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ABSTRACT
Graph matching is a generalization of the classic graph
isomorphism problem. By using only their structures a
graph-matching algorithm finds a map between the vertex
sets of two similar graphs. This has applications in the de-
anonymization of social and information networks and, more
generally, in the merging of structural data from different
domains.

One class of graph-matching algorithms starts with a
known seed set of matched node pairs. Despite the success of
these algorithms in practical applications, their performance
has been observed to be very sensitive to the size of the seed
set. The lack of a rigorous understanding of parameters and
performance makes it difficult to design systems and predict
their behavior.

In this paper, we propose and analyze a very simple per-
colation -based graph matching algorithm that incrementally
maps every pair of nodes (i, j) with at least r neighboring
mapped pairs. The simplicity of this algorithm makes pos-
sible a rigorous analysis that relies on recent advances in
bootstrap percolation theory for the G(n, p) random graph.
We prove conditions on the model parameters in which per-
colation graph matching succeeds, and we establish a phase
transition in the size of the seed set. We also confirm through
experiments that the performance of percolation graph match-
ing is surprisingly good, both for synthetic graphs and real
social-network data.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics—Probabilistic algorithms; G.2.2 [Discrete
Mathematics]: Graph Theory; H.1 [Information Sys-
tems]: Models and Principles
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1. INTRODUCTION
Social ties and interactions, interpersonal communications,

and information sharing are increasingly conducted through
online services and digital media. Both the risks and op-
portunities this brings are well known and hotly debated.
The electronic traces of our patterns of communication, key-
word searches, mobility, and information access, give a pre-
cise picture of many aspects of our personality and lifestyle.
These sources of information are therefore heavily sought
after for correlation and mining by advertisers, scientists,
governments, and many other entities. In addition, when
information from multiple sources and domains is combined,
this usually incurs increasing returns: the value of a set of
databases from different domains (e.g., a social network, a
demographic database, and cell phone mobility traces over a
given population) is significantly higher than the sum of its
values in isolation. It is therefore important to understand
how such information gets merged and correlated, and what
unintended privacy leaks might result.

One of the most basic representations of such information is
a graph, which represents pairwise relationships, potentially
enriched with additional attributes. Graphs can describe our
phone call patterns, Facebook friendships, relationships in a
business organization, or the contact networks that drive the
spread of infectious diseases. A typical individual belongs to
several such networks, but might possess different identities
in different networks, possibly as a deliberate measure to
protect her privacy.

In this paper, we study one fundamental aspect of corre-
lating graphs from different application domains: matching
their vertex sets through structural information. If the nodes
in two graphs use different labels (e.g., phone numbers and
e-mail addresses) for two nodes that represent the same un-
derlying entity (e.g., an individual), then we can ask whether
the structure of the two graphs reveals the correspondence
of some or all of the vertices. In other words, can we find
a matching between (a subset of) the vertex sets of two
graphs? If this is possible, then this has strong implications
for privacy and for cross-domain data mining applications.

Recent work answers this question in the affirmative. Naray-
anan and Shmatikov [11] succeed in matching a large -scale
anonymized social network to a second social network that
serves as side information. Although the node identities in
the first network contain no information per se, the privacy
of the network is compromised through the knowledge of a
correlated secondary network. In another work, a random
graph model served to provide insight on the fundamental
feasibility of graph matching for an adversary with unlimited



computational power [12]. It turns out that under rather
benign conditions, two graphs can be matched perfectly. In
summary, this evolving body of work suggests that protecting
graph privacy through node anonymization is inadequate.

Graph matching has other important applications in differ-
ent domains. For example, using graphs to represent images,
where vertices are regions and edges are adjacency relations
between these regions, is widely applied in recognizing two
scenes of an image and in finding similar images. In bio-
informatics, modeling gene sequences as graphs and matching
these graphs is applied for gene/protein networks alignment
[15, 6].

The algorithm in [11] takes as input a seed set of pre-
matched node pairs in the two graphs G1,2 to be matched.
The algorithm then iteratively expands this map, by iden-
tifying additional pairs of nodes (i ∈ G1, j ∈ G2) that can
plausibly be matched. Whether (i, j) is a plausible match is
computed from the position of i and j with respect to the
known mapped nodes. More specifically, they consider nodes
i, j in G1,2 that are neighbors of at least two mapped nodes,
and they propose various heuristics for comparing different
candidate pairs. The algorithm has several parameters that
need to be tuned through trial-and-error, but it has been
shown to perform very well over some real datasets.

Our first key contribution in this paper is a very simple
algorithm with a single tuning parameter to perform graph
matching. Essentially, the algorithm matches any two nodes
(i ∈ G1, j ∈ G2) that have more than r neighbors already
matched to each other. Despite its deceptive simplicity, this
algorithm performs very well on real data, and its operation
is easy to interpret and control due to a single control nob
(r). We believe that this algorithm can be viewed as the
canonical placeholder for percolation graph matching (PGM)
algorithms, which propagate a set of matched node pairs
outward. The algorithms in this class differ in how candidate
node pairs are compared. As such, PGM should shed light
on the qualitative performance of other such algorithms.

This brings us to the second contribution of our paper.
A key observation in [11] is the presence of a sharp phase
transition in the performance of their algorithm as a function
of the seed set size. The algorithm failed almost completely
when the seed set size was below a certain threshold, but
then shot up to a very high success rate (around 70% in
one experiment) when the number of seeds exceeded the
threshold. The authors did not speculate as to the reason for
the phase transition, or try to characterize it as a function
of network properties. In this paper, we formally prove the
presence of a phase transition in the seed set size when the
input graphs are G(n, p; s). The critical value ac for the
seed set size is a function of the network parameters and of
the control parameter r. This result provides a qualitative
understanding of this phenomenon and provides quantitative
guidelines about the feasible region in the parameter space.

