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Abstract

The Poisson likelihood with rectified linear function as non-linearity is a physically plausible
model to discribe the stochastic arrival process of photons or other particles at a detector.
At low emission rates the discrete nature of this process leads to measurement noise that
behaves very differently from additive white Gaussian noise. To address the intractable
inference problem for such models, we present a novel efficient and robust Expectation
Propagation algorithm entirely based on analytically tractable computations operating re-
liably in regimes where quadrature based implementations can fail. Full posterior inference
therefore becomes an attractive alternative in areas generally dominated by methods of
point estimation. Moreover, we discuss the rectified linear function in the context of other
common non-linearities and identify situations where it can serve as a robust alternative.

Keywords: Expectation Propagation, Bayesian Poisson Regression, Cox Process, Poisson
Denoising, Rectified Linear function

1. Introduction

Inhomogeneous Poisson processes with stochastic intensity functions, so called Cox process,
have become an indispensable modeling framework to describe counts of random phenomena
in various contexts. For example they are used to map the rate at which certain social, eco-
nomical or ecological events occur in space and/or time (Vanhatalo et al., 2010; Diggle et al.,
2013). In neuroscience, they motivate the Linear-Nonlinear-Poisson cascade model, widely
used to describe neural responses to external stimuli (Pillow, 2007; Gerwinn et al., 2010;
Park and Pillow, 2013; Park et al., 2014). Similar models have been applied to collaborative
filtering tasks to understand user preferences from implicit feedback (Seeger and Bouchard,
2012; Ko and Khan, 2014). In image processing, the noise process in photon-limited ac-
quisition scenarios, typical for astronomical- and biomedical imaging, is Poisson (Starck
and Murtagh, 2002; Dupé et al., 2008; Carlavan and Blanc-Féraud, 2012), an observation
that e.g. the Richardson-Lucy model for deconvolution is based on (Richardson, 1972; Lucy,
1974).

Common to all of these examples is the probabilistic setup using the Poisson likelihood
in Eq. 1 to describe the generation of a vector of discrete observations y = [yi]i=1,...,N ∈ NN .

P (y|λ) =

N∏
i=1

1

yi!
λyii e

−λi (1)
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Exponential Softplus Rectified-Linear

g(f) exp(f) log(1 + exp(f)) max (0, f)

Table 1: Typical non-linearities (see text)

The observations are independently sampled, given the latent intensities λ = [λi]i=1,...,N ∈
RN≥0, which are themselves considered to be stochastic quantities. They are parameterized

as λi = g(fi), where f = [fi]i=1,...,N ∈ RN is a real-valued multi-variate random variable
and g : R 7→ R≥0 is a non-linear function that enforces non-negativity.

Several choices for g can be found in the literature, summarized e.g. in (Pillow, 2007),
which we list in Table 1. In this work we are primarily concerned with studying the rectified-
linear(RL) function. While clearly related, we avoid the terminology used for generalized
linear models (McCullagh and Nelder, 1989) where the g−1 is referred to as the link function
since the RL function is not invertible. Instead we adhere to terminology used in deep neural
networks where the RL function as a replacement for sigmoidal non-linearities has sparked
recent interest leading to several comparative studies (Glorot et al., 2011; Zeiler et al., 2013;
Maas et al., 2013).

In all of the above examples posterior inference of the latent variable f is intractable
and requires approximations due to the use of non-conjugate priors. Approximate inference
in the presence of the RL function has, to the best of our knowledge, not been studied,
in contrast to its differentiable alternatives, especially the exponential function. Thus, the
problem that we address in this work is to devise a practical inference method for Poisson
likelihood models with the RL function as non-linearity. We motivate the relevance of such
models with two arguments: robustness against outliers and physical plausibility for certain
applications.

