
Learning Wi-Fi Performance

Julien Herzen

EPFL

Switzerland

julien.herzen@epfl.ch

Henrik Lundgren

Technicolor

France

henrik.lundgren@technicolor.com

Nidhi Hegde

Alcatel-Lucent Bell Labs

France

nidhi.hegde@alcatel-lucent.com

Abstract—Accurate prediction of wireless network perfor-
mance is important when performing link adaptation or resource
allocation. However, the complexity of interference interactions
at MAC and PHY layers, as well as the vast variety of possible
wireless configurations make it notoriously hard to design explicit
performance models.

In this paper, we advocate an approach of “learning by
observation” that can remove the need for designing explicit
and complex performance models. We use machine learning
techniques to learn implicit performance models, from a limited
number of real-world measurements. These models do not
require to know the internal mechanics of interfering Wi-Fi links.
Yet, our results show that they improve accuracy by at least 49%
compared to measurement-seeded models based on SINR. To
demonstrate that learned models can be useful in practice, we
build a new algorithm that uses such a model as an oracle to
jointly allocate spectrum and transmit power. Our algorithm is
utility-optimal, distributed, and it produces efficient allocations
that significantly improve performance and fairness.

I. INTRODUCTION

We have witnessed a rapid adoption of Wi-Fi for home,

enterprise and hotspot wireless networks. The result is often

dense deployments of interfering Wi-Fi links that contend

for a limited amount of spectrum. At the same time, these

networks are under an ever increasing pressure to deliver a

higher performance. Recent and ongoing IEEE amendments,

such as 802.11n and 802.11ac, address this demand by includ-

ing techniques such as wider channel bandwidths and faster

modulation schemes. However, these enhancements put even

more stress on the scarce spectrum resource and are sensitive

to the operating conditions to deliver the effective performance

improvements. Wider channels increase spectrum usage and

can create harmful interference. Higher modulation schemes

require a higher SNR and less interference to correctly decode

transmissions. It is therefore increasingly important to care-

fully allocate resources such as spectrum and transmit power.

Efficient resource allocation requires realistic models. How-

ever, 802.11 networks – and especially those using newer

amendments with variable bandwidth – are notoriously hard

to model. They exhibit several performance intricacies due

to complex interactions between the MAC and PHY layers,

which manifest themselves in frequency, spatial and time

domains. Existing performance models for 802.11 networks,

such as the Bianchi model [1], usually adopt explicit and

The work presented in this paper was supported (in part) by the Swiss
National Science Foundation under grant number 200021-146423. Part of this
work was carried out while the authors were working at Technicolor.

black box
representing

a link

spectral configurations
transmit powers

traffic loads
channel qualities

.
.
.

.
.
.

achievable
throughput

Figure 1: Black box representation of a link. It takes various con-
figuration and topological features related to a given link and its
neighbors as inputs, and it outputs a throughput.

bottom-up approaches; they model the actual mechanics of the

protocol (for example, the CSMA/CA procedure of the MAC

layer in [1]) in order to compute throughput figures. These

explicit models often give precious insights on the internal or

asymptotic properties of 802.11. However, to remain tractable,

these models have to rely on a set of simplifying assumptions

(e.g., homogeneous PHY parameters in [1]), which prevent

their use to predict the impact of different PHY layer configu-

rations, such as variable channel widths. In contrast, textbook

models based on the SINR (signal to interference-plus-noise

ratio) can be used to capture some of the phenomena occurring

at the PHY layer. However, in turn, these models do not take

the MAC layer into account and, as we will observe, they do

not capture the actual performance of interfering links when

CSMA/CA is employed.

In this paper we argue that, as far as quantitative perfor-

mance predictions are concerned, it can be more efficient to

learn implicit and top-down models directly from a set of

observed measurements. We treat Wi-Fi links as black boxes

with potentially unknown internal mechanics (see Figure 1).

Such a black box takes some parameters as inputs (such as

the spectral configurations of a link and its neighbors, as

well as topological features such as current measurements of

channel qualities), and it outputs a throughput value. Our goal

is to find any function providing an accurate mapping between

(potentially never-observed) inputs and outputs. In particular,

we do not attempt to seed a pre-existing model (such as SINR-

based or Markov-based) with measurements. Rather, we show

that in some cases it can be more efficient to learn the model

itself from a limited set of measurements.

Constructing useful black boxes is difficult for two main

reasons. First, they must capture a fair level of complexity; the

cross-layer relationships between the various input parameters

and the obtained throughput are usually complex, multi-modal,

nonlinear and noisy. Second, it is infeasible to simply measure

the link performance for each possible combination of inputs.

Instead of conducting exhaustive measurements, we observe



that a statistical representation of these black boxes can

be learned by observing a limited number of input/output

combinations. Using supervised machine learning techniques,

it is possible to generalize the observations made on this

limited subset of measurements, while still capturing the

complex relationships between the inputs. We build such

implicit models using real-world measurements and we test

them systematically, by asking them to predict the throughput

for links and configurations that have never been observed

during the initial measurement phase. We observe that our

learned black boxes improve prediction accuracy over models

based on the SINR, which is usually the preferred metric for

allocating resources such as spectrum or transmit power.

Finally, we demonstrate the usefulness of this “learning

by observation” approach, by using one such black box as

an oracle for allocating spectrum and transmit power in a

dynamic fashion. In particular, we design and implement a

complete, utility-optimal algorithm for the joint allocation of

spectrum and transmit power. Our algorithm does not rely

on a central controller, and requires only local collaboration

between neighboring access points (APs). Yet, it converges to

a global, network-wide solution of the utility maximization

problem. We observe on a testbed deployment that it reacts

well to various optimization objectives, such as maximizing

throughput and/or fairness. In this context, our black box

oracle is instrumental for capturing the intricate interference

patterns and finding efficient configurations. To the best of our

knowledge, it is the first implementation of a utility-optimal

algorithm for spectrum allocation.