This paper is organized as follows. In Section 2 we give
a more in-depth overview of related research. In Section 3,
we define a very simple and efficient percolation-based graph
matching algorithm. We then describe a stochastic model of
this matching algorithm in Section 4. The network model
is the G(n, p; s) model introduced in [12]: it generates two
correlated Erdös-Rényi random graphs whose similarity can
be controlled by a parameter s. In Section 5, we demonstrate
the existence of a phase transition in the size of the seed set.
When the seed set is smaller than a critical threshold ac, the

algorithm almost certainly fails; if it is larger, the algorithm
succeeds in matching almost everything. Our result relies on
recent progress in the field of bootstrap percolation [5]. In
Section 6, we evaluate the algorithm over both random graphs
and real social network data, and we confirm the presence
of the phase transition in the seed set. The algorithm also
performs remarkably well over real network data. In Section
7 we conclude the paper.

2. RELATED WORK
Graph matching has many applications in several do-

mains, including network de-anonymization, computer vision,
databases, and bio-informatics. We discuss the most relevant
works here.

In the privacy protection area, there have been several
reported successes in matching social network data from
different domains [11, 18]. Some of these are computationally
expensive and therefore limited to small scales [6]; some
rely on assumptions that an attacker is allowed to alter a
network before publishing [2] or has access to additional side
information, e.g., memberships in groups [18].

To the best of our knowledge, the methods for large-scale
attacks proposed in the literature are heuristic in nature [18,
10, 11]. One of the examples of large scale attack is the work
of Narayanan and Shmatikov [11]. They were the first to
succeed in de-anonymizing two real, large social networks,
based only on the network topology. Their approach relies
on a seed set of node pairs that are pre-matched, from which
they iteratively grow the map.

One key empirical observation in their work is that the
size of the seed set is very important: if the seed set is
too small, their algorithm tends to quickly die out. The
dependence on the size of the seed set seems highly non-
linear, with a sharp transition between almost complete
failure and almost complete success in matching as the size
of the seed set is increased. This suggests a phase transition
phenomenon, which is a major focus of the study of random
graphs and percolation models. In this paper, we formally
prove a phase transition for a very simple instance of such a
percolation graph matching algorithm, thus confirming the
empirical observations in their work. Furthermore, we are
able to characterize the critical value of the seed set size as
a function of graph parameters, including a measure of the
similarity of the two graphs to be matched.

Korula and Lattanzi [7] independently propose a graph
matching algorithm similar to ours, and they provide an
analysis for the G(n, p; s) model as well as for preferential-
attachment generator graphs. They consider a regime of
dense seeds, where the mapping for a constant fraction of
nodes is known a-priori. In this regime, they show that most
of the network can be matched with high probability in a
single propagation step. Our analysis goes further in that we
prove and characterize a phase transition in the size of the
seed set. We show that a sublinear seed set size can suffice
for matching in some circumstances.

Graph matching also arises in other fields, such as in
ontology alignment. Several automated tools were created to
match sets of labels describing data [4, 16, 14]. However, the
specifics of the problems assume small-scale graphs [4], and
the algorithms rely heavily on the properties and attributes
of the nodes, rather than on the structural features.

To shed light on the performance of seeded graph match-
ing, we analyze a very simple percolation-based algorithm



that incrementally matches pairs of nodes, based on previ-
ously matched pairs. In order to make statements about
the performance of this algorithm, we need a model for the
two graphs G1,2 to be matched. For this, we rely on the
random graph model introduced in [12]. This model works
as follows: we first generate a random graph G = G(n, p)
that can be thought of as the true social network. We then
derive two observable graphs G1,2 from G, by independently
including each edge of G in G1,2 with probability s. We
refer to the this model of a pair of graphs as the G(n, p; s)
graph-matching model, where the parameter s controls the
similarity (or correlation) between G1,2

1.
Our main theoretical contribution in this paper is to iden-

tify conditions on the model parameters (n, p, s) and on the
size of the seed set a0 (a small set of initially pre-mapped
pairs of nodes) such that percolation graph matching succeeds
with high probability. For this, we rely on recent advances in
the analysis of bootstrap percolation in the G(n, p) random
graph by Janson et al. [5]. We briefly summarize their model
and key results here.

Percolation theory is the study of the presence of large (or
infinite) clusters in random environments, such as lattices
with missing nodes or links, or random graphs. In bootstrap
percolation we study systems where a node is part of a cluster
only if it has at least r neighbors that belong to the cluster.
This more restrictive notion of inclusion can capture, for
example, the spread of influence through a social network,
where an individual is convinced of an idea only if she hears
this idea from several acquaintances.

In a seminal paper [5], Janson et al. succeed in analyzing
this process precisely for the Erdös-Rényi (G(n, p)) random
graph. They stated the following results for G(n, p) infection
spread with a threshold r. For given r, n, and p define,

ac :=
(
1− 1

r

)( (r − 1)!

npr

)1/(r−1)

, (1)

bc := n
(pn)r−1

(r − 1)!
e−pn. (2)

They analyzed the process and estimated the size of the
final active/infected set a∗ depending on the size of the
initially active set a0.

Theorem 1. [5] Suppose r ≥ 2 and2 n−1 � p� n−1/r.

• If a0/ac → α < 1, then a∗ = r
r−1

(φ(α)+o(1))ac w.h.p.,

where φ(α) is the unique root in [0, 1] of

rφ(α)− φ(α)r = (r − 1)α. (3)

[For r = 2, φ(α) = 1−
√

1− α.]

