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Abstract— Approximate graph matching (AGM) refers to the
problem of mapping the vertices of two structurally similar
graphs, which has applications in social networks, computer
vision, chemistry, and biology. Given its computational cost,
AGM has mostly been limited to either small graphs (e.g.,
tens or hundreds of nodes), or to large graphs in combination
with side information beyond the graph structure (e.g., a
seed set of pre-mapped node pairs). In this paper, we cast
AGM in a Bayesian framework based on a clean definition of
the probability of correctly mapping two nodes, which leads
to a polynomial time algorithm that does not require side
information. Node features such as degree and distances to
other nodes are used as fingerprints. The algorithm proceeds
in rounds, such that the most likely pairs are mapped first;
these pairs subsequently generate additional features in the
fingerprints of other nodes. We evaluate our method over real
social networks and show that it achieves a very low matching
error provided the two graphs are sufficiently similar. We also
evaluate our method on random graph models to characterize
its behavior under various levels of node clustering.

I. INTRODUCTION

Mapping the vertices between two structurally similar
graphs is known as approximate graph matching (AGM)1,
which has applications in computer vision, databases, and
social networks, among others. For example, suppose two
graphs represent similar but not identical social networks
over the same vertex set. For example, one graph could
represent an anonymized social network, while the other
represents side information that an adversary might obtain.
Matching the two graphs would then de-anonymize the first
graph, thereby compromising user privacy [12].

AGM is a generalization of the classic graph isomorphism
problem. In this problem, we seek a bijection π between
the vertex sets of two graphs G1,2 such that their edge sets
E1,2 are identical under π. The problem of identifying the
isomorphic bijection is in NP [6] for general graphs, and
there is no known polynomial time algorithm to compute it.
Since AGM is at least as hard as the graph isomorphism
problem, this might suggest that there is little hope in
correctly matching large similar graphs.
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Fortunately, it turns out that many realistic graphs have
features that help AGM. For example, in pioneering work
[12], Narayanan and Shmatikov devise a graph matching
algorithm that succeeds in de-anonymizing a social network
with millions of nodes, based on an initial seed set of
correctly mapped nodes. Essentially, such methods exploit
label-independent features of nodes that make them easy
to identify in both graphs. Such features include the node
degree, the clustering coefficient, or the volume (number of
edges) in a neighborhood around the node.

The algorithm in [12] starts from an initial seed set of
mapped node pairs, which may be obtained manually or
through heuristics (e.g., identifying large cliques in both
graphs). The algorithm then attempts to identify pairs of
unmapped nodes that are neighbors of several seed nodes;
among these pairs, it chooses the one that is best according
to a heuristic based on node features, and adds it to the seed
set. The algorithm then proceeds iteratively until the whole
network is matched, or the process dies out. This requires
(i) a seed set of sufficient size2, and (ii) a sufficiently dense
graph for the process to percolate. Recent results establish a
phase transition in the seed set size [18] for the success of
such an algorithm.

In this paper, we cast AGM in a probabilistic framework
and propose an algorithm that relies on a rigorous model to
infer the node map. The main advantages of this algorithm
are the following:

• Starting from scratch: The algorithm does not require
an initial seed set of mapped node pairs as input. The
same probabilistic framework is used to build the map
from start to finish.

• Sparse graphs: Our approach is particularly well suited
to match sparse graphs. The algorithm is able to make
progress even if the mapped nodes are far from each
other.

• Confidence metric: Our method maintains an estimate
of the likelihood of every mapped node pair. While
this is used by the algorithm to build the map, it is
also a very useful output for some applications, as
it essentially provides a level of confidence for each
mapped pair.

Our statistical framework and associated inference algo-
rithm is based on the observation that in many real networks,
some nodes possess features that make them stand out from

2Note that in their algorithm, if the seed nodes are all at distance ≥ 3 of
each other, the process cannot start, as there is no candidate node that has
more than one mapped neighbor.



the majority of other nodes; these nodes are much easier
to map correctly than an average node. This suggests an
incremental mapping process, where we first try to map the
easiest nodes, and then use mapped nodes to map subsequent
nodes. Each node has some fingerprint capturing label
-independent metrics of interest. The matching relies on a
cost function over fingerprints. Of course, errors are always
possible, given that the two graphs are similar, but not
identical. We deal with this by matching several node pairs
at once through a maximum bipartite matching, rather than
matching one node pair at a time. This is because the former
takes into account the costs between all possible pairs in the
set. Each phase of the algorithm matches a set of nodes,
whose size doubles in every phase.

The second key contribution concerns the choice of fin-
gerprint and the cost function used in the bipartite matching.
We develop a probabilistic generative model for the two
graphs that we are trying to match. This allows us to embed
the matching problem into a clean Bayesian framework,
which leads to a cost function over node pairs which can
be interpreted as the logarithm of the posterior probability
of a correct match given the fingerprints of the two nodes.

The paper is organized as follows. In Section II, we survey
related work in graph matching. In Section III, we formally
define the problem. Section IV describes the Bayesian frame-
work underlying our matching algorithm, which is developed
in Section V. Section VI reports experimental results over a
real social network representing e-mail exchanges. Section
VII contains a short conclusion.

II. RELATED WORK

Approximate graph matching (AGM) has been investi-
gated within and applied to several domains in the literature
such as databases, pattern recognition, computer vision,
and social networks. Within social networks, AGM has
been applied to break anonymity by matching a labeled
social network - where node identities are known - with an
anonymized (unlabeled) social network. Recently proposed
approaches to de-anonymize large social networks require
side information in the form of a seed set (a set of known
mapped node pairs) and/or manual intervention to bootstrap
the algorithm, and are based on heuristics concerning how
attributes of nodes can be used as evidence for finding the
correct mapping [12], [11]. Recent work also sheds light on
the performance of this approach, and establishes a sharp
phase transition in the size of the seed set between a regime
where the algorithm almost certainly fails, and a regime when
it succeeds in matching almost everything [18].

