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ABSTRACT. Epidemics of infectious diseases are among the largest threats to the
quality of life and the economic and social well-being of developing countries. The arsenal
of measures against such epidemics is well-established, but costly and insufficient to mitigate
their impact. In this paper, we argue that mobile technology adds a powerful weapon to
this arsenal, because (a) mobile devices endow us with the unprecedented ability to measure
and model the detailed behavioral patterns of the affected population, and (b) they enable
the delivery of personalized behavioral recommendations to individuals in real time. We
combine these two ideas and propose several strategies to generate such recommendations
from mobility patterns. The goal of each strategy is a large reduction in infections, with a
small impact on the normal course of daily life. We evaluate these strategies over the Orange
D4D dataset and show the benefit of mobile micro-measures, even if only a fraction of the
population participates. These preliminary results demonstrate the potential of mobile
technology to complement other measures like vaccination and quarantines against disease
epidemics.

1 Introduction

Modeling and effectively mitigating the spread of infectious diseases has been a long-
standing public health goal. The stakes are high: throughout human history, epidemics
have had significant death tolls. In the mid-14"" century [I5], between 30% and 50% of Eu-
rope’s population died due to the Black Death. In 1918, the Spanish flu pandemic caused
an estimated 50 million deaths worldwide [33]. More recently, the 2002-2003 SARS pan-
demic that originated in Hong-Kong and spread worldwide caused the death of 774 [36].
These events highlight not only the scale of the problem but also our vulnerability, past and
present. The situation worsens in times of crises. A recent example is the ongoing cholera
outbreak in Haiti: it started in 2010, a few months after a major earthquake. Cholera is
a recurring issue in West African countries as well, with many deaths reported each time.
Effective measures against an epidemic require an accurate and up-to-date assessment of the
situation, a very fast response and a strong coordination, which are colossal organizational
efforts under tight time constraints. To this day, there is no uncontested way of preventing
epidemics in general. Traditionally, many methods that have been used involve top-down
approaches such as vaccination campaigns, the set-up of medical shelters, travel restrictions
or quarantines [19]. These methods have several drawbacks: they are difficult and slow to
be put into place, they can be expensive and also freedom-restrictive. It is clear that any
improvement could have a tremendous impact and translate into significant welfare gains.

In our work, we focus on human-mediated epidemics (transmitted by human contact, e.g.,
influenza). For these epidemics, human mobility clearly plays a crucial role in that it enables
the epidemic to travel and spread geographically. We will explore new mitigation methods



and expand the solution space. In particular, we argue that taking advantage of mobile
technology opens up many possibilities for mitigating the spread of an epidemic in original
and distinctive ways. Importantly, mobile technology is unique in that it is allows the
personalization of countermeasures through precise measurements at the individual level,
as well as individualized recommendations. It is this combination of information extracted
from mobile data and subsequent personalization of prevention advice that opens up novel
ways of mitigating an epidemic. We envision a mobile service that sends recommendations
that invite the individuals to adapt their behavior, for example by delaying or canceling
a trip. More generally, we formulate subtle, precise and minimally restrictive personalized
behavioral rules that, if followed even partially, will have a positive global effect on the
epidemic.

1.1 Context and Contributions

Our work was spurred by the Data for Development challengeﬂ organized by France Telecom-
Orange, a global telecommunications operator. Participants in this challenge have access to
data gathered from 2.5 billion calls made by 5 million users in Ivory Coast. The goal is to
find an original and creative use of this data that contributes towards the social, economic
and environmental development of Ivory Coast. Four different datasets were derived from
call detail records (CDRs) recorded over a period of 5 months, from December 2011 to April
2012. Blondel et al. [§] provide a detailed description of the datasets. Among these, two are
mobility traces containing the time and the location at which a sample of the users made
their phone calls. In order to protect the users’ privacy, the datasets reflect different trade-
offs in terms of the location’s accuracy and the time span over which the trace is provided.
We use this data to build a home location and time-dependent model of human mobility
in Ivory Coast, which allows us to accurately capture population movements across the
country (Section . These mobility patterns then power the core of our epidemic model,
which allows us to analyze epidemic outbreaks at the level of single individuals (Section .

Beyond these models, our main contribution is to foster the idea of a mobile service that
sends personal recommendations to help mitigate an epidemic. The mobile service is an
original idea that has several advantages over existing methods. In particular, we introduce
and motivate the concept of micro-measures, individual countermeasures tailored to their
recipients’ specific behavior; this new approach is the opposite of the one-size-fits-all pattern
that characterizes most traditional mitigation measures. We present several concrete such
micro-measures and discuss their potential (Section . Finally, we empirically evaluate
their effectiveness using our epidemic model and provide some insights into further research
directions (Section [6]).