• If a0/ac ≥ α > 1, then a∗ = n − o(n) w.h.p.; in
other words, w.h.p. the process almost percolates. More
precisely, a∗ = n−O(bc) w.h.p. 3

We use this theorem to analyze the percolation-based
matching algorithm in the G(n, p; s) graph model. Although

1Note that G1,2 = G(n, ps), but their edge sets E1,2 are
correlated.
2In this paper, f � g and f � g mean f = o(g) and
f = ω(g), respectively.
3For larger value of p the process percolates to the full set
w.h.p.

the criterion for propagation is the same in the graph match-
ing process and in the bootstrap percolation (≥ r neighbors
infected), the objects of interest in our algorithm are pairs
of nodes rather than individual nodes as in the Janson et
al. model. In other words, in our algorithm, a node pair is
mapped if it has at least r neighboring node pairs that are
already matched. See the details of the algorithm in the next
section.

One key result in the present paper is establishing an equiv-
alence between the percolation process over node pairs for
matching and bootstrap percolation, which makes the ma-
chinery of [5] available to analyze this process. One subtlety
concerns mapping errors: They make the process hard to
analyze; and they can propagate, thus reducing the quality
of the mapping. To conclude that the algorithm is correct,
we need to show two facts: (i) that the matching process per-
colates and touches “most” nodes, and (ii) that the algorithm
matches nodes correctly.

3. PERCOLATION GRAPH MATCHING AL-
GORITHM

We now describe the graph-matching algorithm, whose
analysis is the main contribution of this paper. We are given
two graphs G1 and G2, both with n nodes4. We assume
a true but hidden equivalence between nodes in the two
graphs, which we can assume w.l.g. to be the identity, with
V1 = V2 = V . The edge sets E1 and E2 are in general
different, but are correlated. Informally, this means that if
an edge (u, v) exists in E1, it is likely to exist in E2 as well,
and vice versa. The matching algorithm has access only to
the structure of the two graphs, i.e., it sees unlabeled versions
of G1,2. Its purpose is to find a map, i.e., a set of tuples
A ⊂ V1 × V2 such that each node in V1,2 appears in at most
one tuple5. The map is correct if every element of A is of
the form (i, i); for a map with errors, we call |A| the size of
the map, and we call |(i, j) : i 6= j, (i, j) ∈ A|/|A| the error
rate of the map.

Several graph-matching algorithms proposed in the liter-
ature assume side information in the form of a known seed
set A0 of mapped pairs [8, 17, 11]. These algorithms try to
iteratively expand this map by identifying additional pairs of
nodes (i, j) in the “vicinity” of the set of confirmed pairs; this
process continues until it runs out of pairs to add. Our goal
in this paper is to define an algorithm that is simple enough
to be tractable, but that also has good matching performance
in real scenarios. We refer to our algorithm, and more gener-
ally to the class of algorithms that iteratively propagate a
map from a seed set, as percolation graph-matching (PGM)
algorithms, as they rely on a threshold rule reminiscent of
bootstrap percolation models [1]. Simply put, a pair (i, j)
is added to the set of mapped pairs if there are at least r
mapped pairs that are neighbors of (i, j)6.

We now describe our PGM algorithm more formally. The
input of the algorithm is the following:

• Two graphs G1 = (V1, E1) and G2 = (V2, E2);

4It is easy to remove the assumption of equal size; its purpose
is mainly for notational simplicity.
5I.e., A is a matching between the subset of mapped nodes
in G1 and the subset of mapped nodes in G2.
6More precisely, two pairs (i, j) and (i′, j′) are neighbors iff
(i, i′) ∈ E1 and (j, j′) ∈ E2.



• A seed set A0 of size a0, consisting of tuples (i, i) of
known pairs of matched nodes.

The algorithm we propose and analyze simply maps any
two nodes with at least r neighboring pairs already mapped.
An equivalent description emphasizes the incremental nature
of the process: we associate with every pair of nodes (i ∈
V1, j ∈ V2) a count of marks Mi,j . At each time step t, the
algorithm uses exactly one unused but already mapped pair
(it, jt). This pair adds one mark to each neighboring pair,
i.e., to every pair in N1(it) × N2(jt). As soon as any pair
gets r marks, it is added to the current map; if for some
node i there are several nodes j such that all (i, j) have r
marks, one pair is picked at random. The process iterates
until there are no more unused pairs.

The set A(t) consists of the map built until time t, and
the set Z(t) ⊂ A(t) consists of mapped pairs that have been
used until t, in the following way:

• At time t = 0, A(0) = A0 and Z(0) = ∅,

• At time step t the algorithm randomly selects a pair
(it, jt) ∈ A(t− 1) \ Z(t− 1) and adds one credit mark
to all pairs (i′, j′) ∈ V1 × V2 such that there exist
(it, i

′) ∈ E1 and (jt, j
′) ∈ E2 (cf. Fig. 1).

If a pair (i′, j′) has more than r marks then it is added
to the map A(t); furthermore, all other candidates
(i′′, j′) and (i′, j′′) are permanently removed from con-
sideration.

Let ∆A(t) be the set of pairs with r marks, which are
added to the map at time t. Then

A(t) = A(t− 1) ∪∆A(t)

and

Z(t) = Z(t− 1) ∪ {(it, jt)}.

Note that a(t) ≥ z(t) = t.

Figure 1: Red nodes are the seeds, green nodes are
the set of mapped pairs after the first three itera-
tions, for r = 2.

The process stops when A(t) \ Z(t) = ∅, which happens
when all pairs from the map A(t) are used. Denote this time
step by T = min(t ≥ 0 s.t. A(t) \ Z(t) = ∅). The final map
is A∗ = A(T ) = Z(T ) and its size is a∗ = T .

