
Assembling a Network out of Ambiguous Patches

Lyudmila Yartseva1 , Jefferson Elbert Simões2 and Matthias Grossglauser1

Abstract— Many graph mining and network analysis prob-
lems rely on the availability of the full network over a set of
nodes. But inferring a full network is sometimes non-trivial if
the raw data is in the form of many small patches or subgraphs,
of the true network, and if there are ambiguities in the identities
of nodes or edges in these patches. This may happen because
of noise or because of the nature of data; for instance, in social
networks, names are typically not unique. Graph assembly refers
to the problem of reconstructing a graph from these many,
possibly noisy, partial observations. Prior work suggests that
graph assembly is essentially impossible in regimes of interest
when the true graph is Erdős-Rényi . The purpose of the present
paper is to show that a modest amount of clustering is sufficient
to assemble even very large graphs.

We introduce the G(n, p; q) random graph model, which is
the random closure over all open triangles of a G(n, p) Erdős-
Rényi , and show that this model exhibits higher clustering than
an equivalent Erdős-Rényi . We focus on an extreme case of
graph assembly: the patches are small (1-hop egonets) and are
unlabeled. We show that in realistic regimes, graph assembly
is fundamentally feasible, because we can identify, for every
edge e, a subgraph induced by its neighbors that is unique and
present in every patch containing e. Using this result, we build
a practical algorithm that uses canonical labeling to reconstruct
the original graph from noiseless patches. We also provide an
achievability result for noisy patches, which are obtained by
edge-sampling the original egonets.

I. INTRODUCTION

Network data describes relationships between entities,
which has many downstream uses for inference and predic-
tion tasks. For example, community detection can reveal so-
cial communities or security threats [7]; centrality measures
can reveal influences or weaknesses in an organization [6];
source detection algorithms can reveal the instigator of a
rumor or patient zero of an epidemic [16]. Obviously, a
precondition for such statistical methods to perform well is
that the network obtained from raw data is reliable.

This work is about inferring a network from raw data
where node identities are ambiguous or even absent. This
is a difficult and relevant problem because networks often
need to be assembled from a large set of observations in the
form of small subgraphs. For example, the structure of an IP
network can be derived from the routing/forwarding tables of
all the routers in a domain; and a scientific co-authorship or
co-citations network is the union over the subgraphs revealed
by each paper. If the node identities in such a collection
of subgraphs are reliable and unambiguous, assembling the

1School of Computer and Communication Sciences
École Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland
firstname.lastname@epfl.ch
2Systems Engineering and Computer Science Program, COPPE
Federal University of Rio de Janeiro
Rio de Janeiro, Brazil
elbert@land.ufrj.br

true network is trivial: a good estimate for the true network is
the union of the subgraphs. If every edge in the true network
appears in at least one subgraph, then this estimator is indeed
exact.

Unfortunately, in practice, we cannot always rely on
unambiguous node identities from one observed subgraph to
another. Consider several scenarios where network assembly
under node ambiguity is necessary. For instance, suppose we
are given a corpus of text with many different authors, each
describing social interactions and transactions among their
social contacts. Each author might use ambiguous identifiers
for the protagonists, e.g., first name, nickname, or some
descriptive reference. From this we want to reconstruct the
full social network. This situation arises in social network
analysis, such as in digital humanities [12]. Another ex-
ample stems from efforts to anonymize sensitive network
information. If a full social network cannot be released, out
of concern that this network could be deanonymized, one
protection mechanism that has been used in the literature is
the release of all the 1-hop egonets of this network, with all
node identities withheld [5].

In this paper, we are chiefly interested in the follow-
ing problem: if labels provide little or no information to
disambiguate nodes, to what extent is the structure of ob-
served subgraph sufficient for reassembly? This problem
is relatively unexplored. Although heuristic algorithms are
presented in [9], [20], no guarantees are provided. In the
field of database mining, particularly entity resolution, sev-
eral questions of ambiguities in data are well studied [4].
However they are mostly based on the similarity between
labels of the entities and rely on structural information as
a secondary means. There has also been some work in the
field of pattern discovery [1], but the authors focus on the
problem of approximate labeling of the nodes and look for
patterns that minimize the cost of such labeling, rather than
using the graph structure. These results are oriented overall
by the design of constrained algorithms, rather than by the
investigation of theoretical feasibility.

Under partial or full node ambiguity, reassembling the
true graph from small subgraphs (called patches) is an
interesting statistical and computational problem. It is related
to the reconstruction conjecture formulated by Kelly [14],
which addresses the question of a graph G being uniquely
identifiable by all its subgraphs obtained by deleting one
vertex from G. A closely related problem was considered
most recently by Mossel et al. [17], who are also interested in
graph assembly problem, but for low clustered graphs, such
as an Erdős-Rényi or random regular graphs. They analyze
the size of the neighborhoods and state theoretical thresholds
for the feasibility of the assembly. They find that the size of
the neighborhoods has to be quite large for assembly to be

feasible.
Real networks are very different from random graphs. In

particular, they tend to have a clustering coefficient that is
much higher than a random graph of corresponding density.
This implies that there is richer local structure, i.e., short
cycles including triangles. The purpose of the present paper
is to show that this local structure can be exploited in
reassembly, and to successfully stitch together small neigh-
borhoods. We introduce a random graph model that is, to the
best of our knowledge, novel and potentially of independent
interest. The model generates a graph whose edge set is
formed by the random closures of open triangles (three nodes
with two incident edges) of an underlying ER graph. We
use this model to prove that relatively sparse graphs can be
assembled from small distance-1 neighborhoods.

Main Results and Outline

To explain the assembly problem, we begin by assuming
that we are given a collection of patches. We restrict our
problem to the case where each patch is a local neighborhood
of a center node, called 1-egonet. The network assembly
problem is to (i) infer the true graph from the collection of
patches and (ii) map each node in each patch to the correct
node.

As mentioned above, if the true graph is Erdős-Rényi and
the patches are 1-egonets around every node, assembly is
almost always impossible [17]. In this case, it means the set
of 1-egonets collapses into a small set of classes. For sparse
reghimes that is np being a constant, the number of hops
of the neighborhood r should be log n. For denser reghimes
np � log2 n assembly requires at least r = 3-hop egonets.
The idea is that in this case each node has unique neighbors-
degree sequence, thus this node is identifiable in other
egonets if it is connected to a center. We claim that r = 3 is
required because of the lack of transitivity (short cycles) in
such graphs and the assembly is feasible even for r = 1 if the
graph is clustered. In Section III, we introduce a new random
graph model G(n, p; q) of independent interest, where we
generate random closures with probability q over an Erdős-
Rényi G(n, p) generator. This process of triangle closure is
known to be natural property of most real networks, such as
social networks [15].

In our model, each node of the generator graph gener-
ates some connected community around assuring clustered
structure of the network. We show that this graph has an
asymptotically larger clustering coefficient1 (equal q

np) than
the G(n, p) with the same average degree. And we show that
particular induced subgraphs contain a much denser struc-
ture; as a result providing patterns for assembling patches.

The assembly problem can rely only on subgraph iso-
morphism relationships among the patches. At first sight, it
might seem that assembly would be extremely challenging,
especially if the patches are small. In Section IV, we show
instead that, under some mild assumptions, structural infor-
mation in the patches is sufficient for assembly to succeed.
To prove this result, we focus on the induced subgraph

1The clustering coefficient of a node u is the density of the subgraph
induced by its neighbors; assumed to be 0 if u is a singleton.

over the set of common neighbors of two adjacent nodes
u and v. If these subgraphs are not isomorphic to any
other such neighborhood graph, then it can be used as a
fingerprint to find adjacent nodes. The proposed approach
results in a simple and effectively tractable algorithm of
network assembly, in Section IV-C.

The last model accounts for more realistic scenarios,
where noise is introduced into observations by removing
some connections. In Section V, we characterize the amount
of noise our model can tolerate in order to still make correct
graph assembly feasible based only on the structure. We find
that, in this case, the density of the original graph can be
similar in magnitude as in the noiseless case, with a small
penalty that is a function of the amount of noise introduced.