Robustness against outliers. The non-linearity relates the outcome of the latent
variable maps to the intensity of the Poisson process. We qualitatively illustrate the effect
of the different non-linearities on the posterior mean intensity E [λ|y] in Figure 1, where
we fitted Model 1 with a GP prior to the coal mining disaster dataset (Jarrett, 1979)1.
The dataset consists of records of accidents over time, each of which is represented by a
black line. Most notable is the different behavior in the high density area on the left, to
which the exponential non-linearity responds strongest. While the exponential non-linearity
was successfully used in various applications (Diggle et al., 2013; Vanhatalo et al., 2010;
Gerwinn et al., 2007; Ko and Khan, 2014), it may have a potentially adverse effect on the
robustness against outliers and thus could hurt generalization performance. This argument
is not new, and was brought forward e.g. in the context of recommender systems (Seeger
and Bouchard, 2012) and neuroscience (Park et al., 2014). In both cases the authors prefer
the softplus non-linearity. Given that the RL function lower-bounds the softplus function
and has the same asymptotic behavior, it is a viable alternative.

1. We took this example from (Vanhatalo et al., 2013), using the same setup, i.e. isotropic squared expo-
nential kernel function and constant mean. Inference is done using Expectation Propagation. Hyper-
parameters for mean and covariance function are learned. More information on the data can be found
in Section 3.2.
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Figure 1: Coal Mining Disaster Data: posterior means of latent functions E [g(f )|y ]. We recognize
the stronger peaking behavior of the exponential non-linearity in high-density regions, while the
other non-linearities are more sensitive in low density regions.

Physical Plausibility. Established models for Poisson noise, e.g. for image deconvo-
lution (Richardson, 1972; Lucy, 1974), explicitly require the use of the RL non-linearity,
because the intensity of the noise process is non-negative and relates linearly to the un-
derlying image intensity. Thus, the softplus function is not a suitable option, because low
intensities can only be achieved by pushing the corresponding image intensity fi towards
−∞.

Although image reconstruction problems are typically addressed by point estimation,
there are compelling arguments for full posterior inference: Apart from benefits such as
uncertainty quantification and a principled way for hyper-parameter learning, a practical
inference method may be necessary to tackle difficult high-level problems in this context,
such as blind deconvolution. For this severely ill-posed problem, where neither the blur
kernel nor the original image are known, (Levin et al., 2011) show that joint MAP estimation
tends to lead to degenerate solutions which can be avoided by using the marginal likelihood
for learning.

A major issue in tackling approximate inference is the non-differentiability of the log-
posterior when using the RL function as well as due to the use of common image pri-
ors (Seeger, 2008; Seeger and Nickisch, 2011b), making many popular gradient-based meth-
ods such as Laplace’s method or Variational Bayes inconvenient or impossible to apply (Ger-
winn et al., 2007). We therefore chose the Expectation Propagation algorithm (Minka, 2001;
Opper and Winther, 2000), known to gracefully deal with a much larger variety of models
while delivering practical accuracy and performance (Kuss and Rasmussen, 2005; Nickisch
and Rasmussen, 2008). Its greater generality however can come at the cost of a numer-
ically more challenging implementation. Meeting these challenges is at the heart of our
contributions presented here, which we summarize as follows.

Contributions. We derive an Expectation Propagation algorithm for the Poisson
model with the rectified linear function based entirely on analytically tractable computa-
tions. We fully characterize the tilted distribution, the central object of the EP algorithm,
in terms of its moments and provide an efficient and robust formula to compute them. We

3



Ko Seeger

demonstrate that in comparison to a quadrature based implementation (a) our formulation
is more efficient to compute and (b) can operate in regimes where quadrature experiences
numerical instabilities. We conduct a series of experiments that corroborate the utility of
using the identity link: On the coal mining data set we show that compared to the RL func-
tion, using the exponential function can be harmful in terms of generalization performance.
On a deconvolution problem on natural images, where the use of other non-linearities led to
numerical instabilities and convergence issues, we show that taking into account the correct
noise model significantly reduces the reconstruction error.

This paper is outlined as follows. In Section 2, we review prior models and derive the
EP algorithm for the RL model. In Section 3 we present experimental results and conclude
in Section 4.

2. Inference for the Poisson Likelihood Model

Before proceeding to discuss inference methods for the Poisson likelihood model, we briefly
introduce the relevant priors on the latent variable f . Here, we consider two classes of
prior distributions, that are commonly encountered in practice: Gaussian process (GP)
priors (Rasmussen and Williams, 2005) and sparse linear models (SLM) (Seeger, 2008;
Seeger and Nickisch, 2011b).