Other approaches have focused on de-anonymizing only
specific individuals or small fractions of the social net-
work using more rigorous probabilistic frameworks, such as
random graph models [1], [8], [17]. Our work provides a
Bayesian framework for AGM that can be applied for de-
anonymization of social networks without requiring any side
information. In fact, we evaluate our method using real social
networks (see Section VI).

Within the database literature, AGM has a different flavor:
given a query graph G, the goal is to search a large graph
database for graphs that are similar to G (or that have a
subgraph that is similar to G). Since mapping nodes of
the query graph G to nodes of graphs in the database is
too expensive, most approaches rely on indexing features of
graphs (and their subgraphs) in the database to find graphs
similar to G [15], [20]. Thus, the problem investigated in
this domain is different from ours.

Graph matching has a long history within the pattern
recognition literature (see the survey [3]). Several works
focus on exact graph matching, which is equivalent to the
graph isomorphism problem (or exact subgraph matching).
The goal is to find a edge-preserving node mapping [4],
[16]. A variation of this problem finds an almost correct
(approximate) node mapping between the graphs using sta-
tistical methods, such as random walks [7], expectation-
maximization (EM) [9], and the Bayesian edit-distance [10].

Another recent body of work addresses AGM in the
same setting as considered in this paper. However, these
approaches rely on side information in the form of label-
dependent features of nodes and/or edges when defining a
similarity measure between two nodes. A global cost func-
tion measuring the quality of the mapping is then maximized
using optimization and linear programming methods [5],
[14], [2], [19]. In our setting, the similarity measure has to
be label-independent.

III. PROBLEM DEFINITION

We consider the problem of matching the vertex sets of
two graphs. Let G1 = (V1, E1) and G2 = (V2, E2) denote
two graphs with the same number of nodes, |V1| = |V2| = n,
but different edge sets. Let π : V1 → V2 be a mapping
that establishes a one-to-one correspondence between nodes
of G1 and G2. Assume there exists a correct mapping π0
between u1 ∈ V1 and u2 ∈ V2. The problem we consider
is determining π0 using as input only G1,2 and no other
labeling information.

Finding the correct mapping strongly depends on the
relationship between the structure of G1,2. For example, the
correct mapping cannot be attained if one of the edge sets
has no (or very few) edges, since no structural information
may remain to be explored. Moreover, the problem is hard
even if the two graphs are structurally the same, since this
reduces to finding an isomorphism between the two graphs,
a well-known NP problem (not NP-complete, however) for
which no polynomial-time algorithm is known to exist.

For ease of notation, and without loss of generality, we
assume from now on that V1 = V2 = V , and that the true
mapping is given by the identity permutation. Of course,
this notational assumption is not visible to the matching
algorithm.

IV. METHOD FOR MATCHING TWO SIMILAR GRAPHS

Conceptually, matching two graphs can be cast as min-
imizing a cost function over all n! possible matchings π
of the vertex sets of the two graphs G1,2 [13]. As the



computational cost is prohibitive for graphs of non-trivial
size, we seek a method to reduce the search space for π. We
achieve this by building π in log2 n phases. In each phase
τ = 0, . . . , log2 n − 1, we double the number of mapped
nodes, which we refer to as anchors, from the previous phase,
until we have mapped every node. We let Sτ denote the set
of anchors produced at the end of phase τ . As will become
clear, this map is not necessarily monotonically increasing
(i.e., Sτ 6⊂ Sτ+1 in general): a node pair can be an anchor
in one phase, but be unmapped at a later phase.

We reduce the complexity of the problem by summarizing
the structure of the two graphs G1,2 as a set of (label-
independent) attributes for each node. Then we rely on these
node attributes to match 2τ nodes in each phase τ , used
as anchors for the next phase, where this matching is only
a function of the attributes. We call the set of attributes
of a node its fingerprint, and rely on a cost function over
pairs of fingerprints to compute the matching. The matching
algorithm is described in detail in the next section; in this
section, we define the node fingerprints, and the probabilistic
model that yields the cost function over pairs of fingerprints,
and its Bayesian interpretation.

We first require a notion of similarity between two graphs
G1,2. The ultimate goal is to obtain a measure of similarity
between two node fingerprints. We assume that the observ-
able graphs G1,2 are obtained through a sampling process
on a (fixed) generator graph G = (V,E). We elaborate on
the choice of this process in Section IV-C.

In the following, we first formalize the computation of
the probability of two nodes being a correct mapping, and
describe one step of this iterative procedure assuming some
nodes have already been mapped. We present the complete
iterative algorithm that incrementally increases the set of
mapped nodes in Section V. As later discussed, the first
phase of the algorithm requires no knowledge of any anchor
nodes.

A. Pairwise Posteriors

Consider the two observed graphs G1 and G2 and two
nodes u1 ∈ V1 and u2 ∈ V2 with their fingerprints

Fu1
= [X11, . . . , X1,`, X1,`+1, . . . , X1,`+m]

Fu2
= [X21, . . . , X2,`, X2,`+1 . . . , X2,`+m] , (1)

where each component is a structural attribute that provides
evidence for the similarity of u1 and u2. More specifically,
the components 1, . . . , ` are absolute attributes, in that they
depend only on the graphs G1 and G2, respectively. They
may include local graph statistics around node u1,2, such as
the node degree, the clustering coefficient, or the density of
some neighborhood.

