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Abstract

We address the problem of choosing a fixed number of sensor vertices in a graph
in order to detect the source of a partially-observed diffusion process on the graph
itself. Building on the definition of double resolvability we introduce a notion of
vertex resolvability. For the case of tree graphs we give polynomial time algorithms
for both finding the sensors that maximize the probability of correct detection of
the source and for identifying the sensor set that minimizes the expected distance
between the real source and the estimated one.
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1 Introduction

The problem of source localization has received considerable attention in the
last years. Most approaches, starting with the seminal work by Shah and
Zaman [1], rely on knowing the state of the entire network at a given instant
in time. Pinto [2] introduced a model that instead, estimates the source based
on a sparse set of sensor vertices in the graph. However, the set of sensors is
often assumed to be given. In this work we consider the problem of selecting
which vertices to observe given a budget on the number (or cost) of allowed
sensors in order to optimize source detection.

Consider a graph G(V,E) with weighted edges. We say that a vertex gets
infected when it is reached by a diffusion process on the graph; the moment
at which this happens is called the infection time. Given a budget k ∈ N, we
are interested in finding S ⊆ V of size k such that the infection times of the
vertices of S maximize the accuracy in source identification. Specifically, our
algorithm allows us to identify a set of candidate source vertices.

Depending on the context in which we want to localize the source of a
diffusion, we could be more interested in maximizing the chances of an exact
identification of the source or in minimizing, in average, the distance between
the real source s∗ and the estimated source ŝ. Hence, assuming that s∗ can
appear uniformly at random in V , we consider two metrics: (i) the error
probability, i.e., Pe = P(ŝ �= s∗); (ii) the expected distance between the real
source s∗ and the estimated source ŝ, i.e., E[d(s∗, ŝ)], where d is the weighted
distance between two vertices in the graph. It is easy to see that the two
metrics may require different sets of sensors.

An approximation algorithm for minimising the cardinality of the sensor
set that perfectly detects the source was given [3] using the connection to
the Doubly Resolving Set (DRS) of a graph [5]. A similar question was first
considered by [4]when starting time of the diffusion is known. In both cases,
budget constraints are not considered.

Based on the definition of DRS, we introduce a concept of vertex resolv-
ability and show that the performance of a set of sensor vertices with respect
to the error probability is directly linked to the number of unresolved vertices.
For the case of a tree graph T of size n, we design an O(nk2) dynamic-
programming algorithm to find k sensor vertices that minimize the number
of unresolvable vertices and hence the error probability. Minimizing the ex-
pected error distance, was, to the best of our knowledge, never considered
before. Also for this metric, we show that if G is a tree, an optimal set S can
be found with a polynomial-time algorithm.
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2 Preliminaries

Consider a weighted graph G(V,E) that models a contact network. A diffusion
process on G is started by a single unknown vertex s∗, the source, at an
unknown time t∗. If a vertex v becomes infected at time tv, each non-infected
neighbor u of v gets infected at time tu = tv + wu,v where wu,v ∈ R+ is the
weight of edge (u, v). For every vertex s in the sensor set S the infection
time ts is known. We estimate the position of the source based only on the
infection times {ts, s ∈ S}. The time at which the diffusion starts is unknown,
hence a single observed infection time does not give any information about
the position of the source. We choose one sensor, say s1 ∈ S as reference point
and define a vector of relative observed times as follows.

Definition 2.1 [observation vector] Let G be a graph, S ⊆ V , |S| = k a set of
sensors and {ts, s ∈ S} the infection times observed during a diffusion process.
Then τ ∈ R

k−1 where τi = tsi+1
− ts1 , i ∈ [k − 1], is the observation vector

associated to the diffusion process.

Definition 2.2 [distance vector] Let G be a graph, S ⊆ V , |S| = k a set of
sensors, for each candidate source s we define its distance vector as ds where
ds,i = d(si+1, s)− d(s1, s), i ∈ [k − 1], and d is the weighted graph distance.