Gaussian Processes. GP priors prominently feature in applications of spatio-temporal
statistics to social or ecological questions (Diggle et al., 2013; Vanhatalo et al., 2010),
where this model is often referred to as Gaussian Cox process, or to the analysis of neu-
ral spike counts (Pillow, 2007; Park and Pillow, 2013; Park et al., 2014) as the multi-
variate normal is well suited to represent dependencies and dynamics in the input do-
main. We use the following notation: Let f : X 7→ R be a latent function distributed as
f ∼ GP(m(x), k(x,x′)), where m(x) and k(x,x′) denote the mean- and covariance func-
tions. For N inputs {xi ∈ X}i=1,...,N , the prior over f can be written as a multi-variate
normal distribution:

P (f ) = N (m,K) (2)

with mean vector mi = m(xi) and covariance- or kernel matrix Ki,j = k(xi,xj) for all
pairs of inputs.

Sparse Linear Models. In SLMs f itself is defined as a linear function f = Xu of a
latent vector u, where u exposes non-Gaussian, heavy-tailed statistics in an appropriately
chosen linear transform domain s = Bu. SLMs are often encountered in the context of
inverse problems, e.g. in image processing, where the prior belief that image gradients or
Wavelet coefficients of natural images are sparse (Simoncelli, 1999), has become a popular
strategy to regularize ill-posed reconstruction problems. For example, for the deconvolution
problem we define the linear operator X such that multiplying it with a vectorized image u
amounts to convolving the image with a blur kernel h, i.e. f = h∗u = Xu. Assuming that
u is well described by piecewise constant functions, one could be interested in penalizing
the total variation of u, such that B = [∇Tx ∇Ty ]T consists of the gradient operators in x
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Non-Linearity Prior Laplace VB EP

Exponential
GP Tract.

Tract. Approx.
SLM N/A

Softplus
GP Tract.

Approx. Approx.
SLM N/A

Rect.-Lin.
GP Constr.

N/A Tract. (NEW)
SLM N/A

Table 2: Variational Inference methods for different non-linearities. We use the following abbrevi-
ations: Tract.: Computations are analytically Tractable (i.e. gradients/updates available in closed
form). Approx.: Computations require additional Approximations, such as bounding techniques or
numerical integration. Constr.: Constrained optimization is required.

and y direction. We model sparsity for s independently for each transform coefficient:

P (u) =
M∏
j

l(sj) (3)

For simplicity we consider the Laplace potential l(sj) = e−τ |sj | (Gerwinn et al., 2007; Seeger,
2008; Seeger and Nickisch, 2011b).

Before we begin the discussion of methods for approximate inference, we unify our
notation. We would like to approximate an intractable distribution of the following form:

P (f ) = Z−1
M∏
j=1

tj(fj) t0(f ) (4)

For GPs the optional coupled potential t0(f ) is the prior defined in Eq. 2, and we have
a product of the M = N likelihood potentials tj(fj) = P (yj |λj). For SLMs t0(f ) = 1,
and we redefine f = [XT , BT ]Tu. The potentials are tj(fj) = P (yj |λj) for j ≤ N and
tj(fj) = l(fj) for j > N . We denote the approximation to P (f ) by Q(f ). Here, we seek
to choose Q(f ) = N (f |µ,Σ) from the family of multivariate normal densities. This is
justified by the fact that the likelihood for all non-linearities in Table 1 as well as the priors
mentioned here are log-concave in f , thus leading to a unimodal posterior (Paninski, 2004).