The paper is organized as follows. In Section II, we motivate

our approach. In Section III, we present our method to learn

black box performance models. We evaluate the accuracy and

generalization of our models in Section IV. We then present

an application for spectrum and transmit power allocation

in Section V and discuss the limitations of our models in

Section VI. Finally, we present related work in Section VII

and give some concluding remarks in Section VIII.

II. MOTIVATION

Although existing models for 802.11 often provide precious

insights into various tradeoffs of Wi-Fi performance (see

e.g., [1], [9]), obtaining precise and quantitative performance

predictions in general cases – i.e., with varying PHY layer

conditions – remains a notoriously difficult problem.

To see this, consider for instance networks where nodes can

use variable-width channels. Careful allocation of such spec-

trum chunks is necessary to properly configure recent IEEE

802.11n and 802.11ac amendments with channel bonding [8].

As noted in [26], modeling performance is difficult when

several interfering links use channels of variable widths that

are possibly overlapping. In fact, a model explicitly designed

for this task would have to take into account several complex

effects occurring in time, space and frequency domains. For

example, using a wide channel bandwidth creates interference

in frequency domain, but using a narrow bandwidth increases

packet transmission times, which can create more interference

in time domain (due to the rate anomaly problem of MAC

layers based on CSMA/CA [11]). In addition, for a fixed

transmit power, a narrow bandwidth packs more Watts per

Hertz, which improves the transmission range [5], but also

increases interference in spatial domain.

In general, performance depends in a highly complex way

on the actual topology, channel qualities, spectral configura-

tions, etc. This complexity is further exacerbated if the nodes

have arbitrary traffic loads, or if they can adapt their transmit

powers; although transmit power adaptation can potentially

improve spectral re-use [4], it is rarely used in practice as

the impact on performance is difficult to predict [22].

For these reasons, there is to our knowledge no model that

captures all of the above-mentioned phenomena, and most of

the works proposing models or optimizations for the PHY

layer (e.g., [22], [23], [26]) are constrained to use SINR-based

models. Although SINR models can provide a characterization

of the capacity at the PHY layer, they are not meant to capture

802.11 performance and, as we will see now, they can fail to

capture important CSMA/CA performance patterns.

A. An Example where SINR Models are Inappropriate

We now consider a real example from our testbed, with

two interfering links l and k operating with 802.11n on the

same channel of width 20 MHz. We give more details on our

testbed and experimental setup in Section IV-A. Both links

send saturated UDP traffic. Link l has a fixed transmit power

set to 12 dBm, and k varies its transmit power from 3 dBm

to 21 dBm. We measure the throughput obtained by l, for two

different pairs of links (l, k). For comparison, we also compute

the information-theoretic capacity cl of link l as

cl = constant · log
2
(1 + SINRl), (1)

where the constant factor accounts for the bandwidth and

MIMO configuration, and SINRl denotes the SINR of link

l. On such a two-link setup, the SINR is given by

SINRl =
Pl←l

N0 + Pl←k

, (2)

where Pl←l (resp. Pl←k) denotes the received power at the

receiver of l (as measured by our NICs) from the transmitter

of l (resp. from the transmitter of k), and N0 is the background

noise (also reported by our NICs).

We show both the measured throughput and the theoretic

capacity for the two link pairs on Figure 2. The (schematized)

topologies are shown at the top of the figure. For the first

link pair, the throughput obtained by l decreases by about

50% when k increases its transmit power. This is due to an

increased likelihood of collision at l’s receiver and carrier-

sensing activation at l’s transmitter, as k increases its effective

interference range. This qualitative trend is captured by the

theoretical capacity, which decreases when Pl←k increases.

However, in this case, the magnitude of the theoretical capacity

is much higher than the actual throughput of the link.

The situation is different (and more surprising at first sight)

for the second link pair. Here, we can decompose the measured



0 5 10 15 20 25
0

40

80

120

160

200

tx power of link k [dBm]

th
ro

u
g

h
p

u
t

o
f

li
n

k
l

[M
b

p
s]

measured

theoretic

0 5 10 15 20 25
0

10

20

30

40

50

tx power of link k [dBm]

measured

theoretic

l1 k1

first link pair:

l2 k2

second link pair:

Figure 2: Measured throughput and theoretical capacity of l, when
k varies its transmit power. The results are shown for two different
pairs of links (l1, k1) and (l2, k2) from our testbed.

performance in three distinct regimes (represented by three

shaded regions in the figure). When k’s transmit power is low,

the links are nearly independent and l suffers little interference

from k. When k’s transmit power grows to intermediate values,

k starts interfering with l. In this case, l carrier-senses k, and

interference mitigation is done in time-domain via CSMA/CA.

However, a closer inspection of packets reveals that k itself

does not have a good channel quality (as it uses only an

intermediate transmit power), which forces it to use relatively

robust (and slow) modulations. As a result, in this intermediate

regime, k consumes a significant portion of the time to transmit

its packets, which reduces l’s throughput (due to the rate-

anomaly). Finally, when k uses a large transmit power, it also

uses faster modulations, which has the apparently paradoxical

effect of increasing l’s throughput.

In this second example, the information-theoretic formu-

lation for the capacity does not capture all these “802.11-

specific” cross-layer and multi-modal effects. Instead, it shows

a monotonic dependency on transmit power, because it treats

the case of Gaussian channels subject to constant and white

noise interference.In fact, in the cases where a time-sharing

scheme such as CSMA/CA is employed, links often have the

opportunity to transmit alone on the channel, thus without

observing any interference at all during their transmission1.