The role of the parameter r is important: it controls the
amount of evidence in favor of a pair of nodes, before these
nodes are matched permanently. There is a tradeoff between

two types of errors. If r is chosen too low, the probability
of a false match increases. If r is chosen too high, then the
algorithm may simply run out of candidate pairs to match
and stop early.

3.1 Deferred Matching Variant
The algorithm as defined above leads to a tractable proba-

bilistic model, and in particular, can be analyzed using the
bootstrap percolation results from [5], as shown below. The
basic algorithm greedily matches any candidate pair as soon
as it reaches r credits, even if A(t) \ Z(t) is not empty. This
is obviously not optimal in most circumstances, as the credits
yet to be generated by the remaining pairs in A(t) \ Z(t)
might improve the credit counts Mi,j and avoid matching
errors. There is an easy fix to this, which we describe here;
we use this variant of the algorithm in the experiments in
Section 6.

The modified algorithm works as follows. Whenever A(t) \
Z(t) is nonempty, we are conservative and continue to at-
tribute credits to candidate pairs, without forming any new
couples. Once A(t) \ Z(t) is empty, we form exactly one
couple (i, j) that has the maximum Mi,j of all candidates
(provided this is also above the threshold r; otherwise we
stop), and add it to A(t); and so forth.

This variant has the advantage of being conservative about
matching new couples: it first uses all the available evidence
by using all unused pairs before making irreversible decisions.
Also, it makes the choice of the parameter r somewhat less
important. In particular, if r is chosen too low, the maximum
rule ensures that only the best candidate pairs relative to
other candidates are matched. Our simulation results show
that the variant performs well, but exhibits the same phase
transition in r as the basic (greedy) approach.

Formally, at each time-step t,

• The algorithm processes a mapped pair (it, jt) ∈ A(t−
1) \ Z(t− 1) and adds one credit to every neighboring
pair, as in the basic algorithm;

• If A(t) \ Z(t) = ∅, the algorithm takes a pair whose
number of credits is maximal and at least r, and adds
it to A(t); if there are several such pairs it picks one at
random.

The algorithm stops when there are no more pairs with at
least r marks.

Our experiments show that this optimization decreases the
error rate in certain scenarios, but exhibits similar threshold
behavior in the seed set size as the basic version. For more
details see Section 6.

4. MODEL
In this section we define the model used for analysis of

the PGM algorithm. In the work [5], the authors proved
phase transitions of the size of the final mapping a∗ in the
initial seed set size a0. In our model, we show similar phase
transitions for PGM.

As we mentioned, we assume the ground-truth network
graph G is G(n, p), and two networks are obtained from G
as follows: each edge of G is present in the observed network
with probability s, independently of everything else. We refer
to this probability space as the G(n, p; s) graph matching
model [12]. Thus an input of the problem is the following:



• Two graphs G1 = (V,E1) and G2 = (V,E2), obtained
as a realization of the G(n, p; s) graph matching model;

• A seed set A0 ⊂ V × V of size a0 = |A0|.

Our goal is to explore the following question: Under what
conditions on the model parameters n, p, s, a0 and r does
the algorithm propagate and match the two graphs (almost)
correctly?

4.1 Properties of the Propagation Process
Let E(i, i′) denote the event that the edge (i, i′) is present

in G; and E1(i, i′) and E2(j, j′) are the events that edges
(i, i′) and (j, j′) occur in G1, G2, respectively.

Observation 1. Since the graph G is G(n, p), the uncon-
ditional edge probability P {E1(i, i′)} = P {E2(j, j′)} = ps.
But since G1 and G2 are sampled from the same generator,

P
{
E1(i, i′)|E2(i, i′)

}
= s.

For convenience of notation, we omit the reference to the
graph when it is clear from the context, and we refer to the
nodes of G1 by index i and to nodes of G2 by index j. We
write E1(i, it) as Ei,t and E2(j, jt) as Ej,t. i = j means that
i and j correspond to the same node of G.

Let Ii,j(t) be an indicator of the event that a pair (i, j)
received a mark at time step t, as a result of using a pair
(it, jt). This is equivalent to the event that there exist edges
(i, it) ∈ G1 and (j, jt) ∈ G2. Hence its probability is

P {Ii,j(t)=1} = P {Ei,t, Ej,t} .

We state the following lemma about the increments at time
t, conditional on no matching errors so far:

Lemma 1. Conditional on iτ = jτ for all τ ≤ t

1. P {Ii,j(t) = 1} =

{
(ps)2, i 6= j

ps2, i = j

2. For fixed t, the {Ii,j(t)}i,j,i 6=j are not independent.

3. For fixed t, the {Ii,i(t)}i are independent.

4. For fixed t1 6= t2, t1,2 ≤ t and any i, j, the Ii,j(t1) and
Ii,j(t2) are independent.

Proof. Conditional on iτ = jτ for all τ ≤ t

1. If at time t, a seed is mapped correctly, the nodes it
and jt are sampled from the same node of G, so by
Observation 1,

P {Ii,j(t) = 1} = P {Ei,t, Ej,t} =

{
(ps)2, i 6= j

ps2, i = j

2. For i 6= j and i1 6= j:

P {Ii,j(t)=1|Ii1,j(t)=1} =

= P {Ei,t, Ej,t|Ei1,t, Ej,t}
= P {Ei,t|Ei1,t} = P {Ei,t} = ps

3. For i = j and i1 = j1 (i1 6= i):

P {Ii,j(t)=1|Ii1,j1(t)=1} =

= P {Ei,t, Ej,t|Ei1,t, Ej1,t}
= P {Ei,t, Ej,t} = (ps)2

4. For t1 6= t2:

P {Ii,j(t1)=1|Ii,j(t2)=1} =

= P {Ei,t1 , Ej,t1 |Ei,t2 , Ej,t2}
= P {Ei,t1 , Ej,t1} ,

because for the case i 6= j, {Ei,t2 , Ej,t2} and {Ei,t1 , Ej,t1}
are disjoint, and for the case i = j, Ei,t2 6= Ei,t1 .