A key idea in our method is to rely on anchor nodes
from the previous phase to obtain additional attributes for
the current phase. In this way, the matching of nodes in later
phases can build on nodes matched earlier. The components
`+1, . . . ,m, with m = |Sτ−1| = 2τ−1 are relative attributes,
which depend both on G1,2 and the anchor pairs Sτ−1 from
the previous phase. They may include different distance

metrics between u1,2 and each anchor pair, such as hop
distance or resistor distance. If two nodes u1,2 have similar
distances from a set of anchors, this is strong evidence that
they match, provided the anchors themselves are matched
correctly.

We now turn to the fingerprint cost function for the node
pair u1,2 which is simply given by the probability that the
two nodes correspond to the same node in G given the two
fingerprints, i.e., the posterior probability, which we write as

r(u1, u2) = P [U1 = U2|Fu1
, Fu2

] . (2)

Recall that the matching algorithm assumes node labels
provide no information towards matching. We model this by
considering that the algorithm is looking at two randomly
chosen nodes U1 ∈ V1, U2 ∈ V2, which are independent
uniform random variables over [1, n]. Thus, in the absence
of any node attributes, the probability that U1 and U2

correspond to the same node in G is given by 1/n, leading to
a uniform prior3 for correct matching, P [U1 = U2] = 1/n.

Using Bayes’ rule and the observation above, we can
rewrite (2) to obtain:

r(u1, u2) =
P [Fu1

, Fu2
|U1 = U2] 1/n

P [Fu1
, Fu2

|U1 = U2] 1/n · · ·
· · ·+ P [Fu1

, Fu2
|U1 6= U2] (1− 1/n)

.(3)

Of course, different node attributes may be correlated in com-
plicated ways, depending on the underlying generator G. For
example, a high-degree node could have, on average, smaller
distances to other nodes in the graph than a low-degree node.
However, we assume that pairs of corresponding attributes of
two nodes U1 and U2 are conditionally independent, given
either U1 = U2 or U1 6= U2. For the latter case U1 6= U2,
this is because the attributes stem from two random, but
different nodes in G; for the case U1 = U2, this embodies the
assumption that the sampling process that generates G1,2 acts
on each attribute pair independently. Although this is a strong
assumption, it does not prevent our approach from accurately
matching nodes, as illustrated by our results (see Section VI).
Under this assumption, we can factor the evidence in (3) and
obtain

r(u1, u2) =
1/n

∏`+m
i=1 P [Xi|U1 = U2]

1/n
∏`+m
i=1 P [Xi|U1 = U2] · · ·

· · ·+ (1− 1/n)
∏`+m
i=1 P [Xi|U1 6= U2]

.(4)

where Xi = (X1i, X2i) is a pair of corresponding attributes.
We do not assume that a given pair of corresponding evi-
dence is independent when the two nodes correspond to one
another, namely P [(X1i, X2i)|U1 = U2] 6= P [X1i|
U1 = U2]P [X2i|U1 = U2]. In fact, the evidence pair is likely
to be correlated given that the two nodes correspond to one
another.

In order to apply (4) we need to determine the terms
P [Xi|U1 = U2] and P [Xi|U1 6= U2] for all i = 1,

3Of course, other priors are possible, e.g., if additional side information
about nodes is available, such as from additional node attributes.



. . . , `+m. This probability depends on the sampling process,
as the sampling process transforms attributes of G. Let pi(y)
denote the probability distribution associated with attribute
i in the fixed graph G, thus, pi(y) = P [Yi = y], for some
node u ∈ V . Similarly, let qi(x, y) denote the probability
function of attribute i after the sampling process has been
applied to G given that the same attribute has value y in
G, thus, qi(x, y) = P [X1i = x|Yi = y], for some u ∈ V .
Using these two models together with the fact that G1 and
G2 are independent samples from the sampling process and
by applying the law of total probability, we obtain

P [Xi|U1 = U2] =
∑
y

qi(x1i, y)qi(x2i, y)pi(y). (5)

Likewise, for the case u1 and u2 do not correspond to the
same node in G, we have, P [Xi|U1 6= U2] =(∑

y

qi(x1i, y)pi(y)

)(∑
y

qi(x2i, y)pi(y)

)
. (6)

In this case the corresponding evidence is independent since
the nodes do not correspond to one another and where chosen
uniformly at random from G1,2, thus, P [(X1i, X2i)|U1 6=
U2] = P [X1i]P [X2i].

Finally, using the Bayesian framework above, together
with the models for how the sampling process transforms
given attribute (qi(x, y)), we can precisely compute the
probability that a given pair of nodes is correctly mapped
given their fingerprints (the posterior probability).

B. Handling Anchor Mismatch

The approach above allows for the set of anchor nodes
mapped in the previous phase to be used to compute the
posterior probability for the unmapped nodes. However,
anchors are subject to matching errors. If we do not take this
into account, we may overestimate the posterior probabilities.
Therefore, we refine our probabilistic model to account for
the possibility of wrong matches among anchor pairs.

Recall that X`+1, . . . , X`+m depend on the anchor pairs.
For example, X`+i is the distance from u1 and u2 to the i-th
anchor pair w1i and w2i, respectively.

Let Mi be an indicator random variable taking value
1 if anchor pair ` + i has been correctly mapped and 0
otherwise. We now revisit (5), and assume that if Mi = 0,
the distribution of the corresponding attribute pair is as if
U1 6= U2. In other words, we assume that the distance pair
from a node (u1 = u2 or u1 6= u2) to an anchor pair that do
not correspond to one another is independent, in analogy to
the assumption on the distance pair from two different nodes
u1 6= u2 to a correctly matched anchor pair. Thus, we have

P [X`+i|U1 = U2,Mi = 0] =(∑
y

q`+i(x1(`+i), y)p`+i(y)

)(∑
y

q`+i(x2(`+i), y)p`+i(y)

)
(7)

This is the same as the conditional probability given that
U1 6= U2 (see (6)). We also assume that a correctly or

incorrectly mapped anchor does not change the conditional
probability when U1 6= U2. Thus,

P [X`+i|U1 6= U2,Mi] = P [X`+i|U1 6= U2] (8)

as in (6).
In order to compute the overall pairwise posterior, we

redefine the probability function of (2) to also depend on
anchors being correctly mapped. Thus, r(u1, u2) =

P [U1 = U2|X1, . . . , X`+m,M1, . . . ,Mm] = (9)
P [U1 = U2|X1, . . . , X`, (X`+1,M1), . . . , (X`+m,Mm)] .