It is thus clear that even in such a simple setting, a resource

allocation algorithm relying on monotonic expressions of the

SINR is likely to take bad decisions. Despite these problems

– and despite the fact that SINR models are usually not

considered strong predictors of wireless performance – these

models are still the models of choice for allocating resources at

the PHY layer, due to their generality: By adapting judiciously

the power values in the SINR Equation (2), it is possible to

use variable transmit powers (as we just did), but also partially

overlapping channels [23] and variable bandwidths [26] as

inputs of SINR models. In addition, a large body of literature

on optimal resource allocation also relies on SINR models

in various contexts [3], [10], [15], [19], [22]. By contrast,

MAC layer models such as Bianchi’s are often accurate with

homogeneous PHY configurations, but cannot be used to

1This is also the reason the actual throughput might be largely above the
predicted capacity.

capture such heterogeneous PHY configurations.

III. LEARNING PERFORMANCE MODELS

A. Approach

A natural step to improve the accuracy of SINR-based

models is to seed (or fit) some parameters (for instance, a

factor controlling the magnitude of the prediction) to the

observations of actual measurements. The approach of seeding

a model with measurements can be appropriate for networks

with collaborative APs, such as enterprise networks, and it has

been taken in [21], [26], [27] and others (see Section VII for

a discussion). We now show that, if one has the possibility of

conducting an initial measurement phase, then it is possible to

directly learn the model itself from the data, instead of fitting

or seeding a previously existing model. Our overall approach

consists of the three following steps.

1) Measurement phase: This phase consists in performing

N short-duration controlled experiments. Considering again

the black box representation of Figure 1 (although generalized

for several links), each experiment consists in measuring the

throughput of a given link l, for one particular combination of

inputs (which we call features). This phase is relatively short;

we observe in Section IV-D that it is possible to “learn” our

entire indoor testbed with reasonable accuracy in less than 6
hours.

2) Learning phase: Once the measurements are obtained,

this phase consists in finding a mathematical function that

maps the features to observed throughputs. This function

should approximate the throughput well on the measured data

points. However, to be useful, it must not overfit existing

measurements, which are intrinsically noisy. Instead, it should

generalize to unseen combinations of input features (which

can potentially relate to unseen nodes and links). Supervised

machine learning provides us with precisely the tools to handle

this challenge.

3) Black box representation: Once a good function has been

found, we can discard the measurements and use the function

itself to cheaply compute throughput predictions. Such black

boxes can then be used by the APs themselves for selecting

efficient configurations (e.g., with predicted throughputs satis-

fying traffic demands) without probing.

Importantly, we observe in Section IV-C that learned models

continue to be useful in new or unseen environments, and that

the training procedure does not need to be repeated when new

wireless links come and go. We detail our procedure in the

remainder of this section.

B. Feature Selection

Consider a link l, for which we want to predict saturated

throughput (i.e., under saturated traffic load2) for arbitrary

spectrum and transmit power configurations, given a set Nl of

K neighboring links with arbitrary conditions, configurations

2We target saturated throughput because it is the maximum achievable
throughput in a given configuration. In particular, we assume that if throughput
t is achievable, then any throughput t′ < t is also achievable.



l k1k2

P6

P2

P1

P4

P10

P8

P7

P3

P9

P11

P5

Figure 3: Throughput prediction setting for a link l and two
neighboring links Nl = {k1, k2}. We wish to predict the throughput
that l could potentially obtain, given the various received powers
P1, . . . , P11, as well as the physical rates, channel widths, center
frequencies, and traffic loads of k1 and k2.

and traffic demands. Such a scenario is shown in Figure 3

for K = 2. The features must include factors that impact

the performance and are measurable by the transmitter of l
and its immediate neighbors. We selected the following list of

features, because it is known that they all have an immediate

impact on performance [4], [5], [11], [23]:

• The power received by each node of l from every trans-

mitting node, and the power received by every other node,

from the transmitter of l. These quantities are denoted

P1, . . . , P11 in Figure 3 (assuming downlink traffic, from

the APs to their clients). They depend on the transmit

powers and the various channel gains, and they can be

easily measured online by commodity hardware using RSSI

(received signal strength indicator). There are 5K +1 such

power quantities in general.

• The channel widths used by l and by the links in Nl. There

are K + 1 such values.

• The spectral separations between the center frequency used

by l, and the center frequencies used by all the other links

in Nl. There are K such values.

• The K average traffic loads of the links in Nl.

• The physical rates (determined by the 802.11n MCS index)

used on each link in Nl. There are again K such values.

Adding up the above-mentioned features, we have access to

d := 9K + 2 quantities to estimate the throughput that l can

obtain in the presence of K interferers. Note that this list

of features is not an exhaustive list of the factors affecting

performance that can be known or measured by the APs. For

instance, we could make it more complete by including the

packet sizes, higher order statistics to describe the traffic loads

of interferers (instead of the mean only), or more detailed

PHY layer information (e.g., capturing multipath effects or

frequency-selective fading). Including more features could

further increase the predictive power and generality of the

learned models. However, the features selected here already

allow us to build useful models, while having the advantage

of being simple and easy to acquire with commodity hardware.

C. Measurement Phase

The initial measurement phase consists of N measurements

with different combinations of features. Some of the features

can be directly controlled (namely, the channel widths, spectral

separations and traffic loads) and others cannot (the received

powers depend both on the transmit powers and channel gains,

and the physical rates depend on the auto-rate mechanism

used by the APs). Each of the N measurements consists of

two sub-experiments. We first perform an experiment during

which l is silent, in order to obtain a corresponding vector

x ∈ R
d of features (some of which are controlled, others

are measured). We then repeat the experiment with l sending

saturated traffic, and measure its throughput tl. Our goal is to

expose the learning procedure to as wide a variety of situations

as possible. To this end, we apply the following sampling

procedure for each of the N data points.

We start by selecting a link l uniformly at random among

all the links formed by all the nodes of the network. We

then sample K random interfering links, where K itself is

randomly drawn between 0 and max K, and max K denotes

a fixed upper bound on K. For l and the K links in Nl, we

sample transmit powers and spectral configurations uniformly

at random from the set of configurations that do produce some

interference (i.e., such that each link in Nl uses a band at least

adjacent or partially overlapping with l). Finally, for each link

k in Nl, we sample a traffic load in the interval (0, h(wk)/K],
where h(wk) is a value representing the maximum throughput

achievable on an isolated link using bandwidth wk. We take

h(20 MHz) = 80 Mbps and h(40 MHz) = 130 Mbps in

our training procedure, in line with the maximum achievable

throughput of our 802.11n cards. Our goal is to predict

performance for arbitrary interfering loads, and sampling the

loads in this way allows us to expose the learning procedure to

different environments with both light and heavy contention.