2 Related Work

Infectious diseases, also known as transmissible diseases are one of the the major causes of
deaths in human societies. An epidemic is a rapid and extensive spread of a transmissible
disease that affects many individuals in an area, community, or population. In order to
study epidemics, scientists need to describe them mathematically, which enables them to

!See: http://www.d4d.orange.com/. The challenge was launched in mid-2012 and ended on February
150, 2013.
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predict epidemic outbreaks and to find strategies for decreasing mortality rates, and hence
the costs to the economy. In their seminal work, Kermack and McKendrick [23] introduce a
SIR model with three distinct classes of populations: susceptibles, infectives and recovered.
This simple, yet powerful, model is very popular for modeling the evolution of epidemics
in populations. Hethcote [I7] reviews different extensions of this model (SIS, SI, SEIS and
etc.), as well as threshold theorems involving measures such as the reproduction number,
which is the average number of secondary infections caused by an infected individual when
in contact with a population of susceptibles.

Instead of modeling an epidemic for the population in a region, it is possible to increase
geographical granularity by dividing the original region in sub-regions, and then study the
SIR model for the population of each region [I1, 5 26, 34]. By assuming that human contacts
are responsible for disease transmission, the disease spread among sub-regions is driven by
the mobility of individuals. Sattenspiel and Dietz [26] take into account the home region of
individuals in order to simulate their mobility. One of the simple approaches to modeling
population mobility is the gravity model that is based on two assumptions: Mobility flux
between two regions is proportional to the product of their population’s size. It decays
as the distance separating them increases [29]. For example, recently, Rinaldo et al. [25]
study the Haiti cholera outbreak (2010-2011) and try to predict the next outbreaks of
cholera, using the gravity model and rainfall as drivers of disease transmission. By using a
stochastic computational framework, Colizza et al. [9] study the epidemic propagation on a
larger scale: They analyse the effect of airline transportation (complete worldwide air travel
infrastructure complemented with census population data) on global epidemics.

In order to improve the realism of epidemic models, we need to build more accurate and data-
driven mobility models. CDRs collected by cellular services are used for studying human
mobility, because they represent a rich source of information about mobility [2} 3], [4], 14}, 20}
31]. For example, Gonzalez et al. [I4] analyze the trajectory of 100,000 mobile phone users
over a six-month period. They find that human trajectories exhibit very regular patterns,
hence we can model each individual mobility with only a few parameters. Isaacman et al.
[21] model how a large population move within different metropolitan areas. Because of the
sporadic nature of CDRs, Ficek and Kencl [12] use a Gaussian mixture model to reproduce
probabilistically location of users between two consecutive calls. Based on the number of
unique antennas observed by each user, Halepovic and Williamson [16] assume that some
proportion of the population are static and always stay in their home regions.

The development of strategies for controlling epidemics such as influenza is one of the high
priorities of global public health policies [11], 13, 18, 19]. SIR models, which incorporate mo-
bility between regions, represent powerful tools for designing and testing different strategies
to control epidemics. The quarantine is one of the methods often used to limit the spread of
infectious diseases within human populations. We lack information however about the ef-
fectiveness of quarantine on controlling epidemics. Sattenspiel and Herring [27] use records
of the influenza epidemic, which took place in Canada at 1918-19, to investigate the effect
of quarantine. They show that a quarantine is effective only when mobility is restricted,
and that it depends on its application-time and duration. In addition to these issues about
the effectiveness of quarantine, there are issues, that include implementation challenges,
economic cost and the violation of civil rights, especially in the cases of long confinement
or isolation from society. Another way to control epidemics is to vaccinate the susceptible



population in a series of pulses called pulse vaccination [24] 28 30} 37, 38]. For example,
Zaman et al. [37] define a control optimization problem based on the SIR model. They try
to compute the optimum percentage of susceptible population to be vaccinated at each time.
This method requires the vaccination of at least 10 percent of the susceptible population at
each time step, in order to make a small change in the epidemic behaviour of the infectious
disease.

3 Mobile Micro-measures

Traditional epidemic mitigation methods consist of heavy, top-down approaches such as
blockades, quarantines or large-scale vaccinations. As an alternative, we suggest that mobile
technology could enable a much richer and sophisticated set of mitigation measures for
human-mediated epidemics, which we name micro-measures. Let us illustrate our vision by
describing a simple scenario.

Jean, an 18 year old inhabitant of Ivory Coast living in Northeastern Bouaké,
would like to play pickup football. He knows that a meningitis outbreak just
surfaced in his district, and he does not want to take any risk. Bouaké happens
to be part of a pilot program of a mobile service that helps mitigate the spread
of meningitis. Using his mobile phone, he sends a short request to the service
that instantly computes the following personalized recommendation for him: to
minimize the risk, he should try the football field a few kilometers southwards,
instead of going to the one he is used to. It would be best if he took the gbaka
(small bus) in about 17 minutes, this way he would avoid contact with the kids
coming back home from the school nearby.