II. FORMAL STATEMENT OF THE NETWORK ASSEMBLY
PROBLEM

In its most general form, the graph assembly problem
takes as input a finite collection of graphs called patches;
these patchers have been extracted from a larger graph that
we call master graph. The labels of vertices in each patch
bears little or no resemblance at all to their original labels in
the master graph, and the problem consists of putting these
pieces together in an assembled graph Ĝ.

In this work, we will consider a specific variation of this
problem, where each patch is created by extracting the egonet
around each vertex in master graph. The egonet, or 1-egonet
of a vertex v in a graph G, denoted Gv , is the induced
subgraph generated by v and its neighbors in G — we say
that v is the center of this egonet. We will further assume
that, for each egonet in the patch collection, the identity of
v is either kept intact or somehow inferrable, but all other
identities are removed.

To accurately model this problem mathematically, we will
need a few definitions:

Definition 1 (Egonet extraction): Let G be a graph with
V (G) = [n] for some n ∈ N, and edge set E(G).
• The egonet collection of G is the indexed family of

graphs {Gv}v∈[n];
• An anonymized egonet collection of G is a set of graphs
P = {G′v = fv(Gv)}v∈[n], where fv : V (Gv) →
[|V (Gv)|] is a bijection such that fv(v) = 1; the func-
tions {fv}v∈[n] are called the anonymization functions.

Note that fv relabels every vertex in Gv arbitrarily, except
for v, that is forcefully assigned the label 1. This means
that, as long as the indices of each graph in the collection
are known, the identities of the respective centers are also
known. This relabeled version of Gv is denoted by G′v .

Definition 2 (Egonet collection assembly): Let
P = {G′v}v∈[n] be a collection of graphs, such that
V (G′v) = [nv] for some nv ∈ N. An assembly of P is a
pair (Ĝ, {av}v∈[n]), where Ĝ is a graph (called assembled
graph) with V (Ĝ) = [n], and each av : [nv] → [n] is an
injective function such that av(1) = v.

An assembly determines not only which graph Ĝ is
ultimately obtained, but also how each vertex in each egonet
of our collection is mapped to Ĝ. This is enough for us to
formally state the egonet assembly problem:

• Input: an anonymized egonet collection P =
{G′v}v∈[n];

• Output: an assembly (Ĝ, {av}v∈[n]) of P .

Clearly, we would like to have the assembled graph Ĝ
equal to the master graph G. Indeed, if P = {G′v} is an
anonymized egonet collection of G — that is, for every v ∈
[n], G′v = fv(Gv) — it is not difficult to see that (G, {f−1

v })
is a valid assembly of P . The interesting theoretical question
is whether G is the only graph for which there is such
assembly. If this is the case, then the problem of egonet
assembly is feasible.

III. G(n, p; q) MODEL

In many real networks, neighborhoods of nodes are highly
connected (i.e., have high clustering coefficient). For exam-
ple, in social networks, friends of any given person are more
likely to know each other. This behavior is called triadic
closure [19]. We would like to address the question of how
a graph’s clustering coefficient improves the feasibility of
assembly.

For this purpose, we introduce the G(n, p; q) random
graph model and analyze its properties. The G(n, p; q) model
is defined via an intermediate Erdős-Rényi random graph
Gp(V,Ep) ∼ G(n, p). The graph G(V,E) ∼ G(n, p; q)
contains a random subset of all the possible closures of
connected triples in Gp. Our goal is to obtain a model
that is mathematically tractable (akin to the Erdős-Rényi
model [10]), but possesses a higher clustering coefficient.

For convenience, we denote by Pe = 1{e∈Ep} the indica-
tors of edges in Gp, with Qe = 1{e∈E} being the indicators
of edges in our final graph G. We refer to edges in Ep as
p-edges and edges in E as q-edges.

Define the set of independent Be(q) random variables
{Tt}t∈V 3 , with the restriction Tu,g,v = Tv,g,u. Let t be a
connected triple (u, g, v) in Gp, i.e., a pair of incident edges
(u, g), (g, v) ∈ Ep. The idea is that, for each such connected
triple, we apply triadic closure with probability q (hence each
term q-edge), so that the edge (u, v) ∈ E if and only if
Tu,g,v = 1 for at least one g ∈ V \ {u, v} that is connected
to both u and v by p-edges. We call

Se = S(u,v) = {g ∈ V : Pu,gPg,vTu,g,v}

the set of generators for an edge (u, v). Thus, there is an
edge e ∈ E iff it has at least one generator. Note that Ep
and E need not be disjoint.

Remark 1: The following facts hold:
1) For any e ∈

(
V
2

)
, |Se| = Bi

(
n, p2q

)
;2

2) For any e ∈
(
V
2

)
, Qe = Be

(
1− (1− p2q)n

)
.

Some additional useful definitions are as follows: for any
u ∈ V , the neighborhood Nu of u is the set of vertices
adjacent to u in G (thus, via q-edges), with du = |Nu| its
degree, and the p-neighborhood Np

u of u is the set of vertices
adjacent to u in Gp (via p-edges).

We show some key properties of this model. Let cu be the
clustering coefficient of node u.

2Since n → ∞, from now, we ommit constant substractions and write
n− 1, n− 2, . . . as n.

Proposition 3: Let u ∈ V be arbitrary. If np → ∞,
n2p3 → 0 and q is fixed, then:
• E[|E|] ' n3p2q

2 ;
• E[du] ' (np)2q;
• E[cu] ' q

np
.

Proof: See Appendix VIII.
Consider for comparison an Erdős-Rényi random graph

G(n, p′) with the same expected density. It has an edge
probability p′ = np2q, average degree of (np)2q, and its
expected clustering coefficient is therefore np2q, which is
asymptotically smaller than for the G(n, p; q) model (since
n2p3 → 0 and q/np� np2q).

Another interesting feature of the G(n, p; q) model is that,
for a rather general regime of p, all edges have a very limited
number of generators.

Lemma 4: For np → ∞, n5p6 → 0 and fixed q, w.h.p.3,
all edges have at most two generators.

Proof: It is enough to show that the expected number of
edges with three or more generators vanishes, as this implies
the result by the first moment method.

Let pk denote the probability that an arbitrary edge (u, v)
has precisely k generators. Recall from Remark 1 that the
generator set of an edge has size Be

(
n, p2q

)
. This implies

pk =

(
n

k

)
(p2q)k(1− p2q)n−k ≤ (np2q)k.

For any edge e, the probability that it has at least 3
generators is given by

P(|Se| ≥ 3}) =
∑
k≥3

pk ≤
∑
k≥3

(np2q)k

= (np2q)3 1

(1− np2q)
' (np2q)3

where the last steps follow from the convergence of the geo-
metric series for large enough n — note that our hypothesis
imply that np2 → 0. Finally

E[{(u, v) : S(u, v) ≥ 3}] =
∑
u,v

P(|Se| ≥ 3}) .
∑
u,v

(np2q)3

= n2(np2q)3 ' n5p6q3 = o(1).

In further we consider the following more restrictive
regimes on p and q: (np)5p → 0, fixed q and npq2 =
12 log n+ω(1). These assure the average degree d be larger
than Ω(log2 n). The smaller values of q can be considered
with more tedious analysis, however even large (const) values
of q assure only small increase in clustering coefficient. We
demonstrate that this small increase is sufficient to assure
feasibility of assembly.

IV. ASSEMBLY OF NOISELESS EGONETS

Our goal in this section is to demonstrate that for a certain
regime of the parameters p and q, it is feasible to reassemble
a collection of noiseless 1-hop egonets extracted from a
G(n, p; q) random graph. For this, we will characterize a

3With high probability, i.e., with probability that tends to 1 as n→∞.

number of properties that this random graph possesses with
a high probability, and these properties will naturally lead to
a very intuitive algorithm for reassembling the given egonets.