In particular, we measured that the offered loads of the nodes

in Nl was above capacity (i.e., saturated) in about 54% of the

experiments (mainly due to inter-neighbors interference). The

remaining experiments consist of non-saturated conditions.

Once the configurations have been chosen, we perform

the first experiment with only the K interfering links active.

During this experiment, we measure the average physical rates

used by each of the K links in Nl, and we group all the above-

mentioned features in a vector xi. In order to vary K between

0 and max K but keep features vectors of fixed dimension

d, we append 9 · (max K − K) default “flag” values to xi,

using −110 dBm for all the power values, and setting all

the remaining features to zero3. We then perform the second

experiment in the same conditions, but with link l sending

saturated traffic, and we measure its achieved throughput. Each

of the two sub-experiments constituting each of the N data

points needs only to last a few seconds (in order to measure

physical rates and throughput), and the whole procedure is

easily automated.

D. Learning

Let us write {(x1, t1), . . . , (xN , tN )} ⊂ R
d ×R for our set

of measurements. Our goal is now to find a function f : Rd →
R that maps xi to a value close to ti for each measurement i.
Learning the function f from the observed data is a regression

3The current number of interfering links K is thus an implicit feature,
encoded by the presence/absence of flag values.



problem, and we consider the following techniques (see [2],

[14] for more details).

Regression tree: This technique fits a binary tree to the data.

Each feature vector corresponds to a path in the tree (from

the root to a leaf), and each leaf corresponds to a (discretized)

throughput value. The resulting model is elegant, because it

yields predictions that can be evaluated by a sequence of “if-

else” clauses on the features4. However, the obtained trees are

usually sub-optimal and the hard decision thresholds can affect

generalization and accuracy.

Gradient Boosted Regression Trees (GBRT): This tech-

nique combines the predictions of M regression trees. Given

a feature vector x, the throughput is predicted as t̂ = f(x) =
∑M

m=1
πmhm(x). In this expression, hm(x) denotes the pre-

diction of the m-th tree, and the πm’s are the weighting coef-

ficients (learned with gradient boosting [14]). We obtain the

number of trees M as well as their depth by cross-validation.

Using several trees has the potential to largely improve the

predictive power compared to a single tree, however as we

will see, it might still be subject to overfitting.

Support Vector Regression (SVR): For a feature vector

x, this method outputs a predicted throughput given by t̂ =
f(x) =

∑N

i=1
αik(xi,x)+b, where the αi’s and b are the fitted

parameters. The function k(·, ·) is the kernel function, and we

use a kernel specified by k(xi,x) = exp(−γ‖x−xi‖
2), where

γ is a parameter obtained by cross-validation. This technique

has a high descriptive power, and it can efficiently prevent

overfitting.

SINR-based model: As a comparison to pure machine-

learning techniques, we also fit SINR-based models to our

measurements. In particular, we compute the theoretical ca-

pacity cl of link l as cl = Γ ·wl · log(1 + SINRl), where Γ is

a constant that is fitted to measurements (using a least square

fit), in order to correct for the magnitude problem mentioned

in Section II. In addition, we also use the approach proposed

in [23] to account for partially overlapping channels; namely,

we scale each power value appearing in the SINR Equation

(2) by an appropriate value that accounts for the spectral

overlap (assuming perfect bandpass filters). To the best of our

knowledge, such models are the only existing models that can

capture arbitrary spectral configurations with variable widths

and transmit powers.

IV. EVALUATION OF PERFORMANCE PREDICTIONS

In this section, we evaluate the accuracy and generalization

of the different learning strategies in various conditions.

A. Experimental Setup and Methodology

1) Experimental Setup: We use a testbed of 22 nodes spread

over an entire floor of an office building (see Figure 4). The

nodes are Alix 2D2 boards, equipped with Atheros AR9220

wireless adapters. They run the OpenWrt 10.03 Linux distri-

bution with the open source ath9k wireless drivers, and they

use the default Minstrel autorate algorithm. We employ 20

4For instance, on a simplistic tree of depth 2, a regression path could look
like: “if received power ≤ X and frequency offset > Y , then predict Z”.

40m

65m

nodes

links cat. (i)

links cat. (ii)

links cat. (iii)

half A half B

Figure 4: Layout of our 22-nodes wireless testbed. We also show the
different link categories and the two halves of the testbed used in the
experiments of Section IV-C2.

and 40 MHz channel widths with 802.11n, 2× 2 MIMO, and

10 different transmit power values in the set {3dBm, 5dBm

, . . . , 21dBm}. We use the 5.735-5.835 GHz band.

2) Methodology: We want to test predictions for unknown

combinations of features. As such, we only predict throughputs

for data points that do not appear in the N measurements used

for learning (or training). To this end, we always split our total

set of measurements into a training set and a test set. The

training set consists in the actual N measurements used for

learning the models and their parameters, whereas the test set

is used only once, for measuring the final accuracy.

We gathered a trace of about 8900 measurements5, with

max K = 3. This set is voluntarily larger than what is

actually needed, in order to allow us to test the effect of the

number of measurements N on the models quality.

To evaluate the accuracy of predictions, we use the co-

efficient of determination R2. If we have a test set with

n throughput measurements t1, . . . , tn and a given model

predicts the throughputs t̂1, . . . , t̂n, then it is given by R2 :=
1 −

(
∑

i (ti − t̂i)
2
)

/
(
∑

i (ti − t̄)2
)

, where t̄ is the average

throughput, given by t̄ = 1

n

∑

i ti. Concretely, the R2-

score quantifies how well a predictor does, compared to the

simplest baseline strategy, which always predicts the mean

throughput. It is equal to 1 for perfect predictions. We

also compute the RMS error (RMSE), defined as RMSE =
√

1

n

∑

i (ti − t̂i)2. We used the Python machine learning

package scikit-learn to learn the various models.