Of course, this scenario presents an idealized and naive view of reality; Jean might not have a
cell phone to begin with, the bus might not have such a precise schedule, and there might not
be alternative locations where people are playing pickup football. It nevertheless gives an
overview of the level of refinement that can be achieved through personal recommendations.
The main properties of such a service are as follows:

Personalized. Recommendations are generated and communicated on an individual basis.
Mobile technology enables this in two ways: first, it allows for a quantity of valuable
behavioral information (such as location and activity) to be recorded and second, it
provides a readily available unicast communication channel.

Adaptive. As the epidemic progresses and each individuals’ intentions are discovered,
the recommendations are instantly adapted. The personalization of mobile micro-
recommendations ensures their effectiveness. Such recommendations, in contrast with
most large-scale mitigation efforts, would typically require much less time to be set
up and would always be in phase with the current state of the epidemic.

Microscopic. In contrast with a one-size-fits-all policy that typically considers an epidemic
from a macroscopic perspective, micro-measures tend to focus on subtle and local
changes. These changes, when looked at independently, are mostly insignificant; but
taken together, they result in important global improvements.



State-independent. An additional property of the service is that it is epidemic-state
independent: the recommendation should not depend on whether the individual is
infective or not. First, it does not require prior knowledge about the state of an
individual: it is often hard to determine precisely when he becomes infected. Second,
it aligns the incentives: without additional knowledge, everyone can expect to benefit
from following the recommendation—this might not necessarily be the case when the
state is known.

This lays the foundation of our approach but does not yet suggest any concrete mitigation
scheme. Still, there are fundamental questions related to the feasibility of micro-measures.
Under which conditions do small, local changes (such as an individual agreeing to commute
slightly earlier) have a global impact? How many individuals need to cooperate, and how
does this, significantly alter the dynamics of the epidemic ? An epidemic can often be seen as
being either supercritical (the epidemic grows) or subcritical (it declines). What microscopic
changes are susceptible to cause a phase transition? Although a precise characterization of
these changes and, by extension, rigorous answers to these questions are beyond the scope
of our work, we intend to show initial evidence of the relevance of such a mobile service.

3.1 Concrete Micro-Measures

Beyond a theoretical argument, our contribution is the description and evaluation of three
concrete strategies we can use to generate micro-measures. They represent initial baselines
for further developments. Let us first note that contacts between individuals can broadly
be categorized into two groups: the deliberate contacts are, for example, between family
members or at work, whereas the accidental contacts are formed by random encounters,
for instance, while shopping or commuting. At a high level, our approach is to maintain
deliberate contacts and rewiring the accidental ones. The idea is to weaken the links in the
contact network that form the path through which the epidemic spreads. By changing its
structure, we seek to decelerate the dynamics and drive the epidemic down to a sub-critical
level.

| CuTCOMMUNITIES | DECREASEMIX | GOHOME
Knowledge  to | List of communities of | Social communities of | State of the epidemic
maintain locations users across regions
Recommendation | Do not cross commu- | Stay with your social | Go/stay home
nity boundaries circle
Intuition Weakening the weak | Segmenting social | Home is a safe place
geographical links communities

Table 1. We recapitulate the main characteristics of the three strategies we have imple-
mented to mitigate the spread of epidemic.

3.1.1 CuTCOMMUNITIES strategy

It is clear that mobility drives the spread of an epidemic. A straightforward strategy
would therefore be to reduce long-range contacts, be it at the expense of reinforcing local
ones. Uniformly reducing mobility is, however, both expensive and inflexible. To overcome



Figure 1. We find 30 communities in the mobility network (Section |§[) when using the
Louvain community detection algorithm. It is not surprising that these communities reflects
the geographical proximity between nodes, as trips are more frequent between close antennas
than between distant ones.

this, our first strategy, CUTCOMMUNITIES, takes into account communities of locations
in the mobility network, and focuses on reducing human mobility over inter-community
links—this is, in a sense, analogous to weakening the weak links in the network. The main
difference with a simple blockade is that our strategy is able to adapt to changes in the
network (mobility patterns vary over time, cf. Section E[) In practice, the service operator
would maintain a list of location communities identified through the mobility patterns of
its userbase; when an individual checks whether a trip is safe, the service would verify
whether it crosses community boundaries and, if this is the case, discourage the individual
from making this tripﬂ If additional per-location information is available about the current
state of the epidemic, recommendations could be further corrected according to the strength

2As a relaxation of this counter-measure, we could consider postponing the trip instead. Simply by
delaying certain trips, we could prevent harmful interactions between groups of individuals. This is analogous
to time-division multiplezing; a slight change in the habits of a group of people might significantly change
the contact surface.



of the epidemic at the individual’s current and projected locations.