Definition 2.3 [resolved / unresolved vertex] A vertex u is resolved by a set
S if du �= dv for all v ∈ V , v �= u, and unresolved otherwise.

Note that u ∼ v iff du = dv is an equivalence relation and we call [u]S the
class of vertices equivalent to u. A set S such that [u]S = {u} for each u ∈ V
is a Double Resolving Set, as clarified by the definition and lemma below.

Definition 2.4 [Double Resolvability] Given a graph G, S ⊆ V is said to
doubly resolve G if for any x, y ∈ V there exist u, v ∈ S s.t. d(x, u)−d(x, v) �=
d(y, u)− d(y, v). Such a subset S is a Double Resolving Set for G (DRS).

Lemma 2.5 (Lemma 3.1 in [3]) Let S ⊆ V and fix s ∈ S. Then every
vertex u ∈ V , u �= s resolved by S is resolved by a pair in {(s, v) : v ∈ S\{s}}.

As a consequence of Lemma 2.5, the definition of resolved and unresolved
vertices above does not depend on the choice of reference point s1 ∈ S.

Lemma 2.6 Let T be a tree with n vertices, S ⊆ V .

(i) Let u ∈ S a non-leaf vertex or u ∈ V \S. If there do not exist s1, s2 ∈ S,
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s1, s2 �= u, s.t. u ∈ P(s1, s2)
5 , then u is not resolved by S;

(ii) let u ∈ V and consider T as rooted at u. If every subtree Tc rooted at a
child c of u contains at least one vertex of S, then u is resolved;

(iii) let |S| > 1: a leaf-vertex � is resolved if and only if � ∈ S.

If the source of the diffusion is s∗ and the observation vector is τ , then all
vertices in [s∗] are candidate source vertices because their distance vectors are
equal to τ . Given a prior distribution π on V for the position of s∗, we select
an approximated source ŝ by sampling the conditional distribution π|[s∗].

Remark 2.7 On trees, this model and estimator tolerate a uniformly bounded
amount of noise in the transmission delays: in fact, the estimation of the
source would have the same accuracy if for a vertex u infected by its neigh-
bor v, tu = tv + wu,v + Xu,v where Xu,v ∈ [−ε, ε] is a random variable and
ε < min(u,v)∈E[wu,v/diameter(G)].

3 Error Probability Minimization

Proposition 3.1 Let G be a graph of size n, S ⊆ V and uniform prior π.
The probability of error Pe(S) is given by Pe(S) =

1
n

∑
[u]S⊆V (|[u]S| − 1).

If q is the number of equivalence classes we have Pe = 1− q/n and it is clear
that the error probability is minimized if the number of equivalence classes is
maximized. Looking back to Lemma 2.6, if the graph is a tree T , Pe is 0 if
a sensor is placed on each leaf. 6 In fact, the minimum k required for Pe = 0
is the number of leaves �. Moreover, if k < �, the vertices that minimize Pe

are a subset of the leaves of T . This suggests that, given a tree and a sensor
set, if we root the tree at an arbitrary vertex it is possible to compute Pe

as the sum of the probabilities of error of the different subtrees. Building on
this observation we prove that, for any n-vertex tree T and budget k ∈ N, a
set Sk

opt that minimizes Pe can be found with a recursive algorithm of total
complexity O(k2n).

Theorem 3.2 Let T be a tree with n vertices and � leaves and let the prior
π be uniform. If k ≥ �, the leaf set is an optimal sensor set. If k ∈ [� − 1],
there exists an algorithm that finds Sk

opt ∈ argmin|S|=kPe(S) in time O(nk2).

Proof. [Correctness] The statement is trivial for k ≥ � as the set of leaves
resolves all the vertices. If k < �, call Tr the tree obtained rooting T at an

5 P(s1, s2) denotes the unique shortest path between s1 and s2 on a tree T .
6 See also [3] for a different proof.
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arbitrary non-leaf vertex r. We claim that Sk
opt is obtained through the main

function of Algorithm 1, i.e., by computing OptErr(Tr, k). We prove the
statement by strong induction on the height of the tree.