As before, we apply Bayes’ rule together with conditional
independence between attributes pairs to obtain

r(u1, u2) =
A

A+B
(10)

where,

A = 1/n
∏̀
i=1

P [Xi|U1 = U2]

`+m∏
i=`+1

s.t. Mi=1

P [Xi|U1 = U2], (11)

and

B = (1− 1/n)
∏̀
i=1

P [Xi|U1 6= U2]

`+m∏
i=`+1

s.t. Mi=1

P [Xi|U1 6= U2].

(12)
All the factors where Mi = 0 appear both in the numerator
and denominator (in A and B) and therefore cancel out.
Moreover, (10) is for a given vector of Mi values.

Finally, note that Mi, i = 1, . . . ,m are not observable,
since we do not know if an anchor was correctly or incor-
rectly mapped. We marginalize out the {Mi} to obtain

P [U1 = U2|X1, . . . , X`+m] =
∑

b=(0,1)m

m∏
i=1

(P [Mi = bi])

· P [U1 = U2|X1, . . . , X`+m,M1, . . . ,Mm].
(13)

As the sum is over an exponentially large set (2m possible
choices of the bit vectors of size m), we use a simple Monte
Carlo estimator of (13), by generating samples of vectors
[M1, ...,Mm]. In the experiments reported later we used 50
samples, which yielded satisfactory results.

Finally, we require the prior on Mi in (13). Fortunately,
this can be obtained as a byproduct of the previous phase:
for an anchor pair (w1i, w2i) matched in the previous phase,
we equate its posterior r(wi1, wi2) with the prior P [Mi = 1]
in the new phase, as this is the probability that anchors w1i

and w2i were correctly mapped. We discuss this procedure
in more detail in Section V. Figure 1 depicts the Bayesian
network of our problem formulation, indicating absolute and
relative attributes. Relative attributes depend on anchor nodes
and that the number of relative attributes depends on the
phase of the algorithm, as described in Section V.



U1 = U2 (X1(ℓ+i), X2(ℓ+i)) Mi

1 ≤ i ≤ m

m = 2τ−1

(X1i, X2i)

1 ≤ i ≤ ℓ

ℓ

Fig. 1. Graphical model for the dependence of anchor-independent (left)
and relative (right) feature pairs. Mi is an indicator for pair i to be correctly
matched. U1 = U2 if the feature pair stems from the same underlying
generator node.

C. Models for Sampled Degree and Distance

In order to apply the above methodology we must specify
node attributes used in their fingerprints as well as prob-
abilistic models that characterize such attributes. From now
on, we will use the node degree as the only absolute attribute,
thus, ` = 1, and hop distances from the node to anchors as
the relative attributes. Thus, X1 = (X11, X21) is the degree
pair of nodes u1,2, and X1+i = (X1(1+i), X2(1+i)), i > 0
is the distance pair to anchor pair i4. Having established the
attributes to be used in the fingerprint of nodes, we now need
probabilistic models that represent both degree and distances
in G (the generator graph) as well as in G1,2 (the observed
graphs). Note that these models are used directly in equations
(5) and (6).

We consider the edge sampling process used in [13] to
generate G1 and G2 from a fixed graph G. In edge sam-
pling, each edge from G is sampled independently and with
the same probability s. Thus, G1 and G2 are independent
outcomes of edge sampling from G with probability s (in the
general case, s1 and s2 can be used as sampling probabilities
for G1 and G2, respectively). Note that the sole parameter
s controls the amount of structure from G appearing in the
sampled graph and that s2 is the edge overlap probability
(i.e., an edge of G appearing in both G1 and G2), which can
be interpreted as a measure of similarity between the two
graphs.

Under the edge sampling process, we can now specify a
model for degree and distance on the sampled graph given
their values in the original graph G. Recall that qi(x, y)
denotes the probability that attribute i has value x in the
observed graph, given that it has value y in the original graph
G. As mentioned above, i = 1 denotes the node degree. As
the edge sampling process samples each edge independently
with probability s, q1(x, y) follows a binomial distribution
with parameters y and s, i.e.,

q1(x, y) =

(
y

x

)
sx(1− s)y−x

Finally, note that p1(y) denotes the degree distribution of
G, i.e., the probability that a node in G has degree y. We
comment on the choice of the underlying degree distribution
in Section VI.

An exact model for distances under edge sampling is much
more complicated due to dependencies of paths in the graph.

4More precisely, with (w1i, w2i) the i-th anchor pair, X1(1+i) is the
hop distance in G1 to w1i (and analogously for X2(1+i)).

We therefore propose the following idea for an approximate
model for how distances increase: for each hop in the original
shortest path in G, an extra hop is taken in the sampled graph
with probability 1 − s. Thus, the distance in the sampled
graph is given by a constant (the original distance y) plus a
binomial random variable with parameters y and 1 − s, i.e,
Y = y+Bi (y, 1− s), where Y is the distance in the sampled
graph. Let q1+i(x, y) denote the probability that the distance
to anchor node i, 1 ≤ i ≤ m is x given that this distance in
G is y. We then have,

q1+i(x, y) =

(
y

x− y

)
(1− s)x−ysx , y ≤ x ≤ 2y

Although the above model is a heuristic approximation for
how distances enlarge under edge sampling, results shown
in Section VI support its adequacy. Moreover, experiments
with other approximate distance models as well as empirical
distance distributions yielded similar results. Finally, p1+i(y)
for 1 ≤ i ≤ m corresponds to the distance distribution of G,
i.e., the probability that two given nodes are at distance y
in G. We comment on the choice of the underlying distance
distribution in Section VI.