The intuition behind the result is as follows. Let us
assume for a moment that the edges of the master graph are
uniquely labeled, and that this labeling is preserved through
patch generation process — that is, edges in egonets that
correspond to the same edge on the master graph are given
the same label. In this case, it is straightforward to reidentify
the nodes. For instance, if the edge (u, v) is assigned the
unique label 35, then there will be an edge labeled 35 in
the egonet of u, which means its other endpoint must be
v, since no edge to another node is assigned the label 35.
Analogously, we can identify u on the egonet of v.

This observation means that the problem can be solved,
as long as we can assign such a consistent labeling to edges
between all egos and its respective neighbors. However, we
must assign these labels by looking only at the structure of
the egos and nothing else. Fortunately, under condition that
either u or v is the ego-center, any edge (u, v) has a structural
feature that is preserved by the egonet extraction process.
This feature is the induced subgraph of common neighbors
of u and v, which we denote Hu,v . Note that this feature is
symmetric by nature, thus Hu,v ∼ Hv,u

4. As the main result
of this section, we show that, for a G(n, p; q) random graph,
any two edges have non-isomorphic subgraphs of common
neighbors. Therefore this feature acts as a fingerprint for all
edges in a graph.

Further we formulate the main result of this section,
provide key lemmas and follow by the proof of the result.

Theorem 5: Let G be a graph with node set [n] and unique
edge fingerprints, and let P = {G′v}v be an anonymized
egonet collection extracted from G. There exists an assembly
algorithm that builds Ĝ from the input P and V (Ĝ) = V (G)
and E(Ĝ) = E(G).

A. Structural Properties of Patches

To determine when all edges in a G(n, p; q) random
graph indeed have unique (up to isomorphism) subgraphs of
common neighbors, we must first characterize the structure
of these subgraphs. We start by determining the node set of
Hu,v , which we call Nu,v .

Lemma 6: If G is sampled from G(n, p; q) with np→∞,
(np)5p→ 0, q is fixed, then for any fixed u, v ∈ G such that
u is adjacent to v, the following statements hold w.h.p.:
• For each x ∈ Nu,v , there exists g ∈ S(u, v)∩S(u, x)∩
S(v, x) – i.e., all the edges of the uxv triangle have at
least one common generator;

• |Nu,v| = Bi
(
n, |S(u, v)|pq2

)
and

E
[
|Nu,v|

∣∣∣|S(u, v)|
]

= |S(u, v)|np2q.

See Figure 1 for an illustration of Hu,v .
Proof: See Appendix IX.

We can now easily characterize the edges between the
nodes of the neighborhoods Nu,v . For any x, y ∈ Nu,v , by
Lemma 6 there exists g1, g2 ∈ S(u, v) such that Pg1,x = 1
and Pg2,y = 1. If g1 = g2, then this triangle is closed

4here ∼ means graph isomorphism

Fig. 1. x ∈ Nu,v is a common neighbour of u and v.

with probability q (independently for each pair x, y), oth-
erwise they are connected with probability np2q. Recalling
Lemma 4 each edge has at most two generators, thus,

Corollary 7: Under the conditions of Lemma 6, w.h.p.,
one of these cases holds:

1) |S(u, v)| = 1 and Hu,v is a single Erdős-Rényi graph
G(Bi

(
n, pq2

)
, q);

2) |S(u, v)| = 2 and Hu,v consists of two Erdős-Rényi
graphs G(Bi

(
n, pq2

)
, q), with each crossing edge exist-

ing independently with probability np2q.
Note that np2q � q, hence in the latter case, the two
Erdős-Rényi graphs have dense structure, but are very loosely
connected.

B. Uniqueness of Edge Fingerprints

We are now ready to prove our key result of this section.
Theorem 8: Let G be a G(n, p; q) random graph, with

(np)5p → 0, fixed q and npq2 = 12 log n + ω(1). Then,
w.h.p., for any pairwise adjacent nodes u, v and û, v̂, either
{u, v} = {û, v̂} or Hu,v is not isomorphic to Hû,v̂ .

Proof: Denote by W the number of quadruples
(u, v, û, v̂), with u and v adjacent, û and v̂ are adjacent
and (û, v̂) 6= (u, v), (v, u), such that Hu,v is isomorphic to
Hû,v̂ . By the first moment method, it is enough to show that
E[W]→ 0. We note that E[W] =

∑
u,v,v̂,û

P(Hu,v ∼ Hû,v̂).

Now, we fix u, v, v̂ and û and split our analysis into
cases. We consider the most complex case in detail and omit
lengthy and similar computations for other cases.

1) |S(u, v)| = |S(û, v̂)| = 1:
a) S(u, v) = S(û, v̂) = {g}, where g is the common

generator of (u, v) and (û, v̂):
i) u = û and v 6= v̂ (or, analogously, u 6= û and
v = v̂):
Note that any vertex x ∈ V is in both Hu,v and
Hu,v̂ according to the following criteria:
- x ∈ Hu,v iff Pg,xTu,g,xTv,g,x = 1
- x ∈ Hu,v̂ iff Pg,xTu,g,xTv̂,g,x = 1

Let J be the subgraph induced by {x ∈
V : Pg,xTu,g,x = 1}. By the criteria above, any
node that is not in J cannot belong to either Hu,v

or Hu,v̂ . Note that J is an Erdős-Rényi random
graph G(Bi(n, pq), q) (each node x ∈ V satisfies
Pg,xTu,g,x = 1 independently with probability

pq, and any two nodes x, y ∈ J are adjacent
if and only if Tx,g,y = 1, which happens with
probability q independently).
Furthermore, each node x ∈ J belongs to Hu,v

or Hu,v̂ if Tv,g,x = 1 or Tv̂,g,x = 1, and these
conditions hold independently with probability q.
This means Hu,v and Hu,v̂ are obtained from
J by sampling each node independently with
probability q. To bound the probability that these
two graphs are isomorphic, we apply Lemma 15
with m = Bi(n, pq) and t = q and any fixed
0 < δ < 1, obtaining:

P(Hu,v ∼ Hu,v̂) ≤ exp
(
m logm−m2c

)
+2 exp

(
−δ

2mq

2

)
for c = (1 − δ)2q2(1 − q) log c1 and c1 = (q2 +
(1 − q)2)−1 ∈ (1, 2]. Note, however, that m is
a random variable. We can apply the Chernoff
bound (see Appendix 13) to bound npq(1− δ) ≤
m ≤ npq(1 + δ). Thus:

P(Hu,v ∼ Hû,v̂) ≤ exp
(
npq(1 + δ) log npq(1 + δ)

− (npq)2(1− δ)2c
)

+ 4 exp

(
−δ

2npq2

3

)
.

ii) u 6= û and v 6= v̂. The case is analogous to the
previous one, except that both Hu,v and Hû,v̂ are
obtained by node sampling the graph J ′ = Np

s ; J ′

is a G(Bi(n, p), q) random graph and each node is
sampled with probability q2 to obtain both Hu,v

and Hû,v̂ . Thus, by Lemma 15:

P(Hu,v ∼ Hû,v̂)

≤ exp
(
npq2(1 + δ) log npq2(1 + δ)

− (npq)2(1− δ)2c
)

+ 4 exp

(
−δ

2npq2

3

)
.

b) S(u, v) 6= S(û, v̂). Denote S(u, v) = {g1} and
S(û, v̂) = {g2}. Since Np

g1 ∩ N
p
g2 = ∅ holds w.h.p,

it also holds that Nu,v ∩ Nv̂,û = ∅ (by Lemma 6).
Then, by the reasoning similar to that in Lemma 15,
P(Hu,v ∼ Hû,v̂) ≤ m!(q2 + (1− q)2)(

m
2).

2) |S(u, v)| = 2. Denote S(u, v) = {g1, g2}. In this case,
Hu,v consists of two weakly connected Erdős-Rényi
graphs H1

u,v ∪ H2
u,v , and similarly for Hû,v̂ . Thus we

can estimate the probability of Hi
u,v being isomorphic

to the analogous component of Hû,v̂ and thus reduce
the problem to the previous case.