B. Prediction Accuracy

In order to compare the accuracy of the different classes of

models, we perform 50 consecutive splits of our measurements

in training and test sets (50-fold cross-validation). For each

split, we evaluate the R2-score and RMSE, and we show the

average and standard deviations in Figure 5(a) for each class

of model. In addition, we also show the detailed distribution

of prediction errors in Figure 5(b) for models based on SVR

and GBRT.

It appears clearly that the learned models, in particular the

ones based on SVR and GBRT, perform significantly better

than the SINR-based models. In terms of R2-score, learned

SVR and GBRT models improve the prediction accuracy by

54% and 71%, respectively, compared to SINR models (which,

5Our dataset is publicly available: http://www.hrzn.ch/data/lw-data.zip



(a) (b)

SINR regr.
tree

SVR GBRT

0.4

0.6

0.8

R
2
-s

co
re

R2-score

10

15

20

25

ro
o
t

m
ea

n
-s

q
u
ar

ed
er

ro
r

(R
M

S
E

)RMSE

−40 −20 0 20 40
0

0.2

0.4

0.6

0.8

1

prediction error [Mbps]

p
ro

p
o
rt

io
n

o
f

ex
p
er

im
en

ts

mean learned (SVR)

SINR learned (GBRT)

.

Figure 5: Summary of prediction performance for various models (a)
and empirical CDF of prediction errors (b). The “mean” model in
plot (b) represents the errors obtained by a baseline predictor that
always predicts the mean throughput of the training set.

we recall, are the only known class of models capturing

phenomena such as overlapping channels). In terms of error

distribution, 90% of the errors made by learned models are

between −25 Mbps and 25 Mbps, whereas 90% of the errors

made by SINR-based models are between −35 Mbps and

36 Mbps. The fact that learned models are more accurate

is remarkable; it demonstrates that, as far as performance

prediction is concerned, learning abstract models coming from

the machine learning domain can be much more efficient than

trying to fit (or seed) pre-existing specialized models.

In order to visualize the actual predictions in detail, we

also show a scatter plot of the throughputs predicted by SINR

models and learned SVR models, against the actual measured

throughputs, in Figure 6. Clearly, SVR models perform much

better and produce fewer outlying predictions than SINR

models. Note that obtaining perfect predictions is impossible

here, considering the fact that both the measured features and

the throughput are highly noisy variables, measured with com-

modity hardware. To illustrate this, we examine in more detail

the features corresponding to the worst prediction obtained by

both models (shown by an arrow on the plots – incidentally,

this is the same point for both models). This point corresponds

to a link l subject to no (controlled) interference (i.e., K = 0),

with an apparently good channel quality (the measured RSSI

is -59 dBm), and using a bandwidth of 40 MHz, supposedly

yielding the largest capacity. Yet, despite these features, the

measured throughput was low. We can only speculate about

the causes for this discrepancy (it may be due to especially

high noise or software factors). In any case, this example

illustrates the limits of throughput predictability with imperfect

information.

C. Generalization

Due to the evaluation on test set, the previous results address

cases where predictions are produced for unseen combinations

of features. We now attempt to push our models further, by

predicting throughputs for unknown links, potentially belong-

ing to different environments.

1) Predictions for Unknown Links: For each possible link

l, we remove both l and its reverse link (obtained by inverting

the transmitter and the receiver of l) from the training set. We

SINR model learned model (SVR)

0 50 100
0

50

100

measured tl [Mbps]

p
re

d
ic

te
d
t̂ l

[M
b
p
s]

0 50 100
0

50

100

measured tl [Mbps]

Figure 6: Predicted versus measured throughput, for SINR and a
learned model, on a test set of 200 points.

then predict throughput for each data point that contains l (or

its reverse link), and show the results in Figure 7. Compared

with Figure 5(a), some models (especially the ones based on

regression trees) see their accuracy slightly decreased. How-

ever, the models learned with SVR still perform remarkably

well; in terms of R2-score, their accuracy is reduced by less

than 4%, and they still improve the accuracy by 49% compared

to SINR-based models.

2) Different Environments: We now manually divide the

links present in our trace in three distinct categories, depending

on the type of attenuation that they experience. The categories

are shown in Figure 4, and they correspond to the following

link division: (i) links that traverse mostly empty space, (ii)

links that traverse sparsely spaced walls and (iii) links that

traverse densely spaced walls.

For each category, we remove all the links (and their reverse)

belonging to this category from the training set. We then build

the test set so as to predict throughput for links belonging

only to this category. The goal of this experiment is to test

prediction accuracy in the worst possible conditions: each

model is learned on links that operate in conditions radically

different than the conditions prevailing during the actual

predictions. In addition to the three link categories (i)-(iii), we

also split our testbed in two halves A and B (also shown in

Figure 4). The resulting accuracies are shown in Figure 8. Even

in these difficult cases, the learned models based on SVR show

a graceful degradation and keep a relatively high accuracy

(with R2-scores always larger than 0.54). When predicting on

half B with models learned on half A, models based on SVR

even obtain similar accuracies as when learning using the full

testbed. This allows us to draw some conclusions on the extent

to which our method generalizes. Even when learning models

on a different part of the testbed, or using radically different

links, abstract models based on machine learning still have

far more predictive power than measurement-seeded models

based on SINR.

D. How Much Learning is Needed?

Finally, we measure the accuracy as a function of the

training set size N . For different N , we learn models using

N experiments sampled at random from our experiment trace.

We then predict the throughput for all the other experiments,

and measure the R2-score. The results are shown in Figure 9.