Note that any attribute that is used in the fingerprint of the
nodes will require a probabilistic model that describes how
the attribute is transformed from G into the observed edge
sampled graph G1,2, namely, q(x, y) as defined above degree
and distance. Moreover, we will also need a probabilistic
model for the prior distribution of the attribute in G, namely
p(y) as defined above. Using just degree and distances
requires just two models, both of which are quite simple (in
fact, it is exact for degree). This is one reason for using just
these two attributes. Moreover, by using distances to various
nodes (i.e., anchors) we can generate multiple attributes of
the same type, therefore using the same probabilistic model,
as we assume conditional independence. Finally, we observe
experimentally that these two attributes perform relatively
well when considering both real world networks and random
graph models with clustering (details in Section VI).

V. MATCHING ALGORITHM

The matching algorithm receives as input two graphs G1

and G2, with the same number of nodes and models for
distance and degree as described in Section IV-C. The output
of the algorithm is a matching π between all nodes such that
π(u1) = u2 where u1 ∈ V1 and u2 ∈ V2. The algorithm
is iterative and at each phase it considers a set of candidate
nodes to be matched, denoted by

V τ1 = {u11, u12, . . . , u1nτ }, u1i ∈ V1
V τ2 = {u21, u22, . . . , u2nτ }, u2i ∈ V2

where nτ is the size of the candidate set in the τ -th phase,
τ = 0, 1, . . . , log2 n−1, and more specifically, nτ = 2τ+1. In
particular, in phase τ , the set of candidate nodes are simply
the nτ nodes with the largest degrees in their respective
graph, thus d(uki) ≥ d(ukj), i ≤ j, where d(u) is the degree
of node u.



We elaborate on one phase of the algorithm. At phase τ ,
we consider a set of m = 2τ−1 anchors (previously mapped
node pairs) Sτ−1 = {(w11, w21), . . . , (w1m, w2m)}. Note
that we set m = 0 in the first phase (τ = 0), and the
algorithm requires no prior knowledge of anchor nodes. For
each of the n2τ node pairs (u1i, u2j) in the candidate set,
we use the Bayesian framework described in Section IV
to compute their matching posterior r(u1i, u2j) by using
their fingerprints. In particular, as discussed in Section IV-
C, we use as evidence the degree pair (d(u1i), d(u2j)) and
m distance pairs (x(u1i, w1k), x(u2j , w2k)), k = 1, . . . ,m,
where x(u, v) is the distance between nodes u and v in their
respective graph.

Assuming that pair-wise matchings of nodes are indepen-
dent given a matching (i.e., every node has a single pair),
the posterior terms r(u1i, u2j) can be factorized, and the
probability of a particular mapping π is given by the product
of all pair-wise posteriors under that mapping, i.e.,

Pπ(V
τ
1 , V

τ
2 ) =

nτ∏
i

r(u1i, π(u1i)), (14)

We seek the most likely mapping π∗ =
argmaxπ Pπ(V

τ
1 , V

τ
2 ), i.e., the mapping that maximizes

the product in (14) in the τ -th phase. Taking the logarithm
of each posterior term r(u1i, u2j), the problem reduces to
maximizing the sum of log-posteriors for all node pairs:

π∗ = argmax
π

nτ∑
i

log r(u1i, π(u1i))

This problem can then be solved by using the Hungarian
algorithm for maximum weighted bipartite matching [6].

Finally, the matching results from phase τ are used to
construct the set of anchor node pairs Sτ (the nodes that
were mapped with highest posteriors) for the next phase,
where |Sτ | = 2τ . In other words, half of the mapped node
pairs are considered as anchors for the next phase τ + 1.
This increases the size of the fingerprint of each node in the
candidate set with more distance attributes. As nτ = 2τ+1,
the size of the candidate set of nodes is also doubled in the
next phase.

The intuition for choosing half of mapped pairs as anchors
is that matching errors tend to increase in the ordered (high-
to-low posterior) sequence of mapped pairs. In particular, it
is not even guaranteed that a candidate node u1i ∈ V τ1 has a
correct match in V τ2 , and this gives rise to more uncertainty
in matching pairs with low posteriors. Thus, we use only
the top half of matching pairs as anchors of the next phase,
aiming to increase the confidence of the matching. A detailed
description of the matching algorithm follows:

1) Input: two graphs G1 and G2, with node sets V1 and
V2, both of size n, and models for degree and distance.

2) Sort the nodes in each graph by degree in descending
order. Let V ′1 and V ′2 be the list of nodes in descending
order by degree.

3) Set τ = 0. Set the anchor set as Sτ−1 = ∅.

4) Set the size of the candidate set to be mapped as nτ =
2τ+1. If nτ > n, set nτ = n.

5) Denote the candidate sets as V τ1 = V ′1(1 : nτ ) and
V τ2 = V ′2(1 : nτ ), as the list of the first nτ nodes in
V ′1 and V ′2 , respectively.

6) For each node u1i ∈ V τ1 and u2j ∈ V τ2 , compute a
fingerprint vector as

Fu1i = [du1i , x(u1i, w11), . . . , x(u1i, w1m)]

Fu2j =
[
du2j , x(u2j , w21), . . . , x(u2i, w2m)

]
,

where i, j = 1, . . . , nτ and (w1k, w2k) ∈ Sτ−1,
k = 1, . . . ,m.