Using the loosest bound of the previous cases, we can
bound E[W]:

E[W] ≤ n4
(

exp
(
npq(1 + δ) log npq(1 + δ)

− (npq)2(1− δ)2c
)

+ 4 exp

(
−δ

2npq2

3

))

= exp
(
4 log n+ npq(1 + δ) log npq(1 + δ)

− (npq)2(1− δ)2c
)

+ 4 exp

(
4 log n− δ2npq2

3

)
the last summand dominates and thus whole sum goes to

0 if p ≥ 12 logn+ω(1)
δ2q2n . Note that if q ∈ (0, 1) and δ < 1, c is

constant.

C. Feasibility of Egonet Assembly

The results leading to Theorem 8 enable us to design a
simple assembly algorithm that works as follows. Let P =
{G′v} be the anonymized egonet collection of a graph G =
(V,E), which is the graph we want to obtain at the end of
the assembly process; and also assume that all edges in G
have unique fingerprints, that is, for any two distinct edges
(u, v), (û, v̂) ∈ E, Hu,v and Hv,u are not isomorphic.
G must have [n], the index set of P = {G′v}v , as its

node set, so we begin by setting [n] as the vertex set of
our assembled graph Ĝ. To construct its edge set E(Ĝ),
choose a node u ∈ [n]. We know that u is present in egonet
G′u and has been assigned the label 1 in Gu. Take a node
j ∈ G′u other than 1. Edge (1, j) is the image of some
edge (u, v) in G, and the subgraph of G′u induced by 1, j
and their common neighbors is a relabeled version of Hu,v .
Extract this fingerprint from G′u and search for a second
edge, in a different egonet, with an isomorphic fingerprint.
Since fingerprints of edges in G are unique, there will be
exactly one such edge, say (1, k) on the egonet G′u′ , and
both of them must have originated from the same edge on
the master graph. The labels of this edge must be the egonet
centers u and u′ of the two matching edges, so we add the
edge (u, u′) to E(Ĝ). Repeat this for all egonets until they
are exhausted, at which point the algorithm terminates. We
will call this the fingerprint assembly algorithm.

If all edges in G have unique fingerprints, this algorithm
will always reassemble G correctly:

Proof: [Theorem 5] Assume E(Ĝ) 6= E(G). Then, one
of the following cases must hold:
• There is a pair of vertices (u, v) such that (u, v) ∈
E(G) \ E(Ĝ). (u, v) ∈ E(G) originates two image
edges in {Gv}, (1, j) ∈ E(G′u) and (1, k) ∈ E(G′v) for
some j, k, with the same fingerprint in their respective
patches as (u, v). Since no other edge in G has such
fingerprint, these two images must be matched by the
algorithm. This implies (u, v) will be added to E(Ĝ),
which contradicts (u, v) /∈ E(Ĝ).

• There is a pair of vertices (u, v) such that (u, v) ∈
E(Ĝ) \ E(G). Since (u, v) has been added to E(Ĝ)
by the algorithm, then there is an edge (1, j) ∈ E(G′u)
and an edge (1, k) ∈ E(G′v) with matching fingerprints,
where u 6= v. (1, j) in G′u is the image of an edge
(u, v̂) ∈ E(G) for some v̂ ∈ [n], and (1, k) in Gv is
the image of an edge (v, û) ∈ E(G) for some û ∈ [n],
from which they have extracted their fingerprints. Since
G has unique edge fingerprints, (u, v̂) and (v, û) must
be the same edge, which implies v̂ = v, û = u and, as a
result, (u, v) /∈ E(Ĝ), which contradicts (u, v) /∈ E(G).

Corollary 9: Let G be a G(n, p; q) random graph with
(np)5p → 0, fixed q and npq2 = 12 log n + ω(1), and let
P be an anonymized egonet collection extracted from G. If
Ĝ is the output graph of the fingerprint assembly algorithm
with input P , then E(Ĝ) = E(G) w.h.p.

Note that this algorithm requires
(|E|

2

)
checks for graph

isomorphism. This is, in general, a computationally expen-
sive procedure even after recent improvements, with the best
known algorithm having quasi-polynomial time complex-
ity [3]. With an oracle for the graph isomorphism problem,
the average case complexity of this algorithm drops to around
|E|(npq2) + |E|2, from the subgraph extraction process
and the checks for graph isomorphism, respectively. Any
technique for optimizing the graph isomorphism step, such
as applying approximate graph isomorphism techniques, can
be used to reduce its running time. Additionally, if this step is
solved by constructing an isomorphism whenever possible,
one can use the information given by this isomorphism to
further reduce the number of fingerprints comparisons.

Our implementation of this algorithm uses canonical label-
ing methods to check for subgraph isomorphism. A canoni-
cal labeling is a labeling of the graph’s vertices that uniquely
captures the structure of the graph, and two graphs are
isomorphic if and only if their canonical forms are precisely
equal. The problems of canonization and isomorphism are
similar in both theory and algorithm design, even though it
is not known whether they are poly-time equivalent [2].

Our implementation has an additional optimization step:
Instead of searching through all edges in the egonets looking
for edges with isomorphic fingerprint, we convert each
fingerprint to an integer value. These integers are extracted
from the canonical form of the fingerprint and are therefore
graph invariants. Afterwards these edges are stored in a
hash map where we use the corresponding integerfingerprints
as the search key; thus, reducing the pairwise search for
isomorphic fingerprints to a scan over the hash map for
edges with matching keys. This optimization reduces the
algorithm complexity from

(|E|
2

)
checks for isomorphism

to |E| calculations of canonical forms, at the cost of |E|
additional graph-to-integer conversions. Although eventual
hash collisions can in principle insert noise in our fingerprint
comparison, we do not expect such collisions to be frequent.
Additional graph invariants, such as number of edges, can
also be extracted from the fingerprints to disambiguate even
further in case of eventual collisions, but we choose not to
use them in our implementation.

We implement the algorithm by using the canonical la-
beling procedure from the Bliss library [11]. This library
provides us with a hash calculation procedure, that we use
to convert fingerprints to integer values. Additional collisions
can result from this, and the same mitigation techniques
described previously can also be applied here. We ran a set of
experiments for finite graphs sampled from G(n, p; q) model
and found out that the algorithm can restore all the edges
with precision 1.

We do not focus on developing the most efficient algorithm
in this paper, hence we do not set up an extensive experiment

set with different theoretical and practical models. One of the
interesting future directions would be to consider real and
artificial noisy data-models and to develop an approximate
assembly algorithm for this. Here we are more interested
in the feasibility of graph reconstruction from very poor
additional information. And the experiments fully support the
theoretical results: for graphs sampled from G(n, p; q) model
the edge fingerprints are unique, thus assuring feasibility of
assembly.

V. ASSEMBLY OF NOISY EGONETS

In realistic scenarios, we often deal with imperfect patches.
For instance, the observations of a user’s circle in social
networks can be noisy. In contrast with the noiseless case,
perfect(no edge mismatch) assembly can no longer be ex-
pected by default. Rather, we should expect that, in low-
noise scenarios, the correct assembly has a small number of
edge mismatches, due to the correlation induced in the patch
collection by the true graph. Therefore, we intuitively expect
the correct assembly to have minimum edge inconsistency.

To evaluate this hypothesis, we consider the following
variation of our problem. For each egonet Gu around a node
u, extracted from a master graph G, we generate a noisy
observation G∗u by keeping the original node set but sampling
edges independently with probability s. As in the noiseless
case, the problem is to assembly a master graph G from an
anonymized collection P = {fv(G∗u)}.

In order to show that the hypothesis is true under certain
conditions, we prove a result analogous to Theorem 8. This
result can be expressed in terms of the edge mismatch
between two graphs.