In Table 2 we list common variational inference techniques to find the parameters of the
approximation. While Laplace’s method is the preferred method in the GP setting (Park
and Pillow, 2013; Diggle et al., 2013; Park et al., 2014), it cannot be applied to SLMs,
because by design we expect many transform coefficients to be zero, where the Laplace po-
tential is not differentiable. Another popular variational Bayesian (VB) technique is referred
to as Variational Gaussian approximation (Opper and Archambeau, 2009) or KL method
(Nickisch and Rasmussen, 2008; Challis and Barber, 2013). It is analytically tractable for
the exponential function (Ko and Khan, 2014), whereas the softplus function requires ap-
proximations, e.g. quadrature or bounding techniques, as shown in (Seeger and Bouchard,
2012). For the RL function, however, this method is not even defined. This can be seen by
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examining the VB objective which is the following Kullback-Leibler divergence:

min
µ,Σ

DKL [Q(f ) ||P (f )] (5)

Expanding it as usual reveals that the logarithm of Eq. 1 needs to be integrated over the
real line, which is infinite in case of the RL function:

DKL [Q(f ) ||P (f )] = EQ

[
log

Q(f )

t0(f )

]
−

M∑
j=1

EQ [log tj(fj)] (6)

Next, we introduce Expectation Propagation which applies in spite of constrained and
non-differentiable potentials.

2.1. Expectation Propagation

For this introduction we adopt the perspective and the notation of and refer to (Rasmussen
and Williams, 2005) for a more detailed introduction. EP (Minka, 2001; Opper and Winther,
2000) approximates P (f ) in Eq. 4 by approximating each non-Gaussian potential tj(fj)
using unnormalized Gaussians t̃j(fj) = Z̃j N (fj |µ̃j , σ̃2j ) to form a Gaussian approximation
Q(f ) following the same factorization:

Q(f ) = Z−1EP

M∏
j=1

t̃j(fj) t0(f ) (7)

The EP-approximation to the marginal likelihood is given by:

ZEP =

M∏
j=1

Z̃j

∫ M∏
j=1

N (fj |µ̃j , σ̃2j ) t0(f ) df (8)

EP was devised to address the shortcomings of the assumed density filtering (ADF)
method and can be motivated by and in special cases shown to minimize the KL-divergence
DKL [P (f ) ||Q(f )] (Minka, 2001). Note the order of the arguments in contrast to Eq. 6.
Since this quantity is generally intractable, EP employs the following strategy to determine
the variational parameters µ̃j , σ̃

2
j .

We define the i-th marginal cavity distribution by removing the i-th approximate po-
tential t̃i(fi) from Q(f ) and marginalizing over {fj : j 6= i}, denoted as f\i:

Q−i(fi) = N
(
fi|µ−i, σ2−i

)
∝
∫ ∏

j 6=i
t̃j(fj) t0(f ) df\i (9)

The so called tilted distribution replaces the approximate potential t̃i(fi) in Q(f ) by the
true non-Gaussian potential ti(fi) by multiplying it with the cavity marginal:

P̂ (fi) = Ẑ−1i ti(fi)Q−i(fi) where Ẑi =

∫
ti(fi)Q−i(fi) dfi (10)
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The criterion to minimize in order to update the parameters of t̃i is the KL-divergence

between the tilted- and the variational distribution DKL

[
P̂ (f ) ||Q(f )

]
. This operation

can be shown to be expressed in terms of the following moment matching condition:

EQ [fi] = EP̂ [fi] VarQ [fi] = VarP̂ [fi] (11)

The constant Z̃i is chosen such that the normalization constants of P̂ (fi) and Q(fi) match,
i.e. we solve:

Z̃i

∫
N (fi|µ̃i, σ̃2i )Q−(fi) dfi = Ẑi (12)

The EP update therefore consists of determining the first two moments and the normaliza-
tion constant of the tilted distribution.

Once the parameters of a single t̃j are changed, we can update the representation of
the full approximation Q(f ), which typically consists of µ and VarQ [f ]. This process is
repeated until convergence, i.e. until moment matching is achieved globally.

The update of Q(f ), in particular obtaining VarQ[f ] dominates the algorithm compu-
tationally, due to cubic scaling in the latent dimensionality. The cost can be reduced easily
by doing a pass over all potentials before updating Q. This variant is often referred to as
parallel EP (van Gerven et al., 2010). Convergence is not guaranteed in either case (Seeger
and Nickisch, 2011a). But for log-concave models EP updates are known to be well-behaved,
such that the algorithm converges reliably in practice (Seeger et al., 2007).