7) For each pair of nodes (u1i, u2j) ∈ V τ1 ×V τ2 , compute
the matching posterior r(u1i, u2j), i.e., the posterior
P [u1i = u2j |Fu1i

, Fu2j
], using (13). Construct the

complete weighted bipartite graph G(V τ1 , V
τ
2 , E),

where E includes n2τ edges between all node pairs
(u1i, u2j) ∈ V τ1 × V τ2 , with the edge weights equal to
r(u1i, u2j).

8) Compute a normalized posterior r′(u1i, u2j) as fol-
lows:

r′(u1i, u2j) =
r(u1i, u2j)√∑

v∈V2
r(u1i, v)

∑
v∈V1

r(v, u2j)
.

(15)
9) Solve the maximum r′(., .)-weighted bipartite match-

ing, e.g., using the Hungarian algorithm [6]. The output
is the matching π of size nτ .

10) Sort the matched pairs (u, π(u)) in descending order of
their matching posterior. Let Sτ be the set of nτ/2 =
2τ node pairs with highest posteriors. Set m = |Sτ |.

11) If nτ = n, stop. Else, increment τ . Go to step 4.
The algorithm starts with the two highest degree nodes

in each graph (nτ = 2), computes node fingerprints based
only on their degrees, and matches them using the bipartite
matching. Next, half of the matched nodes (i.e., 1 node pair),
are considered as anchors, and the size of the candidate set is
doubled to nτ = 4. Thus, at the second phase, four nodes are
matched by using their degrees and distance to one anchor
from the previous round. Again, half of the matched nodes
(i.e., 2 node pairs), are considered as anchors for the next
round, and the size of the candidate set is doubled to nτ =
8. This process continues, and at each phase, nτ nodes are
matched using nτ/4 anchors, until all nodes are mapped.
Notice that the matched nodes at each phase, though being
considered as anchors for the next phase, are themselves still
in the candidate sets V τ1 and V τ2 . This allows for a node to
change its mapping during the execution of the algorithm.
This is useful because a node wrongly mapped in an early
phase might be correctly mapped in a subsequent phase when
more evidence (in terms of distance to anchors) is available.

The complexity of the algorithm above is O(n3 log n), as
the algorithm takes log n phases and the Hungarian algorithm
has complexity O(kn), where k is the number of edges in
the bipartite graph, which in our case is n2 in the last phase.
However, the algorithm can be modified to have complexity
O(n2 log2 n) by considering a bipartite graph that is not



complete (all edges), but rather sparse. We do not discuss
the details of the process in this paper. Finally, note that the
algorithm requires computing the distances between nodes
and anchors in both G1,2. However, the distances between all
pairs of nodes in both G1,2 can be computed before starting
the algorithm. This has a complexity of O(n(|E1| + |E2|))
since a BFS for each node in G1,2 will suffice.

The intuition behind the normalization (step 8 of the
algorithm) is the following. Recall that we assume indepen-
dence between the posteriors of node pairs, which ensures
equivalence with the weighted bipartite matching problem.
However, this assumption can lead to an overestimation of
the joint node pair posteriors. The normalization procedure
compensates for this effect by reducing the value for the
posteriors. Furthermore, experimental results show that this
normalization yields significantly better results in matching
all node pairs.

Finally, we reiterate that in the problem formulation (see
Section III) as well in the above algorithm, we have assumed
not only that the number of nodes in the two graphs G1,2 is
the same, but that every node in a graph has a corresponding
node in the other graph. Of course, in many practical
scenarios, we would expect to have only partial overlap in
the vertex sets. One way to deal with partially overlapping
graphs would be to refrain from mapping node pairs that have
posteriors below a certain threshold. We have not evaluated
such strategies for partial matching, but our experiments in
the next section suggest that a low posterior is indeed a good
indication of a poor match.

VI. EXPERIMENTS

We assess the performance of our algorithm using real
data and two different scenarios. First, we consider a fixed
graph G and use the edge sampling model with probabilities
s1 and s2 to instantiate G1 and G2, which are then matched.
Next, we consider two similar graphs G1 and G2 from real
data, which are then matched. Note that sampling was not
used in the latter and parameters will have to be estimated
using G1 and G2 directly. We also assess the performance
using realizations from random graph models (Section VI-
D). To measure the performance we define the matching error
as the fraction of node pairs that have been mapped.

A. Matching Two Sampled Graphs

We consider a dataset of e-mail messages collected at
the EPFL main mail server. The dataset includes logs of
e-mail exchanges among users on a weekly basis and we
consider only exchanges among EPFL users. We construct
the e-mail network (graph) by associating each user to a node
and placing an edge between two nodes if there is at least
one reciprocal e-mail exchange between the two users. We
consider a period of five consecutive weeks and only nodes
that appeared (i.e., send/received a message) in every week,
yielding a graph with 2024 nodes and 25603 edges.

Using the graph generated as the underlying graph G, we
apply edge sampling to obtain G1 and G2. For simplicity,
we assume s1 = s2 = s and present our results for different

values of s2, which corresponds to the probability that an
edge in G appears in both G1 and G2 (edge overlap) and
is a measure of similarity between the two graphs. For
each s, we repeat the sampling process to obtain different
realizations of G1 and G2. To compute the posteriors, we
use the empirical degree and distance distributions of G for
pi(y). Moreover, as we know s, the conditional distribution
qi(x, y) is computed using the degree and distance models
presented in Section IV-C.

Figure 2 depicts the matching error as the algorithm
progresses. Each plot corresponds to a fixed value of s2 and
each curve corresponds to one realization of G1 and G2.
The results indicate that the performance of the algorithm
at the end (after all nodes are matched) is consistently poor
and good for small and large values of s2 (s2 = 0.49, s2 =
0.81), respectively. The curves also indicate an interesting
aspect of our approach: although the error might be high
during the first iterations (due to incorrect anchors), the
algorithm remaps such pairs as it progresses and achieves
a smaller error at the end. To some extent, our approach
does not depend on correctly identifying initial anchors and
is therefore robust to initial errors.