Definition 10: Let H1(V1, E1) and H2(V2, E2) be two
graphs with |V1| = |V2| and let π be a bijection between
V1 and V2. The edge mismatch of mapping H1 and H2 by
π, denoted by ∆(H1, H2, π), is given by: ∆(H1, H2, π) =∑

(u,v)∈(V12) 1{(u,v)∈E1⊗(π(u),π(v))∈E2}
Furthermore, for two neighboring nodes u and v, we

denote by H∗u,v the subgraph of G∗u induced by common
neighbors of u and v. Note that H∗u,v and H∗v,u have the same
node sets5. However, since both G∗u and G∗v are noisy egonet-
observations, it does not hold in general that H∗u,v = H∗v,u,
which differs from the noiseless case, where Hu,v = Hv,u

by construction. Rather, H∗u,v and H∗v,u are both subgraphs
of Hu,v .

Lemma 11: Let G be a random graph generated by the
G(n, p; q) model with logn

s3 � np � n1/5 and q be
fixed. Then, w.h.p., for any pairwise-adjacent nodes u, v
and û, v̂, either {u, v} = {û, v̂} or ∆(H∗u,v, H

∗
v,u, π0) <

∆(H∗u,v, H
∗
v̂,û, π) for any bijection π (with π0 being the

identity mapping over Nuv).
Proof: Analogously to Theorem 8, denote by W the

number of quadruples (u, v, û, v̂), with u and v adjacent,
û and v̂ are adjacent and (û, v̂) 6= (u, v), (v, u), such that
∆(H∗u,v, H

∗
v,u, π0) ≥ ∆(H∗u,v, H

∗
v̂,û, π) for some bijection

π. We show that E[W]→ 0.
Fix u, v, û and v̂ and consider only the case S(u, v) =

S(û, v̂) = {g}, u = û and v 6= v̂ — other cases as

5In the regimes further considered, these graphs remain connected

broken down in the proof of Theorem 8 will be omit-
ted, as they yield stricter bounds. Our goal is to bound
P
(

∆(H∗u,v, H
∗
v,u, π0) ≥ ∆(H∗u,v, H

∗
v̂,û, π) for some π

)
.

Denote J = {x ∈ V s.t. Pg,xTu,g,x = 1}. Nodes in J
will belong to H∗u,v, H

∗
v̂,u independently with probability

q, with H∗v,u and H∗u,v sharing all nodes. Furthermore,
all edges between nodes in these sets will show up in
the corresponding graphs with probability s, independently.
Thus, all three graphs can be seen as a two-step sample of the
subgraph induced by J , with the first step removing nodes
and the second one removing edges, and H∗u,v and H∗v,u
sharing the first sampling step. Please refer to Figure 3 in
Appendix X for an illustration of this process.

We further assume that |H∗u,v| = |H∗v̂,u| = m, as otherwise
there are no bijections between the node sets of these graphs
and the quadruple is not counted in W by default. We can
now apply Lemma 16 from Appendix X, with G in the
statement equal to J in this construction, some δ ∈ (0, 1)
and t = q. Note that J is an Erdős-Rényi random graph
G(m, q).

P
(
∃π : ∆(H∗u,v, H

∗
v,u, π0) > ∆(H∗u,v, H

∗
v̂,u, π)

)
≤ 2

∞∑
k=2

mk exp

(
k

(
logm− mps3

16

))
+ exp

(
−δ

2m(1− q)
2

)
Recall that, by Lemma 6, m = |Nu,v| = Bi

(
n, pq2

)
.

Chernoff bound (Lemma 13) implies (1 − δ)npq2 ≤ m ≤
(1 + δ)npq2, so summing over all quadruples yields

E[W] ≤
∑

u,v,v̂,û

[
2

∞∑
k=2

exp
(
k
(
log npq2(1 + δ)

− npq2s3(1− δ)
16

))
+ 3 exp

(
−δ

2npq2(1− q)
3

)]
≤ 2

∞∑
k=2

exp
(
4 log n+ k

(
log npq2(1 + δ)

− npq2s3(1− δ)
16

))
+ 3 exp

(
4 log n− δ2npq2(1− q)

3

)
Under this theorem’s assumptions, the right side vanishes,

thus concluding the proof.

A. Noisy Fingerprint Algorithm

Based on Lemma 11 there is a variation of the fingerprint
assembly algorithm that can be used to assemble a collection
of noisy egonets {G∗v}v∈[n]. The noisy-fingerprint algorithm
takes {G∗v} as input and proceeds like the fingerprint as-
sembly algorithm, except for the following modification: For
each egonet G∗u and each node j 6= 1 in G∗v , we match
it to an edge (1, k) on an egonet G′u′ , but we change the

criteria “both fingerprints match exactly” to the criteria “edge
mismatch between both fingerprints is minimized”.

Just like in the noiseless scenario, this algorithm is able
to completely assemble the original graph G.

Theorem 12: Let G be a G(n, p; q) random graph with
logn
s3 � np � n1/5 and q fixed, and let P = {G∗v}v∈[n] be

an anonymized noisy-egonet collection extracted from G. If
Ĝ is the output graph of the noisy-fingerprint algorithm with
input P , then E(Ĝ) = E(G) w.h.p.

Proof: Assume E(Ĝ) 6= E(G). Then, one of the
following cases must hold:
• There is a pair of vertices (u, v) such that (u, v) ∈
E(G) \E(Ĝ). (u, v) ∈ E(G) implies v corresponds to
a node j in G∗u, and u corresponds to a node k in G∗v , for
some j, k. By Lemma 16, w.h.p. the fingerprint of (1, k)
in G∗u has minimum edge mismatch to the fingerprint
of (1, j) in G∗v , which implies the algorithm will add an
edge (u, v) to E(Ĝ). This contradicts (u, v) /∈ E(Ĝ).

• There is a pair of vertices (u, v) such that (u, v) ∈
E(Ĝ) \ E(G). Since (u, v) has been added to E(Ĝ)
by the algorithm, then there are pairs of vertices (1, j)
in G∗u and (1, k) in G∗v , with u 6= v, such that the
fingerprint of (1, k) in G∗v has minimum edge mismatch
to the fingerprint of (1, j) in G∗u. Since j is present at
G∗u, then j must correspond to some node v̂ which is a
neighbor of u. Similarly, k in G∗v corresponds to some
node û which is a neighbor of v. Lemma 16 implies
edges (u, v̂) and (v, û) must be the same edge (u, v)
w.h.p., which contradicts (u, v) /∈ E(G).

However, unlike the fingerprint-assembly algorithm, the
noisy-fingerprint algorithm has no trivial efficient implemen-
tation. The main reason is that the subgraph isomorphism
subroutine must be replaced by the calculation of a mini-
mum inconsistency between the input subgraphs, which is a
computationally expensive task to which there is no known
efficient approximation, to the best of our knowledge. A
practical approximation that warrants some interest is to use
the optimized form of the algorithm that has been imple-
mented with the Bliss library, but use a locality-sensitive
hash function over labeled graphs to store all subgraphs in
our hash map. This way, the task of searching for graphs with
similar topology (i.e., similar fingerprints) would be reduced
to determining entries that are closely located in this hash
map.

VI. DISCUSSION

We stated two results that characterize the regimes where
complete graph reconstruction, by using only the structure of
very small, ambiguous patches, is feasible. We have shown
how the relatively high transitivity of the G(n, p; q) random-
graph model leads to the existence of features in egonet
patches, these features are used to guide the assembly of the
egonet collection by a very intuitive algorithm. To the best
of our knowledge, this is the first work to apply a purely
structural approach to this problem.

We have also shown that such an assembly is still feasible
if the patches in our collection are noisy observations of

egonets. The conditions required on the model’s parameters
are stronger but only slightly: the lower bounds imposed on
the average degree of the intermediate graph Gp differ only
by a multiplicative constant and a penalty term of s−3 due
to the noise parameter s.

