this section, we extend our population size estimation
model to the joint-estimation model of population size and
density. Recall that the agents’ phones also record GPS posi-
tions; hence the approximate locations where the agents con-
tact the individuals are known. Nevertheless, our population
size estimation model does not differentiate among the

locations where the individuals are contacted by the agents;
the algorithm only processes the number of times that the
agents contact the individuals. In other words, the informa-
tion of the exact location where an agent contacts an individ-
ual is not relevant for estimating the population size.
However, as we approximate the locations where individu-
als are contacted, we are able to use this extra information to
infer the spatial density of different locations. For example,
consider the case where most of the contacts happen in a
small subset of the locations; in this case, we can conclude
that locations in this subset are more popular than the rest of
the locations. In this section, we present a model that takes
into account the location where the individuals are contacted
by the agents in order to jointly estimate population size and
density. Our idea is to split the contact rates of the individuals
into a set of location-dependent contact rates. Before describing
themodel inmore detail, we introduce a new notation.

We partition the area of interest (e.g., the festival area)
intoK locations S1; S2; . . . ; SK , which determines the granu-
larity of the density estimation. Consider a density (popu-
larity) vector pp
 ¼ ½p
ð1Þ;p
ð2Þ; . . . ;p
ðKÞ�, where the non-
negative density value of p
ðlÞ is associated with location l
for l ¼ 1; 2; . . . ; K, such that

P
l p


ðlÞ ¼ 1. We later elaborate

on what these density values represent. We denote by k
ðlÞ
ij

the total number of times that agent j contacts individual i
in location l; this value can be computed using the agents’

trajectories. The random variable k
ðlÞ
i denotes the total num-

ber of times that individual i is contacted in location l;

k
ðlÞ
i ¼PM

j¼1 k
ðlÞ
ij . We denote by t

j;ðlÞ
ati;dti

the overlap time

between individual i’s presence at the area of interest (the
individual could be in any location) and agent j’s presence

in location l; tjati;dti ¼
PK

l¼1 t
j;ðlÞ
ati;dti

.

6.1 Model Assumptions

Our joint-estimation model of population size and density is
based on these assumptions:

� Poisson contacts. The number k
ðlÞ
ij of times that agent

j contacts individual i in location l is Poisson distrib-

uted with mean equal to �
ðlÞ
i t

j;ðlÞ
ati;dti

, where �
ðlÞ
i is the

contact rate of individual i for location l,
� Independence. The random variable k

ðlÞ
ij for the trip-

let of individual i, agent j, and location l is indepen-
dent from that for all other triplets of individuals,
agents, and locations.

In this model, in contrast with our previous model for
population size estimation, we differentiate among the loca-
tions where an agent contacts an individual. Parameter �

ðlÞ
i

represents how easily the individual puts himself in a contact-
able position in location l:

k
ðlÞ
ij � Poisson �i

ðlÞ � tj;ðlÞati;dti

� �
: (16)

Parameter t
j;ðlÞ
ati;dti

is a function of agent j’s trajectory and indi-
vidual i’s arrival/departure times to/from the area of inter-
est. Consequently, if individual i’s exact arrival/departure

times are known, then the exact value of t
j;ðlÞ
ati;dti

can be calcu-

lated. Otherwise, if only the distribution for individual i’s
arrival/departure times is known, then the distribution of

t
j;ðlÞ
ati;dti

can be computed.
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Regarding the contact rates, we assume that for every
individual i, �

ðlÞ
i is drawn independently from all other

contact rates from a Gamma distribution with unknown

parameters aðlÞ and b. To take into account the density of

each location, we modulate the parameter aðlÞ for location
l with p
ðlÞ as follows. We assume that aðlÞ ¼ ap
ðlÞ; a, b,
N , and pp
 are unknown constants similar to the popula-
tion size estimation model. This particular choice of the

prior for the contact rates guarantees that �i ¼
PK

l¼1 �
ðlÞ
i

has a Gamma distribution with parameters a and b.
Hence, we split the contact rate of every individual i into

location-dependent contact rates �
ðlÞ
i . If location l is a

popular location, then individuals spend on average
more time in that location. Consequently, the contact
rates for the individuals in location l will be larger than
other locations (because there is a higher chance of con-
tacting individuals in location l, as they spend more time
there). This will be reflected in the estimated Gamma dis-

tribution for location l by having a large value of aðlÞ,
which means a large value of p
ðlÞ, and thus a large pop-
ularity for the location.

6.2 Likelihood Function

The likelihood function of the joint-estimation model of
population size and density is obtained by a similar reason-
ing as in Section 4.3, and reads [36]:

L ¼ N

N � S

� �
1� Eðat;dtÞ

YK
l¼1

b

bþPM
j¼1 t

j;ðlÞ
at;dt

 !aðlÞ24 350@ 1AN�S

�
YS
i¼1

Eðat;dtÞ
YK
l¼1

baðlÞG aðlÞ þ k
ðlÞ
i

� �
GðaðlÞÞ bþPM

j¼1 t
j;ðlÞ
at;dt

� �aðlÞþk
ðlÞ
i

2664

�
YM
j¼1

t
j;ðlÞ
at;dt

� �kðlÞ
ij

k
ðlÞ
ij !

3775:
(17)

The above likelihood function ismaximized in order to obtain
the maximum likelihood estimates of the parameters N , aðlÞ

for l ¼ 1; 2; . . . ;K, and b. The maximum likelihood estimate
for the spatial density p
ðlÞ of location l will then be equal to

aðlÞ=
P

j a
ðjÞ. Note that maximizing the above likelihood func-

tion is performed over K þ 2 parameters (N , að1Þ;að2Þ;
. . . ;aðKÞ, b), whereas in the case of population size estimation
(Eq. (13)), it is performed over three parameters (N , a, b).

7 RESULTS OF JOINT POPULATION SIZE AND

DENSITY ESTIMATION

7.1 Input Measurements for the Joint Estimator of
Population Size and Density

We list in Table 1 the input to our joint-estimation model of
population size and density. Similar to Theorem 1, we have
the following theorem; the proof is given in [36].

Theorem 2. The input quantities in Table 1 are the minimally
sufficient statistics for jointly estimating the population size
and density in our model. tu

This means that based on our model, any more informa-
tion is irrelevant for estimating N and pp
, and removing
any information from the input will deteriorate estimation
ofN and pp
.

7.2 Result on the Pal�eo Dataset

Here we apply our joint-estimation model of population
size and density to the Pal�eo dataset. In order to estimate
the spatial density at the Pal�eo music festival, we partition
the area intoK locations. Using the GPS traces of the agents,
we can reconstruct their trajectory and determine the time
duration that each agent spends in every location. Then by
processing agents’ Bluetooth measurements, we can deter-
mine the location where each contact occurs. This will give

us the values of k
ðlÞ
ij , for l ¼ 1; . . . ; K, j ¼ 1; . . . ;M, and

i ¼ 1; 2; . . . ; S. We partition the festival area into squares of
approximate size 15m� 15m, which is comparable with
communication range of Bluetooth; this gives us K ¼ 1; 200
locations. We use the actual arrival/departure time distri-
bution of the individuals in our computation. The maxi-
mum likelihood estimate of the population size is equal to
3; 062, which has 7:93 percent undershoot. The maximum
likelihood estimate of the density after being smoothed by a
low-pass Gaussian filter is shown in Fig. 6.