3.1.2 DECREASEMIX strategy

Instead of acting on mobility to segment contacts across location communities, we also
consider segmentation social communities. The aim is to separate individuals inside the
same location, e.g., by making them visit different aisles of the same supermarket at different
times. Putting in place such a segmentation is more sophisticated than in the case of
mobility, but this strategy is the perfect example of another extremal point in the solution
space. The service operator would keep a list of social communities and would communicate
a distinctive tag (e.g., a color) to individuals according to their community. Individuals
would access locations differently, depending on their tag; for example, seating in a theater
would be organized in such a way that contacts between communities are minimized. We are
aware that this strategy could raise many concerns, because it segregates people, therefore
great care would be needed if it were to be implemented. Despite this, we retain it because
it reflects a different trade-off with respect to CUTCOMMUNITIES: instead of discouraging
individuals from going to certain locations where they can be in contact with everyone, we
allow them go everywhere, but restrict the contact network.

3.1.3 GoHOME strategy

We consider a third case where the service recommends individuals to go home. The intu-
ition behind this strategy is that we assume that when at home, the contact rate decreases.
Whereas the previous strategies target the individuals’ location or contact network, this
one is distinctive in that it affects the the rate of contact. With information on the progress
of the epidemic across locations, the operator could prioritize sending advice to those indi-
viduals whose cooperation would yield the greatest effect. In Section [6] we will provide a
detailed evaluation of the three described strategies. Before doing so, we will introduce the
mobility and epidemic models used for our assessments.

4 Mobility Model

Because the spread of epidemics depends greatly on the mobility of infected individuals,
and on the locations where they interact with other individuals, a realistic, data-driven
mobility model is a essential tool for simulating realistic epidemic propagation. It should
therefore model population mobility, take into account certain microscopic aspects at the
individual level, and still allow simulations of epidemic propagation to scale up to millions
of individuals. Moreover, it should capture the main differences between the mobility of
different groups of individuals, where a group is constituted of individuals exhibiting similar
mobility profiles. To construct a mobility model that fulfils these requirements, our intuition
is : The home location of individuals strongly shapes their mobility patterns because the
places they visit regularly e.g., their workplaces, schools or the shopping centers, depend
on the proximity to their home. Typically, we expect the most visited location (home) and
the second most visited location (school, university or work) to be geographically close to
each other. In addition to this geographical aspect, mobility is strongly time-dependent:
Individuals commute between home and work during the weekdays, with a substantial
change in their travel behavior during the weekends.



’Deﬁnition ‘ Domain ‘Explanation

A={1,...,1231} - Set of antennas

SP ={1,...,255} - Set of sub-prefectures

k N Time resolution

SPhome (1) SP Home sub-prefecture

Ahome (W) A Home antenna

X (n) A Antenna

t(n) N Absolute time

h* (n) {1,...,k} | Period of the day

d(n) = day(t(n)) {1,...,7} | Day of the week

w(n) = weekday(t(n)) {0,1} Day type: weekday or weekend

Table 2. List of the definition and domain of the variables relative to user u, as well as
those describing his n'" visit.

Building on this, we make the assumption that the individuals that share the same home-
location exhibit a similar mobility pattern. Therefore, we construct a location and time-
based mobility model that depends on the variables presented in Table [2l The conditional
distribution of the location X (n) of user u depends on his home antenna apome (), but also
on the time of the visits (h¥(n),w(n)):

P (X, 1)) = p (X () B (1), (1), anome(w) ) M)

First, we choose the the time resolution £ = 3 in order to divide the day in 3 distinct
periods: Morning (6 am to 1 pm), afternoon (1 pm to 8 pm) and night (8 pm to 6 am).
Second, conditioning on the parameter w(n) allows us to distinguish between weekdays
and weekends. Finally, the home antenna apome(u) of user u is defined as the most visited
antenna during the night period. Consequently, given the period of the day, the day type
and the home antenna of user u, the distribution of the location that he might visit is
a multinomial distribution with |A| categories.

4.1 Learning and Evaluating Mobility Models

In order to build our model from data, we analyse SET2, one of the datatsets provided
by France Telecom-Orange [8]. It contains high-resolution trajectories of 500,000 users,
observed over a two-week period. We focus on this datatset, as it offers the highest geo-
graphical resolution : Individuals’ locations are observed across antennas. To avoid having
to deal with users whose location samples are very sparse, we consider only the users who
visited more than 1 antenna and made on average more than 1 call per day. In order to
evaluate the realism of our mobility model, we separate the data into two parts: For each
user, we put 90% of the calls in the training set and the remaining 10% in the test set. First,
we build a mobility model by learning from the training set by using a maximum likelihood
estimator . Then, we evaluate our mobility model by computing the average log-likelihood
of the calls belonging to the unseen test set. The average log-likelihood reflects how well our
model generalizes to unseen data. As the test set might contain some locations not visited
by a given class of users in the training set, the maximum likelihood estimate of the distri-
bution assigns zero probability to these observations. We cope with this by assuming



Mobility model | Average log-likelihood
Our model -1.07
SPM -1.67
™ -2.9
MC -6.49

Table 3. Log-likelihood of the unseen data from the test set. Our mobility model signifi-
cantly outperforms the baseline models since its predictive power, with respect to the test
set, is higher.

that the distribution is a multinomial distribution drawn from an exchangeable Dirichlet
distribution, which implies that the inferred distribution is a random variable drawn
from a posterior distribution conditioned on the training data. A more detailed description
of this smoothing procedure is given by Blei et al. [0].