It is important to highlight that the focus of this work is
not on particular algorithms for solving the graph assem-
bly problem, which can be fine-tuned according to known
features of networks from any application domain. Rather,
we evaluate the impact of a fundamental network property
— its clustering coefficient — on the theoretical feasibil-
ity of solving the graph assembly problem. Proposing the
G(n, p; q) random graph model, instead of using known
models such as the Watts-Strogatz model, enabled us to
investigate this matter with a minimal distance from the
G(n, p) model. This model can be thought of as a baseline,
mean-field random model with little structural correlation,
and it leads to an effective study of clustering coefficient in
isolation from other network properties. Therefore, although
the specific stated theorems are not relevant to scenarios
involving real networks, the abstract conclusions are general
enough to be relevant in these scenarios. Further work with
alternative network models, with the clustering coefficient as
a controlled, independent parameter, should strengthen our
conclusions.

REFERENCES

[1] Pranay Anchuri, Mohammed J. Zaki, Omer Barkol, Shahar Golan,
and Moshe Shamy. Approximate graph mining with label costs. In
Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Chicago, IL, USA, August
2013.

[2] V. Arvind, Bireswar Das, and Johannes Köbler. The space complexity
of k -tree isomorphism. In Proceedings of the 18th International
Symposium on Algorithms and Computation, Sendai, Japan, December
2007.

[3] László Babai. Graph isomorphism in quasipolynomial time. ArXiv
e-prints, December 2015.

[4] Indrajit Bhattacharya and Lise Getoor. Collective entity resolution
in relational data. ACM Transactions on Knowledge Discovery from
Data, 1(1), 2007.

[5] V. D. Blondel, M. Esch, C. Chan, F. Clerot, P. Deville, E. Huens,
F. Morlot, Z. Smoreda, and C. Ziemlicki. Data for Development: the
D4D Challenge on Mobile Phone Data. ArXiv e-prints, September
2012.

[6] Phillip Bonacich. Power and centrality: A family of measures.
American Journal of Sociology, 92(5), 1987.

[7] Oliver Brdiczka, Juan Liu, Bob Price, Jianqiang Shen, Abhijit Patil,
Richard Chow, Evgeniy Bart, and Nicolas Ducheneaut. Proactive
insider threat detection through graph learning and psychological
context. In 2012 IEEE Symposium on Security and Privacy Workshops,
San Francisco, CA, USA, May 2012.

[8] Devdatt Dubhashi and Alessandro Panconesi. Concentration of Mea-
sure for the Analysis of Randomized Algorithms. Cambridge University
Press, 2009.

[9] Dóra Erdős, Rainer Gemulla, and Evimaria Terzi. Reconstructing
graphs from neighborhood data. ACM Transactions on Knowledge
Discovery from Data, 8(4), 2014.

[10] Paul Erdős and Alfred Rényi. On random graphs I. Publicationes
Mathematicae (Debrecen), 6, 1959.

[11] Tommi A. Junttila and Petteri Kaski. Engineering an efficient canon-
ical labeling tool for large and sparse graphs. In Proceedings of the
Ninth Workshop on Algorithm Engineering and Experiments and the
Fourth Workshop on Analytic Algorithms and Combinatorics, New
Orleans, LA, USA, January 2007.

[12] Frédéric Kaplan. The venice time machine. In Proceedings of the 2015
ACM Symposium on Document Engineering, Lausanne, Switzerland,
September 2015.

[13] Ehsan Kazemi, Lyudmila Yartseva, and Matthias Grossglauser. When
can two unlabeled networks be aligned under partial overlap? In
53rd Annual Allerton Conference on Communication, Control, and
Computing, Monticello, IL, USA, September 2015.

[14] Paul J. Kelly. A congruence theorem for trees. Pacific Journal of
Mathematics, 7(1), 1957.

[15] Jure Leskovec, Lars Backstrom, Ravi Kumar, and Andrew Tomkins.
Microscopic evolution of social networks. In Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Las Vegas, NV, USA, August 2008.

[16] Wuqiong Luo and Wee-Peng Tay. Estimating infection sources in
a network with incomplete observations. In 2013 IEEE Global
Conference on Signal and Information Processing, Austin, TX, USA,
December 2013.

[17] E. Mossel and N. Ross. Shotgun assembly of labeled graphs. ArXiv
e-prints, April 2015.

[18] Pedram Pedarsani and Matthias Grossglauser. On the privacy of
anonymized networks. In Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
San Diego, CA, USA, August 2011.

[19] C. Seshadhri, Ali Pinar, Nurcan Durak, and Tamara G. Kolda. Directed
closure measures for networks with reciprocity. Journal of Complex
Networks, early access, 2016.

[20] Kumar Sharad and George Danezis. An automated social graph de-
anonymization technique. In Proceedings of the 13th Workshop on
Privacy in the Electronic Society, Scottsdale, AZ, USA, November
2014.

APPENDIX

VII. USEFUL RESULTS

A. Concentration Lemmas

Lemma 13: [Chernoff-Hoeffding bound [8]]
Let X ,

∑n
i=1Xi where Xi, 1 ≤ i ≤ n, are independently

distributed in [0, 1]. Then for 0 < ε < 1,

P([X > (1 + ε)E[X]]) ≤ exp

(
−ε

2

3
E[X]

)
,

P([X < (1− ε)E[X]]) ≤ exp

(
−ε

2

2
E[X]

)
.

Lemma 14: [Difference of Binomials [18]] Let X1 and
X2 be two binomial random variables with means λ1 and
λ2, where λ2 > λ1. Then,

P(X2 −X1 ≤ 0) ≤ 2 exp

(
−1

8

(λ2 − λ1)2

λ2 + λ1

)
.

B. Graph Alignment [18], [13]

We use the results related to the graph-alignment problem
introduced in [18], [13]. The BiG(G(n, p); s) edge-sampling
model from [18] generates two similar graphs G1,2 from a
common vertex set. To elaborate on this, let G = (V,E)
be a generator graph with vertex set V and edge set E.
For a fixed realization of G that is an Erdös-Rényi random
graph G(n, p), we generate two graphs G1,2 = (V,E1,2)
by sampling the vertex set E twice. More precisely, each
edge e ∈ E is in the edge set of E1,2 with probability s,
independently of everything else. In our work we denote this
edge-removal operator by ψ

A more realistic BiG(n, p; t, s) model [13] assumes an
additional step of node sampling: Firstly nodes of G are
sampled independently w.p. t, and secondly the edges among
sampled vertices are sampled w.p. s.

VIII. LEMMA 3
Proof: We begin by noting that our hypothesis implies

np2 → 0. In this case, (1−(1−p2q)n) ' np2q and, therefore,
E[Qu,v] ' np2q for any u, v.

The first two statements are easily derived by using
this fact, after applying the linearity of expectation to
|Eq| =

∑
u,v
Qu,v and du =

∑
x
Qu,x, respectively. For

the third statement, note that cu can be written as cu =∑
x,y
Qx,uQu,yQx,y∑
x,y
Qx,uQu,y

=
N

D
Using first order Tailor exapnsion

(assured by the concentration of N and D around their
means):

E[cu] ' E[N]

E[D]
+ op(

E[N]

E[D]
),

where op means convergence in probability. Below we show
in details that the enumerator E[N] is asymptotically equal
to (npq)3/2. Analogously the denominator E[D] is asymp-
totically equal to E[D] = (n2p2q)2/2 , but we omit lengthy
calculations. This implies our result.

It is enough to determine functions
f1(n, p, q), f2(n, p, q) ∼ (npq)3/2 such
thatf1 ≤ E[N] ≤ f2. An analogous procedure,
which we will omit, can be performed for the denominator
as well.

Denote Ia,b,c = Ia,b,c(x, y) =
Pa,uPa,xPb,uPb,yPc,xPc,yTu,a,xTu,b,yTx,c,y , for
a 6= u, x; b 6= u, y; c 6= x, y. This enables us to write

E[N] =
∑
(x,y)

P(Qx,uQu,yQx,y = 1)

=
∑
x,y 6=u

P

⊕
a,b,c

Pa,uPa,xPb,uPb,yPc,xPc,y

· Tu,a,xTu,b,yTx,c,y = 1


=
∑
x,y 6=u

P

⊕
a,b,c

Ia,b,c = 1


Note that, if x, y 6= u, then P(Ia,b,c = 1) can take three

possible values: p3q3 if a = b = c, p5q5 if a = b 6= c (or
the two other symmetric cases), and p6q6 if a 6= b 6= c 6= a.