To the best of our knowledge, tilted moments for the exponential- and softplus functions
are not available in closed form. Implementations based on quadrature are commonly found
in the context of Gaussian processes (Vanhatalo et al., 2013; Rasmussen and Nickisch, 2010).

Computing tilted marginals is not a trivial task. E.g. plugging Eq. 1 into Eq. 10 shows
that this quantity depends exponentially both on y and f . In Section 3 we illustrate that
evaluating this expression directly during numerical integration can lead to problems.

So far, we have seen that popular methods, such as Laplace and VB approximations, are
not particularly suitable for the RL function in contrast to EP, which in turn depends on the
tractability of tilted moments. Next, we show that for the RL function these computations
are indeed analytically tractable.

2.2. Tractable EP Updates for the Rectified-Linear Function

We drop indices and consider the update of a single approximate potential t̃(s) = Z̃N
(
µ̃, σ̃2

)
.

To obtain the first and second moments, it suffices to compute log Ẑ, α := d
dµ-

log Ẑ and

β := − d2

dµ2-
log Ẑ since log Ẑ is related to the moment generating function. From these quan-

tities, we can directly update the parameters of the approximate potential as shown e.g. in
(Rasmussen and Williams, 2005)2.

Our main result constructively shows how to compute Ẑ.

Proposition 1 The tilted partition function Ẑ can be computed in O(y).

2. See appendix
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Proof The likelihood in Eq. 1 with the RL function the likelihood potential is t(f) =
1
y!f

ye−f I{f≥0}. Therefore, we can write the partition function of the tilted distribution as

Ẑ =
1

y!

∫ ∞
0

fye−fN (f |µ−, σ2−) df (13)

The exponential term results in a shift of the cavity mean and a constant factor:

Ẑ =
1

y!
e

1
2
σ2
−−µ−

∫ ∞
0

fyN (f |µ− − σ2−, σ2−) df (14)

Thus, computing Ẑ boils down to computing the y-th moment of a truncated Gaussian.
Define m = µ− − σ2−, v = σ2−, and κ = − m√

v
. Let Iy =

∫∞
0 fyN (f |m, v) df . For y ∈ {0, 1}

the integral Iy can be readily evaluated as

I0 = 1− Φ(κ) I1 = mI0 +
√
vφ(κ) (15)

where φ(x) is the standard normal density and Φ(x) its CDF. For y > 1 the application of
integration by parts results in a recursion over y3:

Iy =

∫ ∞
0

fy−1fN (f |m, v) df = mIy−1 + v(y − 1)Iy−2 (16)

where we have used that

fN (f |m, v) = mN (f |m, v)− v d
df
N (f |m, v) (17)

For our implementation, we found it more convenient to express Ẑ in terms of Ly :=
d
dm log Iy. We can write it recursively as well4 using Eq. 16:

Ly =
yIy−1
Iy

=
yIy−1

mIy−1 + vIy−2
=

y

m+ vLy−1
(18)

where the base cases are

L0 = φ(κ)/(σ−(1− Φ(κ))) L1 = I0/I1 (19)

Then, we can accumulate Iy recursively in the log-domain:

log Iy = −
y∑
r=1

logLr + log I0 + log(y!) (20)

such that finally

log Ẑ = log Iy − log(y!) +
1

2
σ2− − µ− (21)

3. There is an intimate relation between this form of Ẑ and the solutions of certain differential equations.
The first step of our recursion can be found (Gil et al., 2006), although motivated from a different
perspective.

4. We provide a more detailed derivation in the supplementary material.
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Since d
dmf(m) = d

dµ-
f(m), we conclude that α = Ly − 1. Similar calculations, which we

omit for readability4, show that β = Ly(Ly − Ly−1), such that all relevant quantities can
be computed based on Ly.

An alternative way to characterize moments of P̂ , which allows us to compute them to
higher order is the following

Corrolary 1 The first n moments of P̂ (f) can be computed in O(y + n).

Proof The n-th moment can be written as follows, where we index the partition functions
by y for clarity

EP̂ [fn] =
1

y! Ẑy

∫ ∞
0

fy+ne−fQ−(f) df =
(y + n)! Ẑy+n

y! Ẑy
(22)

Running the recursion up to y + n evaluates all required partition functions in linear time.