We tested several variants of mobility models by varying their structure and parameters
(time resolution, day of the week, etc). To have three representative baseline models for
comparison, we choose three predictors out of the several variants we tested.

The first baseline model is a time-based mobility (TM) model

p(X(n)[u,t(n)) = p (X () (), w(n)) (2)

where all mobile-phone users exhibit the same time-dependant geographical distribution.
The second baseline is a location-dependent first order Markov chain (MC)

p(X(n)u, t(n), X(n —1),..., X(0)) = p(X(n)| X (n - 1)), 3)

where the current location of a user depends only the location he visited just before. The
third baseline is a time and sub-prefecture dependant mobility model (SPM)

P (X (), () = p (X ()R (), (1), 5P ) (4)

where the home of a user is represented by a sub-prefecture instead of an antenna. This
implies a more important aggregation of users, where two users who share the same home
sub-prefecture, have the same mobility pattern.

The experimental results are shown in Table The first order Markov chain (MC) performs
the worst. This is not surprising since the time difference between two call records varies
greatly, ranging from a few minutes to a few days. The location associated with a call made
in the past few hours or days does not necessarily affect the current location. As the location
data is sporadic, it is not surprising than any model that learns from transitions performs
poorly, and is outperformed by time-based models. Our model performs the best; and by
comparing it to the time-based model (TM), we realise that knowing the home-locations
of users enhances the predictive power of the mobility model. Moreover, the granularity of
home locations is crucial: Our model significantly outperforms the sub-prefecture dependent
mobility model because it has a finer granularity of the home-location.



A realistic mobility model is an essential building block of a realistic epidemic propagation
model because mobility drives population flows between regions, and therefore the geo-
graphical proximity between individuals. In the next section, we introduce the epidemic
model we use to simulate a local epidemic propagation.

5 Epidemic Model

Building up on the mobility, this section introduces our epidemic model. It is based on a
discretized, stochastic version of the SIR model [23]; Tables |4| and [5 provide an overview of
the different parameters and quantities used throughout the section. We assume that the
size of the population (N individuals) remains constant—there are no births nor deaths, a
reasonable assumption if the time horizon is limited to at most a few months. Under the
SIR model, an individual can be either susceptible to the disease, infective, or recovered
from the disease and immunized against further infectionsﬂ We assume that most of the
population is initially susceptible, except for a small number of infective individuals that
form the seed of the epidemic. Individuals successively go through the susceptible, infective
and recovered states; a desirable outcome would have many individuals stay susceptible
without ever becoming infective. The basic SIR model assumes random mizing of the
whole population: any individual meets any other one with a uniform probability. In our
model, we relax this strong assumption by taking into account the mobility. We spread the
population across M regions; each region bears its own SIR process where the corresponding
meta-population mixes at random. These regional processes are independent and isolated,
and the only way the epidemic crosses regional boundaries is through human mobility
[22]. In summary, regional interactions take place uniformly at random, whereas global
interactions are shaped by the individuals’ mobility.

N | total population

M | number of regions

N} | initial population of region i, where ¢ € {1,..., M}
L number of different mobility classes

15} contact probability

g recovery probability

Table 4. Parameters of the epidemic model.

5.1 Local Epidemic Dynamics

In order to work at the individual level, we adapt the classic deterministic SIR model in
order to have a discrete-time stochastic variant. The contact probability 5 and recovery
probability g are constant across all regionsﬂ For a region i € {1,..., M} we compute, at
each time step, the force of infection A\; = ]{,—’1 This quantity represents the probability
of making a contact that results in an infection. During a time step, every susceptible
individual gets infected independently at random with probability A;, while every infective

3In the literature, this state is sometimes known as removed. The important point is that they do not
participate in the epidemic anymore.

“These quantities are rates in the continuous time SIR model. In order to carry over the characteristics
of the SIR model to our discretized version, we need to ensure that the sampling interval is short enough to
ensure that 8,9 < 1.

10



¢; | mobility class I, where [ € {1,...,L}

S, | distribution of the number of susceptible individuals in re-
gion i across classes. S; = (Si¢,,- -, Sicy)

distribution of the number of infected individuals in region
i across classes. Ij = (L ¢,..., Lic;)

distribution of the number of recovered individuals in region
i across classes. R; = (Ri¢y, ..., Ric,)

number of susceptible individuals in region 4, equal to ||S;||1
number of infected individuals in region i, equal to ||I;||1
number of recovered individuals in region , equal to ||R;||1
population of region i, where i € {1,..., M}

-
.