Clause 1 says that a correct pair has a probability of
collecting a new marker that is larger by a factor of 1/p than
the probability of a wrong pair collecting a marker, as long
as the pairs generating the credits are correct. While there
are many more incorrect pairs than correct pairs (Θ(n2) vs
n), this difference in the marker rates for correct and wrong
pairs is the reason why the algorithm can work well, provided
the factor 1/p is large enough.

Clause 2 states that markers obtained for two different
pairs with a node in common are not independent. Given that
a pair (i, j) gets a mark, the event that another pair (i1, j)
also gets a mark is more likely. Clause 3 is key for further
analysis of the process. It states that correctly mapped
pairs obtain marks independently. Thus, if a pair (i, i) got
a mark at time t, it does not correlate with (j, j) getting
a mark. Clause 4 asserts that each seed spreads its marks
independently. In other words, at a time step t, a pair gets
a mark independently of other time steps.

The count Mi,j(t) is the number of marks of (i, j) at time
t:

Mi,j(t) =

t∑
s=1

Ii,j(s).

Under the conditions of Lemma 1, each Mi,j(t) is the sum of
i.i.d. Bernoulli random variables, so it is either a Bi

(
n, (ps)2

)
for i 6= j or a Bi

(
n, ps2

)
for i = j. In the following section,

we develop conditions when PGM does not match wrong
pairs (w.h.p.).

5. PERFORMANCE OF PGM

5.1 Main Theorems
Let q = ps2 and r ≥ 4, and note that q is the probability

of an edge being sampled in both G1 and G2 or, equivalently,
the probability of an edge to be contained in the intersection
of the edge sets E1 ∩ E2. Define

ac =
(
1− 1

r

)( (r − 1)!

nqr

) 1
r−1

. (4)

Here we show that ac is the critical critical value of the
initial size of the seed set. This means that for an initial
number of seeds a0 lower than ac, the PGM algorithm stops
with the final size at most 2a0; for a0 larger than ac, the
algorithm propagates to most of the graph.



Theorem 2 (Subcritical regime). Fix ε > 0. For

n−1 � ps2 � s2n−
3
r
−ε/ logn, if a0/ac → α < 1, the propa-

gation algorithm stops with a∗ ≤ r
r−1

ac w.h.p. In particular

a∗ = (φ(α) + o(1)) r
r−1

ac ≤ r
r−1

a0 , where φ(α) is the unique

root in [0, 1] of rφ(α))− φ(α)r = (r − 1)α.

This means that in the subcritical regime, the final map is
only slightly larger than the seed set, because the mapping
process does not percolate. Now we consider at what happens
above the threshold a0 > ac.

Theorem 3 (Supercritical regime). Fix ε > 0. For

n−1 � ps2 � s2n−
3
r
−ε/ logn, if a0/ac ≥ α > 1 the al-

gorithm propagates, and the size of the final mapping is
a∗ = n− o(n) w.h.p.

In summary, there is a sharp phase transition at a0 = ac that
separates almost certain failure from almost certain success
of the percolation graph matching process. We discuss the
implications of this phase transition and the scaling of the
main parameters in more detail in Subsection 5.4.

5.2 Proof Sketch and Bootstrap Percolation
We briefly outline the main steps of the proof and provide

full details in the next subsection.
Our main goal is to prove that the couple formation pro-

cess A(t) defined in the previous section can be analyzed
using the bootstrap percolation model introduced in [5]. In
summary, [5] analyses a process where, at every time step
t, objects collect a credit with probability p, independently
of everything else. We want to analyze the PGM algorithm
within the G(n, p; s) model. However, our object of interest
is not an individual node, but a pair (i, j).

At every time-step, one pair spreads credits to other node
pairs. However, we do not have the critical feature that
makes the analysis of [5] tractable: as shown in Lemma 1,
the credit increments Ii,j(t) are not equiprobable, and they
are not independent. Therefore, the results of [5] cannot be
applied directly.

Fortunately, the specific structure of the process of incre-
ments over pairs reveals a way out. The key observation
is that the credits of correct pairs Mi,i(t) are in fact inde-
pendent of each other. Another observation of Lemma 1 is
that correct pairs are more likely to get a mark. Thus, the
(small) subset of pairs of the form (i, i) within all the possible
pairs V × V can be analyzed using the bootstrap percolation
framework.

Therefore, we first consider the event X that at any time
t, a wrong pair (i, j) has collected at least r credits without
either of the “competing” correct pairs (i, i) and (j, j) having
collected r credits. In the case of event X, it is possible
(but not guaranteed) that a matching error has occurred. In
Lemma 2 below, we show that P {X} → 0 under appropriate
conditions. Under these conditions, the matching algorithm
does not make wrong matches (w.h.p.) and is suitable for
further analysis.

It remains to be shown whether the algorithm percolates.
For this, it is conservative to only consider the credits Mi,i

attributed to correct pairs, as the probability to percolate
can only increase by adding additional pairs into the sys-
tem. As the correct counts are independent binomials, it is
then straightforward to map the problem into the bootstrap
percolation framework.

5.3 Proofs of Theorems 2 and 3
In this section, we use the results from [5] to formulate

our key results. We show a sharp face transitions in the final
map size a∗ depending on a0 < ac or a0 > ac.