This formulation can be evaluated in the log-domain by computing log Ẑy and log Ẑy+n and
exponentiating their difference.

Having access to all moments allows us to compute higher-order cumulants as well.
Thus, for GP priors the techniques to correct the EP approximation described in (Opper
et al., 2013) directly apply to this likelihood.

2.3. Implementation Details

We implemented the EP updates in C/C++ and used the GPML MATLAB toolbox for
experiments (Rasmussen and Nickisch, 2010). We use parallel updating EP with the option
of fractional updates (Seeger, 2008), which turned out to be unnecessary as EP converged
reliably within 15 to 20 iterations. We used MATLAB’s Parallel Computing Toolbox to
compute variance for the SLM experiments with up to 214 variables on NVIDIA Tesla C2070
GPUs with 6 GB device memory built into a workstation equipped with dual Intel Xeon
X5670 CPUs (2.93 GHz), and 128 GB Memory. These computations were performed in
single precision resulting in a large speedup without a negative impact on the convergence
of EP, which can be quite sensitive to inaccurately approximated variances (Papandreou
and Yuille, 2011). Thus with minimal effort and without further optimizations, we could
run a single iteration of EP in about 30 seconds.

3. Experiments

3.1. Synthetic Data

In the experiments on synthetic data we investigated the following two aspects: computa-
tional performance and numerical stability of our formulation in contrast to quadrature.

First, we investigate the numerical stability of quadrature by examining the behavior
for a single EP update for the RL function5. We evaluate the unnormalized tilted density

5. We use MATLAB’s Integral routine.
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as Ẑ P̂ (f) = elog t(f)+logQ−(f) and compute Ẑ for different values of y and different cavity
parameters. Since we can expect the cavity mean to be close to the observation, we set
µ− = y and vary the cavity variance. The outcome is shown in Figure 2a, where red shading
denotes failure of quadrature resulting in an output which is infinite or not a number. In
the green area the output matches our formulation. Our formulation works reliably in all
of these cases.

Numerical Stability of Quadrature
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Figure 2: Left: Transition diagram of numerical stability of EP update using quadrature.
Red shading indicates failure due to numerical instability at a setting. Quadrature cannot handle
large counts and is sensitive to small cavity variances. Our formulation works reliably in this regime
and beyond. Right: Running time. We compare the scaling behavior of the running time of a
single EP update using our formulation vs. adaptive quadrature as a function of the count y. As
shown in Figure 2a, quadrature up to the same counts as our recursion.

Next, we compare the time to compute a single EP update, i.e. Ẑ and the moments of
P̂ (f), using our recursion versus adaptive quadrature. Quadrature needs to be called three
times to compute Ẑ and the first and second moments of P̂ (f), whereas we need to run
our recursion only once. Quadrature can certainly be further optimized. But due to its
complexity, this can be expected to be an error-prone undertaking.

Since our recursion scales linearly in the count y, we plot the time against y in Figure 2b.
We see that our recursion is very efficient and runs robustly up to very large counts. As
seen before, for quadrature, the computations cannot be run for counts beyond the order of
100. For the comparison, we performed 50 warm-up runs for both methods before averaging
the running time over 150 calls to the respective implementations of the EP updates.

3.2. Cox Processes: Coal Mining Disaster Data

In this experiment we present a case where the use of the exponential link hurts general-
ization performance. We return to the introductory example of the coal mining disaster
dataset and setup a prediction task using 10-fold cross validation. The dataset consists of
191 accidents in the period between 1851 and 1962, which we discretized into 100 equidistant
bins. We compare inference for the three different link functions, using EP for all of them,

10



EP for Rectified Linear Poisson Regression

where the updates for the logistic and exponential links is implemented using quadrature6.
As error measure we report the average of the negative log-predictive probabilities of the
samples in the test fold, where the predictive probability for an unseen observation y∗ given
training data y is defined as:

P (y∗|y) =

∫
P (y∗|g(f∗))Q(f∗,f |y) df df∗ (23)

This can be computed as described in (Rasmussen and Williams, 2005) and amounts to
evaluating Ẑ.