For the right inequality, note that ⊕Ia,b,c = 1 iff∑
Ia,b,c ≥ 1. Union bound yields:

E[N] =
∑
x,y 6=u

P

∑
a,b,c

Ia,b,c ≥ 1


≤
∑
x,y 6=u

∑
a,b,c

P(Ia,b,c ≥ 1) =
∑
x,y 6=u

∑
a,b,c

P(Ia,b,c = 1)

≤
∑
x,y 6=u

(∑
a=b=c

P(Ia,a,a = 1) +
∑
a=b 6=c

+symm cases

P(Ia,a,c = 1)

+
∑

a6=b 6=c6=a

P(Ia,b,c = 1)
)

≤
(
n

2

)
(np3q3 + 3n(n− 1)p5q3

+ n(n− 1)(n− 2)p6q3)

' (npq)3

2
(1 + np2 + n2p3) ' (npq)3

2

where, in the last equation, we use the fact that
np2, n2p3 → 0.

Now, for the left inequality, be dropping some terms from
the binary sum, and manipulating a bit further, we have

E[N] =
∑
x,y 6=u

P

⊕
a,b,c

Ia,b,c = 1


≥
∑
x,y 6=u

P

 ⊕
a 6=u,x,y
a=b=c

Ia,a,a = 1


=
∑
x,y 6=u

1− P

 ⊕
a 6=u,x,y
a=b=c

Ia,a,a = 0


Now, note that, for a 6= a′, Ia,a,a and Ia′,a′,a′ are

independent, as they do not share any random variables.
Recall that Ia,a,a = Be

(
p3q3

)
. Then, we have:

E[N] ≥
∑
x,y 6=u

1− P

 ⊕
a6=u,x,y
a=b=c

Ia,a,a = 0


=
∑
x,y 6=u

1− (1− p3q3)n−3 ' (npq)3

2

Thus E[N] = E(
∑
x,y
Qx,uQu,yQx,y) ' (npq)3

2

See example of the case where s = a = b = c at Fig 2.

Fig. 2. Edges of neighborhood of u.

IX. PROOF OF LEMMA 6

Proof: To prove the first statement, it is enough to show
that, under stated assumptions and given u and v are adjacent,
the expected size of the set X = {x ∈ V : Qu,xQv,x =
1, S(u, x) ∩ S(v, x) ∩ S(u, v) = ∅} goes to 0. The first
moment method then implies that this set has size 0 a.a.s.,
which is equivalent to the desired result.

We start by using the tower property:

E[|X| | Qu,v = 1]

= E[E[|X| | Np
u , N

p
v , S(u, v), Qu,v = 1] | Qu,v = 1]

Recall that, for any node g, Np
g denotes the set of p-

neighbors of g that showed up during the construction
process of the G(n, p; q) graph. Note that the condition on
the inner expectation can be expressed as a function only
of random variables of the kinds Pu∗, Pv∗ and Tu∗v . By
construction, any functions of random variables other than
these are independent of this condition.

To bound this inner expectation, fix vertex sets U ,V,S
with S ⊆ U ∩V and denote current values being fixed event
by T = {Np

u = U , Np
v = V, S(u, v) = S, Qu,v = 1}. Then

E[|X| | T] =
∑

x/∈{u,v}

P(x ∈ X | T)

Note that u, v /∈ X , as S(u, u), S(v, v) = ∅ by construction.
For any x /∈ {u, v}, we write

P(x ∈ X | T) = P(|S(u, x)| ≥ 1, |S(v, x)| ≥ 1,

S(u, x) ∩ S(v, x) ∩ S(u, v) = ∅ | T)

= P(|S(u, x)| ≥ 1, |S(v, x)| ≥ 1,

S(u, x) ∩ S(v, x) ∩ S = ∅ | T)

Rewriting expressions on S(u, x) and S(v, x) in terms of
our basic random variables:

P(x ∈ X | T)

= P

⊕
g′ 6=u,x

Pg′,uPg′,xTu,g′,x = 1,

⊕
g′′ 6=v,x

Pg′′,vPg′′,xTv,g′′,x = 1,

⊗
g∈S

Pu,gPv,gPx,gTu,g,xTv,g,x = 0

∣∣∣∣∣∣ T


= P

 ⊕
g′ 6=u,x
g′′ 6=v,x

(
Pg′,uPg′,xTu,g′,xPg′′,vPg′′,xTv,g′′,x = 1,

⊗
g∈S

Px,gTu,g,xTv,g,x = 0
) ∣∣∣∣∣∣ T


where the last step used the condition that S(u, v) = S and,
therefore, Pu,gPv,g = 1 for any g ∈ S. Now, we can apply
union bound to the latest expression:

P(x ∈ X | T)

≤
∑
g′ 6=u,x
g′′ 6=v,x

P(Pg′,uPg′,xTu,g′,xPg′′,vPg′′,xTv,g′′,x = 1,

⊗
g∈S

Px,gTu,g,xTv,g,x = 0

∣∣∣∣∣∣ T


The summand has different values depending on g′, g′′. Let
us detail all possible cases:

1) g′ = g′′ ∈ S — since the condition implies
Pg′,uPg′,vTu,g′,v = 1, the event expression reduces to
(Pg′,xTu,g′,xTv,g′,x = 1,⊗g∈SPx,gTu,g,xTv,g,x = 0);
the two parts of the expression are mutually exclusive,
hence, the event has probability 0;

2) g′ = g′′ ∈ U ∩ V \ S — by the same argument
as the previous item, the event expression reduces to
(Pg′,xTu,g′,xTv,g′,x = 1,⊗g∈SPx,gTu,g,xTv,g,x = 0);
using independence:

P(Pg′,uPg′,xTu,g′,xPg′′,vPg′′,xTv,g′′,x = 1,⊗
g∈S

Px,gTu,g,xTv,g,x = 0

∣∣∣∣∣∣ T


= P(Pg′xTu,g′,xTv,g′,x = 1,⊗
g∈S

Px,gTu,g,xTv,g,x = 0

∣∣∣∣∣∣ T


≤ P(Pg′xTu,g′,xTv,g′,x = 1 | T)

= P(Pg′xTu,g′,xTv,g′,x = 1)

= pq2

This pattern of manipulation also applies to following
cases and will be further omitted;

3) g′ = g′′ /∈ U ∩ V — in this case, either
g′ /∈ U , which implies Pg′,u = 0, or g′′ /∈ V ,
which implies Pg′′,v = 0; both facts imply that
Pg′,uPg′,xTu,g′,xPg′′,vPg′′,xTv,g′′,x = 0, so the event
has probability 0;

4) g′ 6= g′′, g′ ∈ U , g′′ ∈ V — the expression reduces to
(Pg′,xTu,g′,xPg′′,xTv,g′,x = 1, ⊗g∈SPx,gTu,g,xTv,g,x =
0), similarly to case 2, and the probability is bounded
by p2q2;

5) g′ 6= g′′, (g′ /∈ U or g′′ /∈ V) — as in
case 3, the choices of g′ and g′′ imply that
Pg′,uPg′,xTu,g′,xPg′′,vPg′′,xTv,g′′,x = 0 yielding an
event of probability 0;

Case 2 will happen for |U ∩ V| choices of g′ and g′′, and
case 4 will happen for |U| · |V|− |U ∩V| such choices. Thus

P(x ∈ X | T)

≤ |U ∩ V|pq2 + (|U| · |V| − |U ∩ V|)p2q2

= |U ∩ V|p(1− p)q2 + |U| · |V|p2q2

Since this is valid for any x 6= u, v

E[|X| | T , Qu,v = 1]

≤
(
n

2

)
(|U ∩ V|p(1− p)q2 + |U| · |V|p2q2)

and,

E[|X| | Qu,v = 1] = E
[
(n− 2)(|Np

u ∩Np
v |p(1− p)q2

+|Np
u | · |Np

v |p2q2)
]

By linearity of expectation and independence of Np
u and Np

v ,

E[|X| | Qu,v = 1] = (n− 2)(E[|Np
u ∩Np

v |]p(1− p)q2

+ E[|Np
u |] · E[|Np

v |]p2q2)

' n · np2 · pq2 + (np)2p2q2

= np3q2 + n2p4q2 = o(1)

To show the second and third statements of the lemma,
we use the following argument, for any two events A and
B, such that A ⊆ B the following holds:

P(A) = P(B)
P(A ∩B)

P(B)
= P(B)P(A|B).