A key lemma bounds the probability that no error happens
in the matching process. An error may occur if at some time
step, a bad pair (i, j) collects r marks before its adjacent good
pairs (i, i) and (j, j) have collected more than r marks. If
such errors are very rare, then we can focus only on correctly
mapped pairs in the analysis of A(t). Let Xi,j(t) denote the
event that the algorithm made an error at time step t by
mapping a pair (i, j), i 6= j, where r ≤ t ≤ n. The probability
of this event is

P {Xi,j(t)} ≤
≤ P {Mi,j(t) = r,Mi,i(t) ≤ r,Mj,j(t) ≤ r}

Denote by X =
⋃
t,i 6=j

Xi,j(t) the event that at any time-step

t an error happened.

Lemma 2. If p� n−
3
r
−ε/ log n (with r ≥ 4), then P {X} →

0 with n→∞,

The proof of the lemma is in the appendix.

Therefore for p � n−
3
r
−ε/ logn, Lemma 2 guarantees

that w.h.p. we need only consider the evolution of the
correct counts {Mi,i}, to which we can apply the results of
[5] directly.

Proof Theorem 2 and 3. The PGM process restricted
to correct pairs (i, i) is isomorphic to the bootstrap perco-
lation process for a G(n, q) random graph, with q = ps2.
Consider the two events {{Mi,i} percolates } and X. In the
supercritical case, by virtue of Theorem 1 and Lemma 2,
both events occur with high probability. Therefore, PGM
percolates correctly and to a set of size n− o(n) w.h.p.

In the subcritical case, the process {Mi,i} does not per-
colate. As P {X} → 0, the full PGM process over all pairs
does not percolate either by virtue of Lemma 2.

5.4 Interpretation of Results
Here we look into more details on the parameters of the

algorithm. In particular, we consider how the threshold ac
scales with respect to r, p and s, and we elaborate on what
happens near the bounding conditions on q = ps2.

The parameter r controls a tradeoff between matching
errors and percolation blocking. If r is too low, then a wrong
pair (i, j) might accumulate r credits before the correct pairs
(i, i) and (j, j) do; if r is too high, the process might not
percolate, and most nodes do not get matched. Note that r
has to be at least 2 for the algorithm to work: for r = 1, the
algorithm would match pairs of nodes with only one mapped
neighbor, which would necessarily lead to ambiguity, except
in degenerate cases.

The lower bound 1
n
� q simply ensures that the inter-

section of the two graphs has a giant component, without
which the algorithm cannot percolate. The upper bound

q � s2n−
3
r
−ε/ logn is more subtle. Of course, if q exceeds

the upper bound, the algorithm still percolates, but it will
make errors. This is because the ratio in the probabilities
of generating correct and wrong credits is not large enough
to guarantee X. As expected, the threshold ac is decreasing
with increasing p and s, so denser graphs require smaller seed
sets. For most scenarios of practical interest, r would be a



constant. For example, if s is a constant, and the mean degree
nq grows as nδ, with 0 < δ < 1 a constant, then there is a

constant r that satisfies the upper bound q � s2n−
3
r
−ε/ log n.

In this case the seed set threshold scales as ac = Θ(n1−δ r
r−1 ).

If the average degree grows, but less than a power law, then
ac is closer to linear. For example, suppose the mean is
nq = Θ(log n) (which is the threshold for the disappearance
of symmetry and of isolated vertices [3]), then ac scales as

follows: ac = (1− 1
r
)(r − 1)!

1
r−1 n(logn)−r/r−1. With r = 4

this is ac = Θ(n log−
4
3 n).

6. SIMULATION RESULTS
In this section, we test the PGM algorithm over real and

artificial graphs, with two goals: to validate the phase transi-
tions predicted by theory, and to check how well the algorithm
performs on real networks.

To evaluate the performance of the algorithm, we use two
metrics: The first is the size of final the map a∗ (the total
number of mapped nodes), which says how far the algorithm
propagates. The second is the error rate, i.e., the fraction
of wrong pairs in the map. Recall that the error rate is
|(i,j):i6=j,(i,j)∈A∗|

a∗−a0
.

The following ground-truth network graphs are considered:

• Erdös-Rényi random graph G(n, p);

• Slashdot social network;

• EPFL e-mail exchange network;

• Geometric random graph Ggeom(n, d).

We run the deferred matching version of the algorithm (see
Section 3.1) with r = 2; however the results are qualitatively
similar for the basic version. For the G(n, p), Slashdot and
Ggeom(n, d) random graph, we use the edge sampling model:
each edge appears in the observed network with probability s.
The experiment with the EPFL network is in some sense more
challenging, because the two networks to be matched are in
fact different observations of the social interactions within
an organization at two different points in time. Figures 2 -
10 show the dependence of the performance metrics on the
size of the seed set a0. Each figure contains 3 curves for
different values of the graph similarity parameter, which is
either the sampling parameter s, or an estimate of s in the
case of the EPFL dataset. The parameter s determines the
size of the overlap of the observed networks: the intersection
of the edge sets of the two graphs are of size proportional to
s2. We averaged all the results over 10 realizations.

6.1 G(n, p; s) Model
To support our results, we first simulate the G(n, p; s)

graph matching model exactly. Specifically, in this model,
the generator graph G is an Erdös-Rényi G(n, p) graph with
n = 10000 and p = 20/n.

We observe that when the size of the seed set is sufficiently
large, the algorithm propagates to the complete mapping (see
Figure 2). We also see the sharp phase transitions predicted
in Theorems 2 and 3. Furthermore, the theoretically obtained
threshold ac appears very precise. According to the definition
(4) of ac, for the first curve, s = 0.9 the critical size of the
seed set ac is 19, for s = 0.8 the ac is 31 and for s = 0.7
the ac is 52. We can see that the observed transitions are
close to these values. To highlight this fact, we normalize the

x-axis by ac. In Figure 3, we observe that, after re-scaling,
all the curves look essentially the same.
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Figure 2: Total number of mapped nodes vs number
of seeds for the PGM algorithm over G(n, p) with
n = 10000 and p = 20/n.
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Figure 3: Total number of mapped nodes vs number
of seeds for the PGM algorithm over G(n, p) with n =
10000 and p = 20/n. The x-axis is rescaled according
to the value of ac.
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Figure 4: Error rate vs number of seeds for the PGM
algorithm over G(n, p) with n = 10000 and p = 20/n.