As in the demo in (Vanhatalo et al., 2013), we use a GP prior with a isotropic squared-
exponential covariance function and a constant mean. We learn the kernel parameters as
well as the mean by maximizing the marginal likelihood on the training fold. We repeatedly
ran this experiment for 5 draws of the test folds. We report the cross validation errors in
Table 3. This is an example where (asymptotically) linear behaviour seems to lead to better

Exponential Softplus Rect. Linear

CV Error 1.63(±0.01) 1.61(±0.01) 1.60(±0.02)

Table 3: Coal Mining Disaster Data: Cross Validation Results

predictive performance. Softplus- and RL functions perform very similarly in this example,
but better than exponential, consistently across different draws of the cross validation folds
(Figure 3).

CV Error
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Figure 3: Coal Mining Disaster Data: Cross validation errors for different draws of folds. We
show errors of Softplus vs. RL and Exponential vs. RL.

3.3. Sparse Linear Models

In this experiment, we consider a deconvolution problem of natural images under Poisson
noise as described in Section 2. We generate noisy versions of the input as follows: We

6. The Laplace approximation for the logistic- and exponential links yielded similar results, so that we do
not report them here.
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rescale the maximum intensity of the input image u to a value umax ∈ {10, 20, 30}. We
apply Gaussian blur to the image using a 3 × 3 blur kernel h with standard deviation 0.3
to obtain f = h ∗ u and draw observations from P (y|g(f )) for 5 different initializations
of the random number generator. For reconstruction, we use a total-variation prior with
B = [∇Tx ∇Ty ]T and Laplace potentials l(s) = e−τ |s|.

Here, we focus on comparing the correct Poisson noise model against a Gaussian noise
assumption, which is often chosen based on convenience and familiarity. We use parallel
EP for both models to infer the posterior mean as reconstruction. We used grid search to
determine hyper-parameters using the marginal likelihood as criterion. We also tried to
apply the softplus- and exponential non-linearities, but experienced numerical instability
and convergence issues for a wide range of hyper-parameters.

We report relative `1 errors 7 of the reconstructions û = EQ [u|y] in Table 4. At lower
intensities, the signal is much weaker leading generally to a higher error. It is this regime,
where the correct likelihood yields the greatest improvements. As the intensity and thus
the photon counts increase, the noise is better approximated by a Gaussian, such that both
models perform similarly as expected.

Image umax Gauss Poisson RL

Face 32× 32
10 0.488(±0.005) 0.317(±0.007)
20 0.282(±0.008) 0.248(±0.026)
30 0.245(±0.007) 0.207(±0.011)

Cam. Man 128× 128
10 0.182(±0.002) 0.124(±0.001)
20 0.113(±0.001) 0.094(±0.001)
30 0.092(±0.001) 0.084(±0.001)

Lena 128× 128
10 0.224(±0.002) 0.154(±0.003)
20 0.128(±0.001) 0.111(±0.001)
30 0.103(±0.001) 0.095(±0.001)

Table 4: Relative `1 errors for deconvolution with different likelihoods.

Apart from mere reconstruction errors, it is instructive to visually inspect the recon-
structions for both models. We present exemplary reconstructions of the different input
images in Figures 4 and 5. In Figure 4 each row corresponds to a different intensity level.
We denote the reconstruction by ûG and ûP , where a subscript “G” denotes the Gaussian
likelihood and “P” the Poisson likelihood.

Poisson noise is difficult to deal with, especially for natural images such as in Figure 4b,
since fine details become are very hard to distinguish from noise. The Gaussian noise model
explains the data at very low intensities by an overly smooth image. Noise is removed, but
so is also much of the high-frequency content which is crucial for recognizing details. Thus,
fine structures tend to be blurred and contrast diminished. Using the Poisson likelihood
instead captures edges much better. We illustrate this effect by showing a cross section of
Figure 5a in Figure 6 and magnified sub-images in Figures 5b.