&

FzIsn

infection probability for region i. A\; = 8 ]{[—12

Table 5. Notation for various quantities related to the epidemic.

individual recovers independently at random with probability ¢g. If we denote by AX; the
variation of X;, X; € {S,I, R} after one time step, it is easy to see that

E(AS;) = —\iS;

which are the expected difference equations for the SIR model under the random mixing
assumption. We note that our model has many similarities with that of Colizza et al. [10],
used to model the SARS pandemic.

5.2 Implementation

To allow for distinctive mobility patterns across the population, individuals belong to one
out of L classes {ci1,...,cr} that fully characterize their mobility patterns. In accordance
with the mobility model (Section , the individuals’ class is determined by their home an-
tenna. The implementation is best understood when decomposed into two distinct, succes-
sive phases: a mobility phase where individuals can move between regions, and an epidemic
phase where individuals get infected or recover.

Mobility phase We consider every individual. Suppose the individual is in region ; the
mobility model assigns a new region j according to its mobility class. If ¢ # j we
update the vectors X; and X, accordingly, where X € {S,I,R} depends on the
current state of the individual.

Epidemic phase We consider every region i € {1,..., M}. We begin this phase by up-
dating the infection rate A; given the current values of N; and I;. Every infected
individual then recovers with probability g, while every susceptible individual gets
infected with probability A;. S;, I; and R; are updated accordingly.

This process is repeated until the end of the period of interest.
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Figure 2. Snapshots of a sample epidemic process where each dot represents a region
(here, the surroundings of an antenna). Colors indicate the relative proportion of infective
individuals. Initially, just a few individuals form a seed of infectives (left). A little more
that 9 days later, the epidemic has spread over most of the country (right).

6 Empirical Evaluation

Next, we use our models to test the strategies previously described in Section Before
evaluating our strategies, we first explain how the epidemic model is parameterized and
how epidemic spreads are quantitatively characterized.

6.1 Model Parameters and Evaluation Metrics

In order to be consistent with our mobility model, the epidemic model defines regions to
be the area surrounding the antennas (M = 1231). Hence, we will use the words region
and antenna interchangeably. As an individual’s mobility is tied to his home antenna, we
distinguish among L = 1231 different classes. To initialize the population attached to each
antenna, we use data from the AfriPop project [32] which provides us with Ivory Coast
population figures at the hectare level; to account for the fact that not every individual is
mobile, we allow only 55% of the population to move during the mobility phaseﬂ which
roughly corresponds to the proportion of the population in the 15-to-64 age bracket [35].
Days are divided into three time steps in order to match the mobility modeﬂ and the
typical time horizon is between 100 and 400 time steps (i.e. 1-4 months). Contact and
recovery probability are usually set to 8 = 1, respectively g = 0.5; Although these synthetic
values do not directly match any well-known disease, they are still qualitatively close to
realistic cases, such as influenza. All our simulations start with a seed set of 23 infectives

5This distinction is rather crude and could certainly be further refined. However we deemed it to be
sufficient for our purposes.
5Notice that this is not a formal requirement. We use this subdivision mainly for simplicity.
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’ D ‘ Affected movements ‘ Maximum ‘

0.90 10.91% 21.38% (ts = 42)
0.99 12.57% 22.91% (ts = 51)
1.00 5.32% 12.20% (ts = 33)

Table 6. Proportion of movements affected when using the CUTCOMMUNITIES strategy
for three different values of the compliance probability p. We indicate the overall average
over the 80 time steps, as well as the maximum value.

distributed across 5 antennag’| in the Attécoubé district of Abidjan.

In order to quantify the difference between epidemic spreads, we propose three metrics to
evaluate the effectiveness of our mitigation strategies. Figure [3] shows how these quan-
tities are related to the epidemic’s evolution over time. For notational clarity, let X =
Zz’]\il X, X € {S, 1, R} be the total number of individuals in each state over the country as
a whole. As these quantities evolve over time, they are functions of the time step n. The
first metric is the size of the largest outbreak or, equivalently, the maximal proportion of
infective individuals,

N I(n)
I" = max N
The reasoning behind this metric is self-evident: in most cases, the larger the proportion
of infective individuals, the more difficult the control of the epidemic. It is also, broadly
speaking, a good indicator of the epidemic’s strength. Our second metric is closely related
to the first one, but considers the complementary dimension: it measures the time of the
largest outbreak,
T* = argmax I(n).
n
Delaying the moment at which the epidemic reaches its peak allows individuals and gov-
ernments to have enough time to adapt their behavior, respectively, to deploy measures.
Finally, our last metric captures the tail behavior of the epidemic: it measures the final

proportion of recovered users,
R(n)
= lim ——.
@ =l =y
Note that we would like to minimize this metric. After the epidemic dies out, all individuals
are either recovered or susceptible, and a low proportion of recovered individuals means that

a high percentage of the population did not go through the infective state at all.

6.2 Results

We now take a closer look at our three proposed strategies. We will describe how we
instantiate them and we provide qualitative and quantitative assessments with respect to
their effectiveness.
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Figure 3. Metrics used to evaluate the effectiveness of mitigation strategies. I* indicates
the magnitude of the epidemic’s peak, T™ the time at which the peak happens, and Q*
describes the asymptotic number of individuals that got infected and recovered.