Using N = 100 training experiments is enough to obtain

better accuracy than SINR models, and N = 1000 experiments



SINR regression
tree

.

SVR GBRT

0.4

0.6

0.8

R
2
-s

co
re

R2-score

10

15

20

25

ro
o
t

m
ea

n
-s

q
u
ar

ed
er

ro
r

(R
M

S
E

)

RMSE

Figure 7: Prediction accuracy on links
that have never been observed during the
learning phase.

predictions for

(i), learning

on (ii) and (iii)

predictions for

(ii), learning

on (i) and (iii)

predictions for

(iii), learning

on (i) and (ii)

predictions for

halfB, learning

on half A

0.2

0.4

0.6

0.8

R
2
-s

co
re

SINR learned (SVR) learned (GBRT)

Figure 8: Prediction accuracy for never-observed
groups of links. Even in the difficult cases, learned
models largely outperform SINR models.

102 103
0.2

0.4

0.6

0.8

Training set size N

R
2
-s

co
re

SINR

learned (SVR)

learned (GBRT)

Figure 9: Prediction accuracy as a func-
tion of number of measurements N (note
the logarithmic scale of the x-axis).

already yield good predictive accuracies. If each experiment

lasts 10 seconds (which is the duration that we employed),

an efficient performance model for an entire building-scale

network such as ours can be learned in less than 6 hours.

V. SPECTRUM ALLOCATION

To show that learned models can be useful in practice, we

designed and implemented a complete decentralized algorithm

for the joint allocation of spectrum (channel center-frequency

and bandwidth) and transmit power. Due to space constraints,

we only give a brief overview of our algorithm, and refer the

reader to [16] for more details.

A. Algorithm for Spectrum and Transmit Power Allocation

Overall Description. We consider a utility maximization

setting, where each link l is attached a utility function

Ul : R → R. The utility functions are arbitrary and need

not be concave. The APs running our algorithm wake up

after random time intervals (with typical mean durations of

a few minutes). When an AP A wakes up, it contacts its

direct neighboring APs, and requests information about the

current configurations, channel measurements and traffic loads

(i.e., the current features). Using this information, A predicts

the achievable throughput (and the corresponding utility) on

each of its attached links, for each possible configuration of

spectrum and transmit power. Note that, even though these

predictions must account for complex spectrum and channel

settings, they are cheap and easy to obtain using one of our

learned model. A then samples a new configuration, accord-

ing to the Gibbs distribution, which gives more weight to

configurations with large achievable utilities. It can be shown

that, even though the algorithm acts distributively, it converges

towards configurations such that the link throughputs xl’s

maximize
∑

l Ul(xl), where the sum runs over all the links in

the network. Our algorithm has similar convergence properties

as [3] and [15], and we give its full specification in [16].

Implementation. We implemented the complete distributed

algorithm in about 3000 lines of C++ code, using Click [20]

in user space. Our implementation comprises a distributed

neighbor discovery mechanism, in the form of a rendez-vous

protocol. The APs periodically switch to a pre-determined

20 MHz channel (to have the largest possible communication

range), and send a broadcast frame that contains their public

(wired) IP address. The neighboring APs that overhear this

address then use their wired connection for the actual collabo-

ration. In particular, the APs communicate various up-to-date

features that they measure from neighboring APs, as well as

from their own and neighboring clients. They also inform their

neighbors about their own current traffic loads (which they

can easily measure themselves). The performance predictions

are all obtained with a black box model learned with SVR. In

our evaluation, the algorithm deals with random configurations,

channel gains and AP-clients combinations that have in general

never been observed during the learning procedure.

B. Algorithm Evaluation

Experimental Methodology. Unless otherwise stated, we

use the following experimental methodology. We randomly

select between 8 and 10 AP-client pairs among the 22 nodes

of our testbed. Each pair starts in a random configuration of

channel, width and transmit power. The APs send saturated

UDP traffic generated by iperf to their clients. The mean

wake-up time is set to 600 seconds (meaning that each

AP “reevaluates” its spectral configuration every 10 minutes

on average). In addition, we use the following three utility

functions Ul(xl) in our study:

• Ul(xl) = xl. When all links use this utility function,

the optimization target consists in maximizing the sum of

throughputs, irrespective of other considerations such as

fairness. We denote this utility function U thr.

• Ul(xl) = log(1 + xl). Using this function is equivalent to

maximizing proportional fairness; we denote it Uprop.

• Ul(xl;α) = (1 − α)−1x1−α
l . This is the α-fairness utility

function defined in [24], with α > 1. Taking α → ∞
yields allocations that are max-min fair, and 1 < α < ∞
represents a compromise between proportional fairness and

max-min fairness. We denote this function Uα.

Finally, we benchmark our algorithm against the one pro-

posed in [19]. This algorithm finds configurations of channel

center frequencies that minimize the overall interference. We

augment it to sample bandwidths and transmit powers as fol-

lows, for a fair comparison. We modulate the power received

by a node a from a node b by (i) the transmit power used by b
and (ii) the overlap between a’s receive spectrum mask and b’s
transmit spectrum mask (see [23]), assuming perfect band-pass

filters. We run the algorithm [19] (with our augmented metric)



offline, using the whole testbed channel gains matrix in input,

for 1000 iterations. The resulting allocations are denoted K+,

and are run for 1000 seconds in our testbed. This is repeated

10 times to obtain confidence intervals.

Performance. We conduct experiments where all the links

use U thr, Uprop, or Uα with α = 4. Figure 10 shows the

steady state throughput and Jain’s fairness index, obtained by

computing (
∑

l xl)
2
/(L ·

∑

l x
2

l ), where xl is the throughput

obtained by link l. Quite remarkably, the practical results

obtained on the testbed reflect well the objectives of the

various utility functions: U thr provides the greatest throughput,

while both Uprop and Uα improve fairness. Furthermore, in

line with theoretical expectations, Uα provides slightly better

fairness and lower throughput than Uprop. To the best of our

knowledge, this is the first observation that the framework of

utility maximization can be used with spectrum assignment to

achieve various optimization objectives in a real testbed.