7. The relative `1 error of a reconstruction û of an image u is defined as `u(û) = ‖û − u‖1/‖u‖1
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Figure 4: Denoising results at different maximum intensity levels. u: input image. y : noisy image.
ûG: Gaussian likelihood. ûP : Poisson likelihood. Left: Cameraman 128 × 128. Right: Lena
128× 128.

u y ûG ûP
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Figure 5: Left: Denoising results on high-resolution 32 × 32 sub-image at different maximum
intensity levels. Right: Zoom-in comparison at umax = 20 for Cameraman 128 × 128. u: input
image. y : noisy image. ûG: Gaussian likelihood. ûP : Poisson likelihood. The correct noise model
helps to recover contrast and distinguish image features from noise.

4. Conclusion

We studied inference in Poisson models using the rectified linear function as non-linearity.
This function stands out in that it imposes a hard positivity constraint on the underlying
latent variable. This function is the natural and physically plausible choice for models of
Poisson noise in image processing, but is challenging to deal with in practice.
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Figure 6: Cameraman Face: Example cross section of u,y , ûG and ûP . We see that modeling the
Poisson noise correctly helps recovering contrast and edges, which is crucial for image quality.

Here, we derived an analytically tractable Expectation Propagation algorithm for ap-
proximate inference in Poisson likelihood models using the RL function. We showed that
in contrast to quadrature, computations required by our formulation are more efficient and
numerically stable.

Equipped with this method, we demonstrated that the identity link is useful in situations
where a non-linear link hurts generalization and that taking into account non-Gaussian noise
statistics in a Poisson deconvolution problem leads to superior performance at no extra cost.

There are three avenues we would like to pursue to extend this work: To improve
scalability, we would like to study the effect of factorized Gaussian approximations. For
greater flexibility, we would like to investigate the compatibility with sparsity priors that are
not log-concave such as spike and slab mixtures (Hernández-Lobato et al., 2014). Finally,
we would like to apply this to high-level applications such as blind deconvolution under
Poisson noise, in areas such as neuroscience and biomedical imaging.
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Mikael Carlavan and Laure Blanc-Féraud. Sparse Poisson noisy image deblurring. IEEE Trans
Image Process, 21(4):1834–46, April 2012.

Edward Challis and David Barber. Gaussian Kullback-Leibler Approximate Inference. J. Mach.
Learn. Res., 14(1):2239–2286, January 2013. ISSN 1532-4435.

Peter J. Diggle, Paula Moraga, Barry Rowlingson, and Benjamin M. Taylor. Spatial and Spatio-
Temporal Log-Gaussian Cox Processes: Extending the Geostatistical Paradigm. pages 542–563,
December 2013.
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Appendix A. Additional Derivations

The parameters of the approximate potential depend on α and β from Section 2.2 in the
following way:

σ̃2 =
1− βσ2−

β
µ̃ = σ̃2

α+ βµ−
1− βσ2−

(24)

Next, we derive the expression for Ly = d
dm log Iy = I−1y

d
dmIy. By using a symmetry

argument we note that d
dmN (f |m, v) = − d

dfN (f |m, v). Thus,

d

dm
Iy =

∫ ∞
0

fy
d

dm
N (f |m, v) df (25)

= −
∫ ∞
0

fy
d

df
N (f |m, v) df (26)

= [fyN (f |m, v)]∞0 + y

∫ ∞
0

fy−1N (f |m, v) df (27)

= yIy−1 (28)

where we have used integration by parts.
Next, we show that β = Ly(Ly−Ly−1). We have β = − d

dmα = − d
dmLy. For convenience,

we denote d
dm · by (·)′. Then,

L′y =

(
I ′y
Iy

)′
(29)

=
I ′′y
Iy
−
(
I ′y
Iy

)2

(30)

=
y(y − 1)Iy−2

Iy
− (Ly)

2 (31)

=
y(y − 1)Iy−2

mIy−1 + v(y − 1)Iy−2
− (Ly)

2 (32)

=
yLy−1

m+ vLy−1
− (Ly)

2 (33)

= LyLy−1 − (Ly)
2 (34)

= −Ly (Ly − Ly−1) (35)

In Eq. 32 we used the recursion for Iy (Eq. 16) and in Eq. 34 the recursion for Ly (Eq. 18)
from the main text.
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