Hence,

P(Qx,uQx,v = 1 | Qu,v = 1)

= P

x ∈ ⋃
g∈S(u,v)

Np
g


· P

Qx,uQx,v
∣∣∣∣∣∣ Qu,v = 1 ∧ x ∈

⋃
g∈S(u,v)

Np
g

.
Thus |Nu,v| = Bi

(
n, |S(u, v)|pq2

)
and

E[|Nu,v| | S(u, v)] = n|S(u, v)|pq2.

X. PARTIAL SAMPLING

Let G(V,E) be a realization of an Erdős-Rényi random
graph G(m, p), and let G1(V1, E1) and G2(V2, E2) be two
samples of G obtained as follows: Each node u ∈ V is
sampled with probability t independently to V1 and V2, and
E1 and E2 are all edges of E whose both endpoints are
sampled in V1 and V2, respectively.

Lemma 15:

P(G1 ∼ G2) ≤ exp
(
m logm− cm2

)
+ 2 exp−δ

2mt

2

where c(p, t, δ) = (1−δ)2t2(1−t) log
(
(p2 + (1− p)2)−1

)
.

Proof: If |V1| 6= |V2|, this event has probability 0,
so we assume |V1| = |V2| = m′. Denote by V0 the set of
nodes in G that are sampled in both V1 and V2, and let
m1 = |V1 \ V0| = |V2 \ V0|.

Consider an arbitrary mapping π : V1 → V2. For any
pair of nodes x ∈ V1 \ V0, y ∈ V1, if π is an isomorphism,
then either (x, y) ∈ E1 and (π(x), π(y)) ∈ E2, or (x, y) 6∈
E1 and (π(x), π(y)) 6∈ E2. This happens with probability
p2 + (1− p)2, since x is not a fixed point of π. In total, we
have approx m′m1 such pairs, and the event above happens
independently for each pair, hence P(G1 ∼π G2) ≤ (p2 +
(1− p)2)m

′m1 .
Denote by c1 = (p2 + (1 − p)2)−1. In total we have at

most m′! mappings from G1 to G2, thus

P(G1 ∼ G2) ≤ m′!(c1)−m
′m1

≤ exp (m′ logm′ −m′m1 log c1)

Recall that m′ = Bi(m, t) and m1 = Bi(m, t(1− t)).
Then, P(m′ ≤ (1− δ)mt) ≤ exp

(
− δ

2mt
2

)
by

Chernoff bound since m → ∞, and similarly
P(m1 ≤ (1− δ)mt(1− t)) ≤ exp

(
− δ

2mt
2

)
. Therefore,

P(G1 ∼ G2) ≤ exp
(
m logm− cm2

)
+ 2 exp

(
−δ

2mt

2

)
,

where c = (1− δ)2t2(1− t) log c1 .
Consider now the following variation of this graph sam-

pling process. First, graphs G, G1 and G2 are generated
as previously described. Now, graphs G1,1 = (V1, E1,1),
G1,2 = (V1, E1,2) are obtained by sampling edges from E1

independently with probability s, this sampling also being
independent for G1,1 and G1,2. Similarly, G2,1 = (V2, E2,1)
is obtained via this edge-sampling process from G2. This
process is illustrated in Figure 3.

Fig. 3. Node-edge sampling process that generates the edge neighborhoods.

Assume |V1| = |V2| = m, and denote by π0 the identity
mapping over V1. Denote by D an event that there exists π
such that ∆(G1,1, G1,2, π0) > ∆(G1,1, G2,1, π) .

Lemma 16: For s�
(
ω(1) logm

m

)
2
3 and p, t fixed, then

P(D) ≤
m∑

k=x+1

exp
(
k
(

logm− mps

16
· s2
))

+ exp

(
−δ2m(1− t)

2

)
.

for x = dmt(1− t)e
Proof: Denote by k the number of nodes u such that

π(u) 6= u and denote by Πk a subset of all such mappings.
Note that always k ≥ |V2 \ V0| = m′. Then we can write

P(D) ≤ P(D|m′ ≥ mt(1− t)) + P(m′ < mt(1− t))

≤
m∑
k=x

∑
π∈Πk

P(∆(G1,1, G1,2, π0) > ∆(G1,1, G2,1, π))

+ P(m′ < x)

First we estimate P(∆(G1,1, G1,2, π0) > ∆(G1,1, G2,1, π)).
We partition V2 into two sets of nodes Cπ ⊂ V2 and
Wπ ⊂ V2 such that u ∈ Cπ iff π−1(u) = u and u ∈ Wπ

otherwise. Also denote by V0 nodes that are sampled in
G1 and G2. Note, that |Cπ| = m − k, |Wπ| = k and
|V2 \ V0| = Bi(m, 1− t).

Define mapping π′ = π◦g where g is a bijection g : V2 →
V1, which works as follows: If u ∈ Cπ , then g(u) = u; the
remaining nodes Wπ we map as follows, we arbitrarily split
Wπ into two equal parts6 to W1 and W2 and we map each
u ∈W1 s.t. g(u) = π0(π−1(u)) the rest we map arbitrarily,
but not in place. Note that π′|W1∪Cπ = π0|W1∪Cπ

In the following, we show that w.h.p. ∆(G1,1, G1,2, π
′) <

∆(G1,1, G2,1, π). This follows from Lemma 14. We only
need to prove that (λ1−λ2)2

λ1+λ2
= ω(1). Where λ1 =

E[∆(G1,1, G2,1, π)] and λ2 = E[∆(G1,1, G1,2, π
′)].

λ1 =

(
m− k

2

)
2ps(1− s)

+

(
(m− k)k +

(
k

2

))
2ps(1− ps)

λ2 =

(
m− k + k

2

2

)
2ps(1− s)

+

((
m− k +

k

2

)
k

2
+

(k
2

2

))
2ps(1− ps)

λ1 − λ2 = k

(
m− 3

4
k

)
ps2(1− p) ≥ km

4
ps2(1− p)

λ1 + λ2 =

(
2m2 − 3mk +

5

4
k2

)
ps(1− s)

+

(
3mk − 5

4
k2

)
ps(1− ps)

≤ 4m2ps(2− s− ps)

Thus, (λ1−λ2)2

λ1+λ2
≥ k2s3p

64(2−s−ps) which is ω(1) if for k > x.
This enables us to bound the first term:

m∑
k=x+1

∑
π∈Πk

P(∆(G1,1, G1,2, π0) > ∆(G1,1, G2,1, π))

≤
m∑

k=x+1

∑
Πk

P(∆(G1,1, G1,2, π0) > ∆(G1,1, G1,2, π
′))

≤
m∑

k=x+1

exp k
(

logm− mps

16
· s2
)

The last follows from Equation 19 of [18] where conditions
of the Theorem 4.1 from [18] are met (except the condition
p→ 0 that the authors never use).

The second term follows from the fact that

P(m′ < x) ≤ P(m′ < m(1− t)(1− δ)) ≤ exp−m(1− t)δ2

2

due to Chernoff bound. Note that m′ = Bi(m, 1− t).
Then putting all together we get

P(D) ≤
m∑

k=x+1

exp
(
k
(

logm− mps

16
· s2
))

+ exp

(
−δ2m(1− t)

2

)
.

6Without loss of generality we can assume |Wπ | is even.