The error in the estimated population size is larger than
the errors in Table 2. One reason for the larger error is that
here we are estimating many more parameters than before
(K þ 2 ¼ 1; 202 versus 3), and the additional estimation of
density parameters introduces error in the estimation of the
population size. However, the error is still small compared
to the values in Table 3. Although the Poisson-Gamma
model succeeds in modeling the mixing that happens glob-
ally on the festival grounds when it is considered as one
location, it fails to model the mixing that happens locally
inside every location when the festival is partitioned.
Regarding the estimated density, contrary to the population
size, we do not have the ground truth of the density. Never-
theless, the estimated density shown in Fig. 6 matches well
with the popular locations of the event.

8 RESULT ON THE EPFL CAMPUS WI-FI DATASET

So far we applied our estimators of population size and
density to the Pal�eo measurements, for which only the

Fig. 6. Reconstructed relative spatial density (i.e., pp
 defined in
Section 6) at Pal�eo.
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ground truth of population is known. In this section, we
estimate the population size and spatial density of people
on the �Ecole Polytechnique F�ed�erale de Lausanne (EPFL)
campus. In contrast to the Pal�eo measurements, these meas-
urements are obtained using Wi-Fi technology, and both
ground truths of population size and density are known.
Table 4 summarizes the properties of the datasets used in
our experiments.

8.1 Dataset Description

We consider the EPFL campus, which consists of several
buildings and hundreds of wireless access points (APs). The
main wireless network on the campus requires authentica-
tion, and can thus be accessed only by members of the uni-
versity (students, faculty, etc.). The history of connections of
the users to the network is recorded in the following way:
Whenever a device (user) connects to the network, its (ano-
nymized) MAC address, the time of start of the connection,
and the identification (ID) of the AP to which it connects are
stored in a log file (with a precision to the second). More-
over, when the device moves across the campus and gets
connected (roamed) to a new AP, the time of this new con-
nection and the ID of the AP are similarly stored. However,
a device that loses its connection or disconnects, does not
lead to the storage of any entry in the log file. Wireless net-
work administrators of EPFL provided us with a log file for
one weekday.

8.2 Preprocessing of the Data

Wewant to reconstruct the trajectories of all the users on the
campus by using the log file. There are two main sources of
error: First, all the wireless devices (laptops, smart-phones,
etc.), connected at any time to the network, appear in the
log file; therefore, if a user does not connect his device to the
network, or does not carry the device everywhere he goes,
his true trajectory cannot be reconstructed. Second, when-
ever a user leaves the campus (disconnects), the time of dis-
connection is unknown. To compensate for these sources of
error, we consider only devices that arrive and depart
within the time period between 6h00 and 24h00. In addition,
we assume that a device remains connected to the same AP
until the time when it is connected to a new AP (based on
the log file entries). When a device is connected to an AP, it
stays in the communication range of the AP (typically
50-100 m), specifically, in the access point’s vicinity. We dis-
card the last connection of each device, because we do not
know when it terminates.

In summary, we assume that the arrival and departure
times of a user to (from) the campus are equal to the first
(respectively, the last) connection time associated with the
user inside the log file. This will allow us to approximate

users’ trajectories at an access-point level of granularity.
Although the reconstructed trajectories are affected by the
above mentioned sources of error, they are reconstructed
based on actual wireless connection logs. The empirical
marginal distributions of the users’ arrival times, departure
times, and durations of stay on the campus are shown in
[36]. The average and the 90 percent confidence interval of
the users’ arrival times are 10h37 and ½7h35; 14h36�, respec-
tively. The respective values for the users’ departure times
are equal to 17h29 and ½11h51; 22h14�. The average (the
90 percent confidence interval) of users’ duration of stay on
the campus is equal to 412:2 min (respectively, ½30:2 min;
669:6 min�).