The key element that allows our algorithm to jointly op-

timize the network over all three parameters is our learned

black box model. To see this, we also plot the throughput

and fairness for U thr obtained when our algorithm uses a

measurement-seeded SINR model (instead of a black box)

in Figure 10 (labeled SINR). It appears clearly that both

throughput and fairness are improved (and less variable) when

using a learned model.

Selected Configurations. Figure 11 shows the distribution

of transmit powers selected by the algorithm (over all nodes

and all experiments), for the three utility functions. Fairer

policies use lower transmit power for a higher fraction of

time (see Uα vs U thr). This means that the aggressiveness

of the configurations (here in spatial domain), can be directly

controlled by the utility functions.

We now study the impact of traffic loads, as it is taken

into account by our models. We perform experiments where

each link l has a traffic load loadl, which is randomly chosen

between 10 and 80 Mb/s. We use the utility functions Ul(xl) =
min{xl/loadl, 1}. This function is equivalent to U thr when

all links are saturated, and it is maximized as long as all links

obtain a throughput that satisfy their demand. Figure 12 shows

the proportion of time that the algorithm selects a 40 MHz

channel width (on the left y-axis), and the average transmit

power in dBm (right y-axis), as a function of traffic load at

the AP that makes these choices.

We observe an elegant load-balancing pattern, as APs with

heavier loads use more spectrum and larger transmit powers.

This is a desirable feature (see e.g., [12]), and it directly relies

on the ability of our learned models to suitably capture the

interference effects of variable traffic loads. Interestingly, note

that, when all APs generate 100 Mb/s of load (labeled “all

100” in Figure 12), the APs lower their resource consumption

compared to cases with heterogeneous loads. This is because,

in these cases, heavily-loaded APs compete with other heavily-

loaded APs, and they naturally collaborate to share spectrum

equitably. Overall, our black box oracle allows the resource

allocation to finely load balance spectrum usage as a function

of the utilities and fairness objectives.

VI. LIMITATIONS AND DISCUSSION

We have evaluated our learned models in static conditions,

a setting for which throughput prediction is somewhat easier

(compared to say, high mobility with fast fading, short channel

coherence times, etc). This is because, in this paper we delib-

erately restrict ourselves to using features easily accessible

on commodity hardware (e.g., RSSI measurements). Such

features are only meaningful on relatively coarse timescales

(typically seconds) and cannot capture such fast-changing

phenomena. In this sense, our black boxes suffer the same

timescale limitations as any model (including SINR) using

similar measurements. Whether a similar learning framework

could be applied to shorter timescales is left for future work.

Importantly, using features operating at relatively coarse

timescales already allows our learned models to be useful

in practice. In Section V, we considered a setting where the

global spectrum consumption are re-evaluated every few min-

utes by the APs6. Such global, relatively slow-varying spec-

trum allocation complements well (and provides more spec-

trum to) existing PHY techniques operating at fast timescales,

such as interference cancellation and alignment.

VII. RELATED WORK

Performance Models. Several papers propose

measurement-based approaches to model performance

and interference in 802.11 networks. In particular, [18], [21],

[25], [27] use initial measurement campaigns, where the

number of measurements is typically a function of the number

of nodes present in the network. [27] fits a model based on

the SINR in order to estimate the packet loss probability,

whereas [18], [25] and [21] use measurements-based Markov

chain models to predict the capacity and/or interference of

802.11 networks. All of the above models are agnostic to the

spectral configurations of the nodes, and they are designed to

work when the links operate with a fixed channel width. In

this paper, we also use an initial measurement phase. However,

we are not constrained to using any particular model, but

rather employ machine learning to learn any suitable model

that captures both PHY and MAC layer complexities together.

[13] observes that measurements at the OFDM subcarrier

level largely improves the accuracy of performance prediction.

Unfortunately, the method does not take interference into ac-

count, and it cannot be used to make performance predictions

when several links operate at the same time.

Finally, a few papers propose to use machine learning

techniques in the context of wireless networks. [7] discusses

the use of k-NN for link adaptation and [6] proposes an ar-

chitecture for cognitive radios with learning abilities. However,

these works do not attempt to predict performance. To the best

of our knowledge, ours is the first work using machine learning

to predict actual Wi-Fi performance.

Resource Allocation. Some recent works consider simul-

taneous channel center frequency and width allocation for

6At faster timescales, the overhead of switching to different spectrum bands
on commodity hardware would exceed the benefits of employing efficient
spectrum allocations.



random U thr Uprop Uα K+ SINR
250

300

350

400

450

to
ta

l
th

ro
u

g
h

p
u

t
[M

b
/s

] total thr.

0.60

0.65

0.70

0.75

0.80

fa
ir

n
e
ss

in
d

e
x

fairness

Figure 10: Throughput and fairness for different
utility functions. We also show the results for ran-
dom configurations, the ”K+” algorithm, and our
algorithm with U thr , but using the measurement-
seeded SINR model instead of a learned model.

0 5 10 15 20

transmit power [dBm]

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n

se
le

ct
e
d U thr

Uprop

Uα

Figure 11: CDF of transmit powers
selected with different utilities and
sampling policies. Fair policies se-
lect lower transmit powers.

10-20 20-30 30-40 40-50 50-60 60-70 70-80 all 100
load [Mb/s]

0.4

0.5

0.6

0.7

0.8

0.9

p
ro

p
o
rt

io
n

o
f

4
0

M
H

z
se

le
ct

e
d

width

10

12

14

16

18

20

a
v
e
ra

g
e

tr
a

n
sm

it
p

o
w

e
r

[d
B

m
]

power

Figure 12: Proportion of time a bandwidth of 40
MHz is selected, and selected transmit power, as
a function of traffic load. Efficient load balanc-
ing is achieved, as heavily loaded APs sample
wider bandwidths and larger transmit powers.