The Figure 4 provides further detail about the behavior
of the PGM algorithm: if the size of the seed set a0 is very
small the PGM dies out quickly, adding only a small number
of very unreliable matches to the seed set. This results in a
lot of noise in the subcritical regime. For very large a0 � ac,
the error rate goes to zero, thanks to the increasing amount
of side information, as expected by Lemma 2. There appears
to be a peak in the error rate just at the onset of percolation,
because the algorithm matches almost the whole network,
but with barely enough seeds to percolate. Errors are then
more likely than for larger seed sets.

To confirm that deferred version does not change the ob-
served phenomenons, we also ran the analogous experiments
with the basic version of the PGM and observe identical
threshold behavior.

6.2 Real Networks: Slashdot and E-mail Graphs
In the second set of experiments, we run PGM over large-

scale social networks. First, we run the algorithm over real
friend/foe links between Slashdot users [9] obtained in Novem-
ber 2008 (cf. Table 1).

Nodes 77360
Edges 546487
Number of components 1
Average clustering coefficient 0.0555
Diameter (longest shortest path) 10

Table 1: Slashdot dataset statistics.

To generate two observations of the network, we resort to
edge sampling. In this model, when s = 0.9, the overlap of
the two networks is less than 63000 nodes; when s = 0.8,
the overlap is about 49000 nodes; when s = 0.7, it is 38000
nodes.
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Figure 5: Total number of mapped nodes vs number
of seeds for the PGM algorithm over the Slashdot
network.

The results suggest phase transitions in the size of the final
mapping, albeit less sharp than for G(n; p) (see Figure 5).
We also see that if the algorithm propagates (supercritical
case), the error rate is encouragingly small (see Figure 6).

For example, for s = 0.9, it is enough to have 150 seeds
(which is 0.2% of all nodes) for the algorithm to propagate
over the majority of the graph. Figure 6 shows that the error
rate drops rapidly with a0.
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Figure 6: Error rate vs number of seeds for the PGM
algorithm over the Slashdot network.

Second, we obtained snapshots of the e-mail traffic on the
EPFL campus for different time periods (the week numbering
starts at the beginning of year). Each node corresponds to an
e-mail account, and an undirected edge means that at least
one e-mail was sent between two accounts. The experiment
is more realistic in the sense that we do not rely on the
sampling model to generate two similar graphs G1,2, but
instead these graphs correspond to the real traffic patterns
in two different time periods.
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Figure 7: Total number of mapped nodes vs num-
ber of seeds for the PGM algorithm over the EPFL
contact network.



0 50 100 150 200 250

Num ber of seeds

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
F
ra

c
ti

o
n

 o
f 

e
rr

o
r 

m
a

p
p

e
d

 p
a

ir
s

Weeks 3-17 and 8-22

Weeks 5-19 and 8-22

Weeks 7-21 and 8-22

Figure 8: Error rate vs number of seeds for the PGM
algorithm over the EPFL contact network.

The challenge for the algorithm is that in the considered
graphs not only edge sets are different, but so are vertex sets.
In other words, the PGM does not match the vertex sets of
two graphs anymore, instead it identifies common subsets
and matches them. If the two graphs are different enough
the PGM can not separate the nodes which are not presented
in both graphs and tries to match them thus increasing the
error rate. Another challenge is that graphs are quite sparse,
the average degree is about 7. The three curves demonstrate
the behavior of the algorithm on the e-mail exchanges graphs
for the following periods:

• G1 is a graph of e-mails sent between weeks 3 and 17
and G2 is a graph e-mails sent between weeks 8 and 12.
Each graph contains approximately 60000 nodes and
230000 edges. The intersection graph has 50000 nodes
and 160000 edges.

• For weeks 5-19 and 8-12, respectively: Each graph
contains approximately 61500 nodes and 231000 edges.
The intersection graph has 54000 nodes and 185000
edges.

• For weeks 7-21 and 8-12, respectively: Each graph
contains approximately 61500 nodes and 231000 edges.
The intersection graph has 59000 nodes and 207000
edges.

The results reveal similar phase transitions on the size of
the final mapping and error rate as for those in G(n; p) and
Slashdot(see Figures 7 and 8).

6.3 Random Geometric Graph Ggeom(n, d)

The performance of our proposed PGM algorithm is sur-
prisingly good over both the G(n, p; s) random graphs and
over real social networks. We conjecture, however, that its
success relies in part on the compactness of these graphs,
which ensures that even with a relatively small number of
seeds, every node in the network is close to some seeds, which
allows to “triangulate” the nodes.

To illustrate this, we report on an experiment where the
generator graph G is a random geometric graph Ggeom(n, d).

A random geometric graph is a random undirected graph
which is generated by placing vertices uniformly at random
on the unit square [0, 1)2. Two vertices u and v are connected
if and only if the distance between them is at most d [13].
The typical distance in a supercritical random geometric
graph scales as n1/2, in contrast to the logarithmic distance in
G(n, p) and other“small-world”networks. The average degree
of a geometric graph is πnd2. For our settings n = 10000
and d = 0.01, for an average degree of approx. 3.