6.2.1 CuTCOMMUNITIES strategy

The first strategy divides the country into location communities according to the network of
mobility. We consider the weighted, undirected graph where nodes represent antennas, and
edge weight is equal to the average number of trips between the two endpoints (regardless
of direction). We use the Louvain community detection algorithm [7]; Figure[l|shows the 30
identified communities. It is interesting—but not surprising—to note that the communities
are roughly geographicaly basedﬂ This confirms our hypothesis stating that there are
geographical weak links. Micro-measures are then generated as follows: when an individual
checks whether a trip is safe, the service first verifies whether the trip crosses community
boundaries and whether the current or projected locations are affected by the disease; if
both of these conditions are met, the individual is discouraged from making the trip. The
recipient then complies with probability p.

Figure [] shows the effect of CUTCOMMUNITIES for different values of p. Compared to
the baseline (p = 0), the strategy affects the size I* and the time 7™ of the epidemic’s
peak. However, it does not change much the tail behavior: Q* stays constant at around
0.8, except for the degenerate case where p = 1, which represents a blockade around the
community initially infected. We also observe that there seem to be two infection phases,

"In the datasets provided by France Telecom-Orange, these antennas have the following identifiers: 57,
146, 330, 836, 926.

8As a sidenote, we ran the Louvain method on a number of other graphs generated from the datasets
provided for the D4D challenge, including one derived from SET1 representing total antenna-to-antenna
communications. The communities always displayed the same geographical clustering. Furthermore, we
observed that mobility communities seem to be correlated to phone call communities.
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Figure 4. Shape of the epidemic under the CUTCOMMUNITIES strategy, § = 1.0, g = 0.5.
On the left: solid lines represent the baseline (p = 0), dashed lines p = 0.9, dotted lines
p = 0.99. On the right, we compare p = 0.99 (solid) to a complete blockade (p = 1, dashed).

made progressively more apparent as p — 1, and that the blockade removes the second
phase; these two phases correspond to infections happening inside, respectively, outside
the initially infected community. Recall that this strategy only sends micro-measures to a
fraction of the individuals, those who cross community boundaries—a case that by definition
should not happen too often. It is therefore interesting to consider the number of trips
actually canceled as a result: Table [f]lists the average and maximal proportion for different
values of p. The numbers are quite lowﬂ suggesting that the communities form a natural
partitioning of the regions. In conclusion, this strategy does not affect the asymptotic
behavior of the epidemic but significantly shifts its peak. Altogether, it justifies the relevance
of mobility-based geographical communities as a data source to generate micro-measures.

6.2.2 DECREASEMIX strategy

Recall that this strategy assigns tags to individuals according to the social community to
which they belong and segregates contacts across social communities. A service operator
might use the call graph (i.e. the social network derived from who calls whom) to infer social
communities in the population; unfortunately, we do have access to such datap_q In order
to quantify the effectiveness this strategy, we proceed as follows. Similarly to our mobility
model, we make the assumption that the individual’s community C' is determined by his
home antenna. The DECREASEMIX strategy do not decrease the total number of contacts;
instead it rewires contacts across communities to contacts inside the community. This
is done by splitting the contact probability to into intra-community and inter-community

9That these proportions are lowest when p = 1 is due to the fact that the epidemic is local to the infective
seeds’ community

10The data provided for the Orange D4D challenge does include a dataset consisting of myopic views of
the call graph. SET4 is a sample of egonets, i.e. balls of radius two centred at a particular user. However,
this dataset did not yield anything useful for our purposes.
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contact probabilities and introducing a mixing parameter ¢

Bic = (1—q+qu’C>B

N;
Bie=F8—Pic
Iic Lie
)\' — . 2 = 2y
i,C ﬁz,C NT',C + Bz,C Ni767

where N; ¢ indicates the number of individuals of community C' currently in region ¢,
Nz‘,@ = N; — N; ¢ and the other quantities follow the same convention of notation. The
intuition is as follows: When ¢ = 1, everyone mixes at random inside a region just as if
no countermeasure was applied at all. At the other extreme, when ¢ = 0, contacts happen
only with individuals from the same community. Intermediary values of g allow us to play
with the strength of the segregation.

We evaluate the effectiveness of DECREASEMIX for different values of the mixing parameter
g. Our simulations are parameterized with § = 1.0, g = 0.5 and ¢ € {1,0.1,0.01}; Figure
shows the average behavior of the epidemic over 10 runs. The main characteristic of this
strategy is that it delays the epidemic outbreak. However, the slopes of the two curves
at the strongest point of the epidemic are not very differentiated. As s result, the final
proportion of recovered Q* does not vary much. But by making it 10 or 100 times more
likely to contact an individual of the same community, we delay T by approximately 5
and 16 days, respectively, on average. Our intuition about this phenomenon is that it takes
more time for the epidemic to reach certain communities (as they are more segregated), but
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’ D \ Affected movements ‘ Maximum ‘

0.1 2.81% 5.21% (ts = 190)
0.5 15.80% 26.12% (ts = 316)

Table 7. Proportion of movements affected when using the GOHOME strategy for two
different values of the compliance probability p. We indicate the overall average over the
400 time steps, as well as the maximum value.

once a community sees its first case of infection, the spread is just as fast as before. We
argue that one of the main limiting factors at play here is the random mixing assumption:
if we were able to bring finer structural changes to the contact graph, the situation would
look very different.