Fix a budget k′ and let p(Tx, k
′) be the contribution to the error probability

from Tx assuming k′ sensors are placed optimally in Tx. The base case is a
subtree Tx of height 0, i.e., a leaf: if k′ ≥ 1 then we can place a sensor directly
on the leaf. If there is at least one other sensor in Tr (if k′ < k), we can
resolve it due to Lemma 2.6(iii). If k′ ∈ {0, k} then we cannot resolve it and
p(Tx, 0) = 1/n. Now consider the general case of a rooted tree Tx of height
h > 0, and assume we can find p(Ti, k

′
i) for all trees Ti of height less than h. If

k′ = 0, then p(Tx, 0) = |Tx|/n since we have no way to distinguish between any
vertices in Tx. Otherwise, we recurse over all possible partitions k′ between
the subtrees rooted at the children of x. 7 In particular, if g is the number of
children of x and Tx,i, for i ∈ [g], denotes the subtree rooted at the ith child
of x, any configuration of k′ sensors in Tx has 0 ≤ k′

i ≤ k′ sensors in subtree
Tx,i with

∑g
i=1 k

′
i = k′. Hence, p(Tx, k

′) =
∑

k′i=0(|Tx,i|/n) +
∑

k′i �=0 p(Tx,i, k
′
i).

In fact, x is equivalent to all vertices in the subtrees Tx,i (if any) for which
k′
i = 0 and |[x]| − 1 =

∑
k′i=0 |Tx,i|. Since the height of each Tx,i is less than h,

by the induction hypothesis we can compute the optimal p(Tx,i, k
′
i), and hence

p(Tx, k
′). By induction, this concludes the proof. �

Proof. [Complexity] A call to OptErrChildren is determined by the root
x of the subtree, the subset c of its children considered and the budget k′ ≤ k.
The possible values for the pair x, c is the number of edges n−1. In fact, we can
assume that the children are ordered and the possible partitions are of the form
(c, children at the right of c) so the number of pairs (x, c) is bounded by n−1.
Hence, there are O(nk) possible calls of OptErrChildren. Combining this
with the minimization on m ≤ k sensors sent to the leftmost sub-tree, the
complexity is O(nk2). �

Algorithm 1 Minimizes Pe for initial budget k on a tree of size n

OptErr(Tx, k′)
if k′ = 0 return |Tx|/n
else if |Tx| = 1

if 1 ≤ k′ < k return 0, else return 1/n
return OptErrChildren(Tx, k′, children(x))

OptErrChildren(Tx, k′, C)
if |C| = 0 return 0, else if k′ = 0 return

∑
c∈C |subtree(c)|/n

7 See the function OptErrChildren in Algorithm 1.
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f ← first child, r ← other children, results ← {}
for m from 0 to k′

results ← results ∪ {OptErr(Tf ,m)+ OptErrChildren(Tx, k′ −m, r)}
return min{results}

4 Expected Distance Minimization

If G is a graph of size n with weighted distance d, S the set of sensors, |S| = k,
and the prior π uniform, the expected distance between the real source s∗ and
the estimated source ŝ is E[d(s∗, ŝ)] = 1

n

∑
[u]S

(∑
s,t∈[u]S

d(s,t)
|[u]|S

)
.

In this case, the contribution of each unresolved vertex depends on the sum of
distances between the vertices in an equivalence class in addition to the size
of the class; this makes the problem more challenging. It can be proven that
if T is a tree of size n with maximum degree D, � leaves and uniform prior π,
the leaf set minimizes ES[d(s

∗, ŝ)] when k ≥ �; if k ∈ [� − 1], there exists an
algorithm that finds Sk

opt ∈ argmin|S|=kES[d(s
∗, ŝ)] in time O(2Dnk2).

5 Future Work

An important open problem is extending our results to general graphs. Other
interesting directions include optimizing worst case metrics rather than av-
erage case metrics, accounting for noisy infection delays and transmission
failures, and non-uniform prior distributions on the position of s∗.
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