802.11 networks. [26] runs the spectrum allocation jointly with

scheduling decisions at a central controller, and [17] proposes

a distributed algorithm for the joint allocation of center fre-

quencies and bandwidths. None of these algorithms considers

the transmit power, and they do not adapt to various utility

functions. Our learned models predict achievable throughputs,

which can be directly plugged into the utility maximization

framework. This removes the need to use indirect optimization

objectives (such as minimization of interference, which often

does not coincide with performance maximization [17]).

The theoretical works that are the closest to ours are [3],

[15]. These papers propose optimal algorithms for channel

and/or power selection, but do not consider channel width.

Further, they have not been implemented in real networks.

VIII. CONCLUSIONS

We investigated and validated a new approach for predicting

the performance of Wi-Fi networks. Rather than manually

fitting complex models to capture complex dependencies,

we showed that it is possible to directly learn the models

themselves, from a limited set of observed measurements. This

approach bypasses the usual modeling process, which requires

both deep knowledge and tedious analysis, and yet often yields

models that are either too restricted or too inaccurate. We

observed that abstract black box models built using supervised

machine learning techniques – without any deep knowledge of

the complex interference dynamics of 802.11 networks – can

largely outperform the dominant class of SINR-based models.

Further, we have shown that these models still work when

they have to predict performance for links that have never

been observed during the learning phase.

We have used one such model as an oracle in a new

distributed utility-optimal resource allocation algorithm. We

observed that our algorithm adapts well to various optimiza-

tion criteria, and that our learned model is instrumental for

achieving good performance in these tangled settings.

REFERENCES

[1] G. Bianchi. Performance analysis of the ieee 802.11 distributed
coordination function. IEEE JSAC, 2000.

[2] C. M. Bishop. Pattern Recognition and Machine Learning. Springer-
Verlag New York, 2006.

[3] S. Borst, M. Markakis, and I. Saniee. Distributed power allocation and
user assignment in OFDMA cellular networks. In Allerton, 2011.

[4] I. Broustis, J. Eriksson, S. V. Krishnamurthy, and M. Faloutsos. Impli-
cations of power control in wireless networks: a quantitative study. In
PAM, 2007.

[5] R. Chandra, R. Mahajan, T. Moscibroda, R. Raghavendra, and P. Bahl.
A case for adapting channel width in wireless networks. In ACM

SIGCOMM, 2008.
[6] C. Clancy, J. Hecker, E. Stuntebeck, and T. O’Shea. Applications

of machine learning to cognitive radio networks. IEEE Wireless

Communications, 2007.
[7] R. C. Daniels and R. Heath. An online learning framework for link

adaptation in wireless networks. In IEEE ITA, 2009.
[8] L. Deek, E. Garcia-Villegas, E. Belding, S.-J. Lee, and K. Almeroth.

The impact of channel bonding on 802.11n network management. In
ACM CoNEXT ’11.

[9] M. Durvy, O. Dousse, and P. Thiran. Modeling the 802.11 protocol
under different capture and sensing capabilities. In INFOCOM, 2007.

[10] R. Etkin, A. Parekh, and D. Tse. Spectrum sharing for unlicensed bands.
Selected Areas in Communications, IEEE Journal on, 2007.

[11] M. H. Franck, F. Rousseau, G. Berger-sabbatel, and A. Duda. Perfor-
mance anomaly of 802.11b. In IEEE INFOCOM, 2003.

[12] R. Gummadi and H. Balakrishnan. Wireless networks should spread
spectrum based on demands. In ACM HotNets, 2008.

[13] D. Halperin, W. Hu, A. Sheth, and D. Wetherall. Predictable 802.11
packet delivery from wireless channel measurements. In SIGCOMM’10.

[14] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical

learning: data mining, inference and prediction. Springer, 2008.
[15] N. Hegde and A. Proutiere. Optimal decentralized spectrum sharing: A

simulation approach. In Proc. CISS, Mar. 2012.
[16] J. Herzen, N. Hegde, and H. Lundgren. Learning wi-fi performance

(technical report). http://www.hrzn.ch/publications/learning-tr.pdf.
[17] J. Herzen, R. Merz, and P. Thiran. Distributed spectrum assignment for

home wlans. In IEEE INFOCOM, 2013.
[18] A. Kashyap, S. Ganguly, and S. R. Das. A measurement-based approach

to modeling link capacity in 802.11-based wireless networks. In ACM

MobiCom, 2007.
[19] B. Kauffmann, F. Baccelli, A. Chaintreau, V. Mhatre, K. Papagiannaki,

and C. Diot. Measurement-based self organization of interfering 802.11
wireless access networks. In IEEE INFOCOM, 2007.

[20] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The
click modular router. ACM Transactions on Computer Systems, 2000.

[21] Y. Li, L. Qiu, Y. Zhang, R. Mahajan, and E. Rozner. Predictable
performance optimization for wireless networks. In SIGCOMM, 2008.

[22] V. Mhatre, K. Papagiannaki, and F. Baccelli. Interference mitigation
through power control in high density 802.11 WLANs. In IEEE

INFOCOM, 2007.
[23] A. Mishra, V. Shrivastava, S. Banerjee, and W. Arbaugh. Partially

overlapped channels not considered harmful. In ACM Sigmetrics, 2006.
[24] J. Mo and J. Walrand. Fair end-to-end window-based congestion control.

IEEE/ACM Transactions on Networking (ToN), 8(5):556–567, 2000.
[25] L. Qiu, Y. Zhang, F. Wang, M. K. Han, and R. Mahajan. A general

model of wireless interference. In ACM MobiCom, 2007.
[26] S. Rayanchu, V. Shrivastava, S. Banerjee, and R. Chandra. FLUID:

Improving throughputs in enterprise wireless lans through flexible chan-
nelization. In ACM MobiCom, 2011.

[27] C. Reis, R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan.
Measurement-based models of delivery and interference in static wire-
less networks. In ACM SIGCOMM, 2006.