Figure 3(a) (Sampled curve) shows the average final
matching error (over 20 realizations) and 95% confidence
interval versus the edge overlap s2. As shown, the error is
relatively high for small overlap s2 = 0.49 since the structure
of G is significantly destroyed. However, the error drops
sharply when we increase s2, reaching 6% for s2 = 0.81.
We can also notice the larger confidence intervals for mid-
range s2, indicating that in such regimes the matching error
strongly depends on the realization.

Recall that at the end of the algorithm, each mapped
node pair has a posterior probability of being correctly
mapped, which can be used to assess the quality of the
mapping. Figure 3(b) depicts the empirical CCDF (Comple-
mentary Cumulative Distribution Function) of the posteriors
r(u1i, u2j) for all n2 pairs of nodes in V1 × V2 for (bottom
curve), and all n pairs of nodes mapped at the end of the
algorithm (top curve). Note that other curves correspond to
result for the G(n, p, q) model and will soon be described.

The clear distinction between the two curves for EPFL
indicates the effectiveness of our method: Although most
node pairs have very small posteriors, a small subset exhibit
high posteriors among which are the pairs that correspond
to each other. For instance, 60% of the mapped node pairs
have a posterior greater than 0.8, whereas the probability
of such posterior over all nodes is slightly above 0.001. In
other words, the posterior constructed through our Bayesian
method is an adequate metric for the similarity between two
nodes. This is the key reason why the maximum bipartite
matching resolves the matching problem with minimal error.
Moreover, the posterior probability can be used to assess
the quality of the pairwise mapping, since it indicates the
probability that the pair is correctly mapped, given all the
evidence.



Fig. 2. Matching error as a function of the number of mapped nodes (as the algorithm progresses in rounds) for different edge overlap probabilities (s2)
using EPFL e-mail network as the fixed underlying graph. Each curve in a plot corresponds to a realization of the edge sampling process, namely different
instances for G1,2.
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Fig. 3. (a) Matching error as a function of edge overlap: Sampled curve corresponds to two realizations of the edge sampling model from a real EPFL
e-mail network (error averaged over 20 realization pairs), Snapshots curve corresponds to two real EPFL E-mail Networks generated with overlapping
time windows (single realization); (b) Empirical CCDF for posteriors of matched node pairs and all node pairs for EPFL e-mail network (s2 = 0.81), and
G(n, p, q) model for different clustering coefficients (C values near curves) but constant average degree (50); (c) Average matching error in G(n, p, q)
model for different clustering coefficients (C) but constant average degree (50).

B. Matching Two Graph Snapshots

We now match two real snapshots G1 and G2 from EPFL
e-mail network without considering any fixed underlying
graph G. We construct G1 by considering the set of common
nodes over a window of 10 weeks and all edges among them.
The graph has 1825 nodes and 24196 edges. The graph G2 is
constructed in the same manner by also considering a period
of 10 weeks but with a time shift of t weeks relative to G1.
For example, t = 3 means that G1 and G2 overlap 7 weeks,
thus giving O = 7/(10 + 3) = 54% time overlap. Note
that time overlap translates to edge overlap. In particular, we
compute the parameters s1 and s2 based on the number of
edges in G1, G2, and their intersection. We also compute the
empirical degree and distance distributions for the (unknown)
underlying graph by superposing the distributions in G1 and
G2 (see Section VI-C). Finally, we apply our algorithm to
match the common nodes of G1 and G2.

Figure 3(a) (Snapshot curve) depicts the matching error
as a function of edge overlap between G1 and G2. Each
point in the curve corresponds to a different time overlap O,
as indicated. Note that for small edge overlap (equivalently,
small O), the error is large, as there is little common structure
between the graphs. However, the error rate drops sharply as
the edge overlap increases: for 75% and 82% overlap (O =
54%, O = 66%), the error is 13% and 6%, respectively, and
for 90% overlap (O = 82%), remarkably almost all nodes

are correctly matched. This indicates the applicability of our
method for real data even when the underlying graph is not
known and the graphs to be matched are not realizations of
the edge sampling model.

C. Estimation of Parameters and Priors

As explained in Section VI-B, the matching algorithm
requires computing the posteriors which in turn requires the
estimation of (i) the prior degree and distance distributions of
the underlying graph G, and (ii) the sampling parameters s1
and s2 (see Section IV-C). When directly using the edge
sampling model (as in Section VI-A), these parameters are
known. However, for real graphs, e.g., two snapshots of
a network as in Section VI-B, we need to estimate these
parameters.

We estimate the underlying degree and distance distri-
butions pi(y), considering the distributions over the su-
perposition of G1 and G2. In other words, we use the
empirical degree (or distance) distribution of G1 and G2,
and compute the underlying degree (or distance) distribution
through aggregating the two distributions (i.e.,. adding the
probabilities and then normalizing). Although this is a crude
approximation, our experiments show that the algorithm
works quite well under this approximation.

For the sampling parameters, we can write e1 = es1 and
e2 = es2, where e, e1 and e2 are the expected number of



edges in G, G1 and G2, respectively. Also, eI = es1s2
corresponds to the expected number of edges that are present
in both G1 and G2. Using the actual number of edges in
G1, G2, and in their edge overlap (assuming the number
of overlapping edges is known) as an estimation for e1, e2
and eI , we can then estimate s1 and s2 using the equations
above. This procedure was used in deriving the parameters
for the experiments in Section VI-B.