6.3 GoOHOME strategy
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Figure 6. Shape of the epidemic under the GOHOME strategy, 8 = 1.0, g = 0.5. Light
curves indicate individual runs, dark curves indicate average. On the left: p = 0.1, on the
right: p = 0.5.

Our last strategy advices individuals to go home or stay home. In order to focus the micro-
measures on the most influential individuals, we assume that at each time step, the service
operator knows the proportion of susceptible, infective and recovered individuals across
locations. We suppose that before every trip, an individual sends a request to the service
that compares the proportion of infectives in both source and destination, and recommends
to go home if the destination has a proportion of infectives, lower than the source location.
Individuals then comply with probability p. The main intuition behind this choice is to
avoid sending infective individuals to highly susceptible locations. Note that we keep the
state-independent assumption here: we do not know the state of the individual when sending
out a recommendation. The second important assumption is that, when the individual is
at at home, the contact probability is set to be equal to the recovery probabilityE-], i.e.
Bhome = ¢. This models the fact that there are less contacts at home, in term of accidental

"When contact and recovery probability are equal, the single-population SIR epidemic (under the random
mixing assumption) does not develop anymore; setting SBrome := g can therefore be seen as the least change
needed to stabilize the epidemic.
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ones. Mixing is not exactly uniform anymore, and the infection probability is adapted as
follows:

IA
Aitoc = Bhome
1,loc ome N;
Ivis Iloc
Nivis = B2 4 Bome 1.
1,018 N; ome N;

Quantities with loc and wvis subscripts correspond to individuals whose home region is
(respectively is not) i. Note that the contact probability of visitors can significantly decrease
in a region where the proportion of visitors to locals is low.

This time, the effectiveness depends on the value of the compliance probability p. We
use again 5 = 1.0, g = 0.5 and let p € {0.0,0.1,0.5,0.7}; Figure |§| shows the behavior of
the epidemic over 10 runs. As opposed to the results obtained with the DECREASEMIX
strategy, we obtain significant improvements to Q* as p increaseﬁ This observation is not
surprising because by suggesting to individuals to go home, we are directly reducing their
contact probability, which is a determining factor of the epidemic’s dynamics. It is also
interesting to look at the actual number of trips that are affected (i.e., cancelled) because of
the micro-measures; Table [7] shows that a relatively low number of trips have to be affected
to noticeably impact the spread. In summary, this strategy has the potential to be quite
effective, although the assumptions it makes deserve closer analysis.

7 Conclusion

In this paper, we explore the novel idea of using mobile technology in order to mitigate the
spread of human-mediated infectious diseases. We motivate the concept of mobile micro-
measures that consist of personalized behavioral recommendations given to individuals.
By affecting, even partially, individual behaviors, we are able to globally impact the epi-
demic propagation. These mobile micro-measures have several original properties; they are
adaptive, target individuals at the microscopic level and provide a rich set of mitigation
methods. Using the data provided for the Orange D4D challenge [8], we first develop a
realistic mobility model for the population of Ivory Coast. Then, we incorporate it into an
epidemic model based on SIR in order to simulate the epidemic propagation, while taking
into account population mobility. Taking advantage of this framework, we propose and
evaluate three concrete strategies used to generate micro-measures. Our strategies weaken
the epidemic’s intensity, successfully delay its peak and, in one case, significantly lower the
total number of infected individuals.

These preliminary results allow us to identify several research avenues. First, random
mixing is the most limiting assumption. Being able to change the structure of human
contacts at a finer level is a key component of more advanced micro-measures. The mobile
call graph is an example of a source of information about social contacts, one that is
readily available to mobile phone operators. Second, beyond our preliminary strategies, it
is highly important to deepen our understanding of the key ingredients that make mobile
micro-measures effective yet minimally restrictive. In parallel to mobile micro-measures, the

12Unfortunately, our simulation was limited to 400 time steps, which is not enough to clearly show the
asymptotical behavior. The claim, however, is justified by looking at the worst runs whose slope quickly
tends to zero.
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availability of large-scale mobility data opens up new research directions in epidemiology: a
more precise characterization of the relation between epidemic spread and human mobility
patterns is an interesting topic we would also like to investigate in the future.

To conclude, we firmly believe that data-driven and personalized measures which take ad-
vantage of mobile technology are an important step towards effective epidemic mitigation.
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