8.3 Experiment Description

After applying the above preprocessing, 5; 834 devices
remain for which we reconstruct the trajectories at an
access-point level of granularity. Thus the ground truth for
population size is N ¼ 5; 834 individuals (users). For our
experiment, we assume campus security personnel to act as
our M agents, and we simulate their trajectories as follows.
Every agent arrives at 6h00 at departs at 24h00. During her
stay on the campus she visits different buildings uniformly
at random, and the sequence of her durations of stay in
each building is drawn i.i.d. from a Gaussian distribution
with 1-hour mean and 10-minute standard deviation (more
precisely, the distribution is a truncated Gaussian that
removes negative values). We further assume that when an
agent enters a building, she goes through every floor of the
building consecutively from the bottom floor to the top
floor. She then visits every AP inside each floor of the build-
ing in a random order, and she equally spreads her staying
time in the building among all its APs. By visiting an AP we
mean that the agent stays in the vicinity of that AP. We con-
sider an agent to be in contact with an individual whenever
they are both located in the vicinity of the same AP. To
obtain building-level granularity we further process the tra-
jectories by aggregating the access points within each build-
ing of the campus. This means that an individual and an
agent who are inside the same building, are in contact with
each other when they are in the vicinity of the same access
point. The campus has 21 main buildings that, in total, con-
sist of 680 access points, thus K ¼ 21 in our experiment. To
compute the ground truth for spatial density we proceed as

follows. Let tðlÞðiÞ be the duration of time that individual i
spends in location (building) l; then the (relative) spatial

density of location l is equal to p
ðlÞ ¼PN
i¼1 t

ðlÞðiÞ=PK
j¼1

PN
i¼1 t

ðjÞðiÞ.

8.4 Assumption Verification

We proceed similarly as in Section 4.2.1 by first verifying
our Poisson-Gamma assumption of contacts on this dataset.
We set M ¼ 7 agents and simulate their trajectories. The
agents are able to discover S ¼ 4; 801 out of the N ¼ 5; 834
individuals, which corresponds to 82:3 percent of the total
population. The solid curve in Fig. 7 shows the empirical
distribution of the observed number of contacts of the dis-
covered individuals (note that the curves correspond to the
particular obtained measurements). The dashed curve in
Fig. 7 shows the analytical distribution of the number of

TABLE 4
The Properties of the Datasets Used in the Experiments

Dataset Population
size ground

truth

Spatial
density

ground truth

Agents
type

Comm.
technology

Pal�eo available not available real Bluetooth
EPFL available available simulated Wi-Fi
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contacts, based on the truncated Poisson-Gamma fit to the
measurements. We observe that our Poisson-Gamma model
fits well to the observed measurements, similar to the Pal�eo
dataset (refer to Figs. 4a and 4b), although the two datasets
are of different nature: one is based on Bluetooth traces and
the other on those of Wi-Fi.

8.5 Estimation of Population Size
and Spatial Density

In our experiments, we perform 1; 000 iterations, where at
each iteration we simulate trajectories for M ¼ 7 agents.
Similarly as for the Pal�eo dataset, we use three different
arrival/departure time distributions: (i) the estimated actual
distribution (refer to Section 8.2 for an explanation), (ii) a
deterministic choice where every individual arrives at 6h00
at departs at 24h00 (similar to the agents), and (iii) a low
informative choice, where we approximate individuals’
arrival and departure times by two independent Gaussian
distributions centered at the corresponding mean arrival
and departure times with the corresponding standard devi-
ations; a tuple (at; dt) is valid if both elements fall within
time period 6h00� 24h00 and if dt > at.

The average and 90 percent confidence intervals of vari-
ous quantities are shown in Fig. 8. The dashed line shows
the ground truth for population size N ¼ 5; 834. The left-
most value is the number of discovered individuals (S); on
average the agents discover 83:2 percent of the population.
The second, the third, and the fourth values are, respec-
tively, the estimated population sizes using the estimated

actual distribution ( bNf4 ), the deterministic choice ( bNf5 ), and

the low informative choice ( bNf6 ). Similarly to the results on

the Pal�eo dataset (refer to Tables 2 and 3), estimating the
population size by using the actual arrival/departure times

distribution gives the best result among the three, whereas
the deterministic choice of arrival/departure times gives a
considerable undershoot. The fifth value is the result of the
capture-recapture method Mth described in [18]; the
obtained result exhibits an undershoot similar to the Pal�eo
dataset. We also perform experiments by varying the num-
ber of agents and agents’ arrival/departure times (similar
to Section 5.3 for the Pal�eo dataset). The observed behaviors
are similar to those for the Pal�eo dataset; due to lack of
space, the results are shown in [36].