In practice one may not have knowledge (or even an
estimation) of the number of edges that overlap in G1 and
G2, which forbids using the above procedure for estimating
s1 and s2. An alternative idea is simply to arbitrarily select a
large value (e.g., > 0.85) for s1 (or s2) to parameterize our
method. Preliminary experiments indicate that the method
is relatively robust to the choice of parameter s, as long as
the actual edge overlap is large enough (which is anyways
needed for correct matching, as shown in Figure 3(a)). A
thorough analysis of this issue is a topic for future work.

D. Matching on Random Graphs

The above results illustrate the performance of our algo-
rithm on real social networks which in turn exhibit (1) a
heavy-tailed degree distribution, and (2) a high clustering
coefficient. In this section, we discuss the performance of
the algorithm on realizations of random graph models where
nodes are much more similar to one another, and intuitively
much harder to match.

We consider as the underlying fixed graph G a realization
of the Erdös-Rényi random graph G(n, p), where n is the
number of nodes and each edge is present in the graph
independently and with probability p. Such graph is usually
sparse and statistically uniform (i.e., nodes tend to “look”
similar). This model also yields a binomial, rather than a
heavy-tailed, degree distribution for the nodes, and average
clustering coefficient of p which is very low compared to
social networks of the same size. We then apply the edge
sampling process to G in order to obtain G1 and G2 and
then run our matching algorithm.

For s = 0.999 (i.e., very close to 1) we observed via
experiments that our algorithm perfectly matches the nodes
of G1,2, yielding zero error in all experiments. This shows
that when the graphs are sufficiently similar, our algorithm
is very effective even for large sparse random graphs. On the
downside, for s = 0.95 (i.e., away from 1), our algorithm
cannot match the nodes yielding error rates of over 50%.
The problem is that distance is a fragile feature in G(n, p):
an edge that is not sampled by the edge sampling process
leads to a significant increase in the distance between the
two neighbor nodes. In particular, their distance becomes
closer to the average distance of the graph. Note that this
is significantly different than the model used to capture how
distances are elongated in G1,2 (see Section IV-C). Moreover,
since G1,2 are generated independently, distance correlations
between pairs of corresponding nodes in the two graphs are
also destroyed.

We extend the G(n, p) model to cope with its distance
fragility by introducing clustering (i.e., triangles). In par-

ticular, for each pair of nodes u, v ∈ V (where G is a
realization of G(n, p)) at distance 2, we create an edge (u, v)
with probability q. We call this model q-transitive G(n, p)
or G(n, p, q). Put it simply, G(n, p, q) models a sparse
graph with a non-skewed degree distribution and clustering
coefficient controlled by the parameter q. Note that an edge
removal in G(n, p, q) with a sufficiently large q will not
increase the distance of the incident nodes around its average
value.

Figure 3(c) shows the performance of the matching algo-
rithm as a function of the clustering coefficient (controlled
by q) when applied to two edge sampled graphs with s = 0.9
from an underlying G(n, p, q). The parameter n = 2000
and p is chosen such that the average degree remains constant
(i.e., 50) in all experiments. Note that each choice of q results
in a different clustering coefficient, denoted by C. The results
are averaged over different realizations of G(n, p, q). As can
be seen in the Figure 3(c)(a), the matching error is a function
of the clustering coefficient, and decreases from a high value
of 98% when C ' 0.06 to almost zero when C reaches
0.15. This result indicates that when distances among node
pairs are relatively preserved in G1,2 (which in this case is a
consequence of high clustering) our algorithm can correctly
match nodes even when the graphs are sparse and do not
exhibit a heavy-tailed degree distribution. For comparison,
the EPFL e-mail network has a clustering coefficient of 0.17,
and so do many other social networks. However, these also
exhibit a heavy-tailed degree distribution which facilitates
matching nodes.

Figure 3(b) shows the empirical CCDF of the posterior
probability for all n matched pairs for different values of C.
Note that for lower clustering, the posteriors are very small
(e.g., for C = 0.06, only 10% of the matched node pairs
have a posterior greater than 0.1) which correlates with the
fact that the matching error was very high. However, the
posteriors become significantly larger for higher clustering
coefficients (e.g., for C = 0.15, almost all matched node
pairs have a posterior greater than 0.1), again correlating
with the fact that the matching error was very low. Thus, as
previously observed, the empirical CCDF of the posteriors
can indeed be used as a criteria to assess the quality of the
matching produced by the algorithm. Moreover, as the clus-
tering increases the performance of G(n, p, q) approaches
that of the EPFL dataset, indicating that clustering is an
important aspect for correct matching, as it makes pair-wise
node distances more robust to random edge removals.

VII. CONCLUSION

Graph matching has been shown to be very effective
at correlating two social networks through their structure.
However, most approaches in the literature rely on additional
information, either in the form of node or edge attributes,
or in the form of a seed set of a priori matched pairs. In
particular, the class of methods that build the node map
incrementally has been shown to be effective and compu-
tationally efficient [12], [18]. However, starting from two



graphs without any side information remains a challenging
problem.

We proposed a Bayesian method for approximate graph
matching (AGM), based on a generative model that treats
the two observable graphs as independent samples of a
fixed underlying generator graph. Based on this approach
we derive the probability that a mapping between a pair of
nodes is correct given their evidence (fingerprints). These
probabilities are then used to devise a polynomial-time
algorithm where the amount of evidence used to compute
the posterior probability of a correct match increases over
the iterations of the algorithm by using previously mapped
nodes. In a sense, the method tries to match easy pairs first,
and then uses these pairs to enrich the fingerprints for the
harder pairs. In particular, we apply our method using degree
and distances to anchors as evidence. Experiments using real
social networks and random graph models indicate that our
algorithm can recover from early errors and terminates with
an accurate matching (less than 10% error) when the graphs
have a reasonable edge overlap (greater than 75%). Finally,
we believe our approach can be applied to other domains,
particularly when the graphs to be matched can be thought
of as noisy observations of a hidden true graph.
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