Figures 9 and 10 show the experiment for Ggeom(n =
10000, d = 0.01). We observe that the algorithm does not
percolate, and that it has a very high error rate within
the map. While a complete understanding of the limits
of percolation-based graph matching is lacking, this does
suggest that PGM performs better with compact networks.
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Figure 9: Total number of mapped nodes vs number
of seeds for the PGM algorithm over G(n, d) random
geometric graph model where n = 10000 and d = 0.01.
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Figure 10: Error rate vs number of seeds for
the PGM algorithm over G(n, d) random geometric
graph model where n = 10000 and d = 0.01.



7. CONCLUSION
We developed an algorithm for large-scale graph match-

ing, and proposed a theoretical framework for its analysis.
This enabled us to investigate conditions on the graph and
algorithm parameters such that the algorithm percolates and
performs well. One of our key contributions is a theoretical
model and the identification of a phase transition in the
size of the seed set, i.e., side information provided to the
algorithm.

We have run experiments on several types of networks,
confirming the results. We have observed two key phenom-
ena:

• There is a sharp phase transition of the size of the final
map a∗, depending on the size of the initial seed set.

• The algorithm has low complexity and performs well
on real and artificial compact graphs; however, its
performance was much worse on the random geometric
graph, which is less compact.

The choice of r can have a significant impact on the map
propagation process. A larger r means that we insist on more
evidence before permanently mapping two nodes. While
Lemma 2 suggests a rather benign condition on r, in more
challenging scenarios (e.g., if the vertex sets V1 and V2 overlap
only partially, or when some seeds are wrong), a larger
threshold r can help compensate for such vagaries. We have
also run experiments to check how robust the algorithm is
with respect to these perturbations and observed that seed
errors affect mostly the onset of percolation, but with a minor
effect on the error rate. This agrees with the arguments in
Lemma 2. An interesting related question concerns the
choice of good seeds in situations where we are afforded some
control.

In summary, we believe that the percolation-based graph
matching algorithm proposed in this paper is both practically
relevant, given its good performance and low complexity, and
theoretically instructive, given the precise statements we
can make about the required size of the seed set and the
percolation dynamics. We hope that this work opens up
new avenues for research, both into better graph-matching
algorithms and richer classes of network models.

APPENDIX
Proof of Lemma 2

Proof. First we bound the probability of mapping a
wrong pair (i, j) (i 6= j) at time step t, conditional on no
wrong used pairs up to time t− 1. Note that conditioning on
a correct used pair iτ = jτ at time τ implies that this pair
was correctly matched at some time τ ′ before τ , which in
turn ascertains that for this pair, the correct count Miτ ,iτ (τ ′)
“won” over all wrong counts Mi′,iτ (τ ′) and Miτ ,j′(τ

′). There-
fore, conditional on iτ = jτ for τ < t, correct counts are
stochastically (slightly) larger, and wrong counts stochasti-
cally smaller. In the following argument, we are conservative
in ignoring this bias in bounding the probability of future
errors.

P {Xi,j(t)} ≤
≤ P {Mi,j(t) = r,Mi,i(t) ≤ r,Mj,j(t) ≤ r}
≤ P {Mi,j(t) = r,Mi,i(t) ≤ r}

We split our proof into two cases: for earlier steps t we
upper-bound P {Xi,j(t)} by P {Mi,j(t) = r} and show that
P {Mi,j(t) = r} → 0 or, equivalently, we show that for earlier
steps t the wrong pairs do not get r marks w.h.p. For later
steps we upper-bound P {Xi,j(t)} by P {Mi,i(t) ≤ r} and
demonstrate that P {Mi,i(t) ≤ r} → 0 or, equivalently, we
show that the pair (i, i) has collected more marks than r
w.h.p. Then we take a union bound for all i, j and t to
upper-bound P {X}.

Fix an arbitrary ε > 0.

• Early steps t: let t(ps)2 ≤ n−
3
r
−ε and let X1 be an

event that an error happens early (for all i, j and t
satisfying the condition above)

P {X1} ≤
∑
i,j,t

P {Xi,j(t)}

≤
∑
i,j,t

P {Mi,j(t) = r}

=
∑
i,j,t

P
{
Bi
(
t, (ps)2

)
= r
}

=
∑
i,j,t

(
t

r

)
(ps)2r(1− (ps)2)t−r

≤
∑
i,j,t

(t(ps)2)r

(a)

≤ n3(n−
3
r
−ε)r = n−rε, thus

P {X1} → 0

where (a) follows from the condition on t.

• Later steps t: let t(ps)2 > n−
3
r
−ε, equivalently, t >(

n
− 3
r
−ε

(ps)2

)
and let X2 be an event that an error happens

at later steps (for all i, j and corresponding t).

P {X2} ≤
∑
i,j,t

P {Xi,j(t)}

≤
∑
i,j,t

P {Mi,i(t) ≤ r}

=
∑
i,j,t

P
{
Bi
(
t, ps2

)
≤ r
}

(a)

≤
∑
i,j,t

exp (r − tps2/2)

(b)

≤ n3 exp
(
r − n−

3
r
−ε

2p

)
= exp

(
3 logn+ r − 1

2n
3
r
+εp

)
, thus

P {X2} → 0, if p� n−
3
r
−ε/ logn

where (b) follows from the condition on t and (a) uses
the following Chernoff bound for the left tail of the



binomial:

P {X ≤ (1− σ)µ} ≤ exp
(−σ2µ

2

)
.

Here X is Bi
(
t, ps2

)
, µ = tps2 and σ = 1 − r

tps2
(to

make (1− σ)µ = r). Then,

P
{
Bi
(
t, ps2

)
≤ r
}
≤ exp

(
−(1− r

tps2
)2tps2

2

)

= exp (− tps
2

2
+ r − r2

2tps2
)

≤ exp (r − tps2/2)

Taking a union bound we obtain P {X} ≤ P {X1}+P {X2} →
0, if p� n−

3
r
−ε/ logn.
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