In our second experiment, at each of the 1; 000 iterations,
we jointly estimate population size and density by using the
estimated actual arrival/departure time distribution and
also the low informative choice. The two rightmost values
in Fig. 8 show, respectively, the result for the population

size using the estimated actual distribution ( bNJ
f4
) and the

low informative choice ( bNJ
f6
). Similarly to Section 7.2, the

error in bNJ
f4

is larger than that in bNf4 , but it is still less than

that of bNMth
and bNf5 . The dashed curve in Fig. 9 shows the

estimated ground truth for spatial density, sorted in
decreasing order of popularity. The average and the 90 per-
cent confidence interval of the estimated spatial density,
using the low informative choice for individuals’ arrival/
departure times, for each location is shown by solid curve
in Fig. 9. We observe that the average estimated spatial den-
sity of every location is very close to the ground truth, and
that the ground truth falls within the 90 percent confidence
interval. Fig. 10 shows the reconstructed two dimensional
heatmap for the ground truth of density and the estimated
density at EPFL campus, at an access-point level of granu-
larity. Here the estimated density is the average estimated

Fig. 7. The goodness of fit of truncated Poisson-Gamma distribution in
the EPFL dataset.

Fig. 8. Population size estimates at EPFL campus. The solid line and the
bars, respectively, show the estimated average and 90 percent confi-
dence intervals of various quantities (refer to Section 8.5).

Fig. 9. Spatial density estimation at EPFL campus. The solid line and the
bars show the estimated average and 90 percent confidence intervals,
respectively. The dashed line shows the ground truth.

Fig. 10. EPFL Campus: Two dimensional heatmap of (a) the ground
truth of density, and (b) the average estimated density (the solid curve in
Fig. 9). The densities are reconstructed at an access-point level of
granularity.
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density across all iterations (the solid curve in Fig. 9), where
we divide the density of every building uniformly among
all of its APs.

9 CONCLUSION

In this paper we have introduced a novel application that
exploits the opportunistic contacts between mobile devi-
ces: we estimate population size and density by using
mobile devices to sample a population. In order to test
the feasibility of this method, we conducted an experi-
ment at Pal�eo Music Festival. We derived a model to esti-
mate the population of people who carry visible
Bluetooth devices, by optimally using all the available
information. The resulting estimate of population size is
surprisingly close to the ground truth, even with a small
number of agents. We observed that by considering the
contact patterns instead of the detection patterns the qual-
ity of the estimation improves. We also observed the
importance of taking into account the random exposure
times during which the individuals are vulnerable to
the sampling process. We then extended the model to
obtain joint estimation of population size and density,
and applied it to both the Pal�eo traces and real datasets
of Wi-Fi contacts over a University campus.

Although having an estimate for the number of people
requires the knowledge of the ratio of visible Bluetooth
devices, some population characteristics, such as the rela-
tive density of people in different time periods or in differ-
ent locations within the area of interest, scale linearly with
the size of the subset of visible Bluetooth devices. Therefore,
the method can be used to study such population character-
istics. Some open questions still remain. For example, what
kind of mobility models result in contact processes that can
provably be modeled with a Poisson-Gamma model? Is it
better to have a large number M of agents over a short
period of time T , or vice-versa? Our future work will focus
also on better understanding the difference between the
joint and the separate estimation of population size and
density; for example, knowing the population size can there
be other estimators, such as nonparametric estimators, of
spatial density?
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