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Abstract—We are interested in inferring the set of waypoints
(or intermediate destinations) of a mobility trajectory in the ab-
sence of timing information. We find that, by mining a dataset of
real mobility traces, computing the entropy of conditional Markov
trajectory enables us to uncover waypoints, even though no timing
information nor absolute geographic location is provided. We
build on this observation and design an efficient algorithm for
trajectory segmentation. Our empirical evaluation demonstrates
that the entropy-based heuristic used by our segmentation al-
gorithm outperforms alternative approaches as it is 43% more
accurate than a geometric approach and 20% more accurate
than path-stretch based approach. We further explore the link
between trajectory entropy, mobility predictability and the nature
of intermediate locations using a route choice model on real city
maps.

I. INTRODUCTION

Mobility is one of the most informative and valuable types
of human behavioral data. It is central to many new classes
of online services, from navigation tools to new models of
social interaction. Mobility patterns also correlate with many
behavioral and demographic traits and personal preferences
[4], [14]. This implies, on the one hand, that mobility is
potentially very valuable (e.g., for targeted advertisement), but
on the other hand, highly privacy-sensitive.

Human mobility usually serves the purpose of reaching a
small, discrete set of locations, which we refer to as waypoints
in this paper (e.g., workplace, shop, restaurant, movie theater)'.
All the other locations in a trajectory over, say, a day, are just
intermediate points en route to the next waypoint (e.g., train
station, airport, car, walking). We usually want to arrive at
the next waypoint as efficiently and quickly as possible, to
then spend time at the waypoint. A waypoint reveals therefore
much about individuals, more than intermediate locations do,
as people spend time at locations that play a central role in
their lives. In this paper, we investigate to which extent we
can uncover a user’s waypoints from his full trajectory, from
minimal information.

In the absence of an explicit signal from the user, the time
spent at a location best indicates whether this intermediate
location is actually a waypoint [17]. However, time information
might be missing or very sparse, which makes waypoint
inference particularly challenging. Such a situation occurs,
for example, when privacy-preserved trajectories with missing
time information are released to the public. We can also
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think of the scenario for which we have sparse trajectories
because a user reveals only a few locations along her trajectory.
These trajectories typically arise from a sequence of check-ins
(e.g., Foursquare or Twitter), geo-tagged photos (e.g., Flickr),
credit card transactions, and snapshots of vehicles captured
by surveillance cameras. Hence, even if some approaches [1]
enable us to infer the unobserved locations, the successive ob-
served check-ins are so distant that we are unable to accurately
infer the duration the user stays at each location. The results of
our work show that our segmentation approach enables data
miners to uncover important intermediate locations along a
trajectory, only from spatial information.

We address this question within a graph abstraction of the
world. Instead of a trajectory through R? (or even R?), we
discretize the user’s world to obtain a map that we represent
as a mobility graph G. A vertex of this graph represents a
branch point where the user takes the decision about where
to move next (e.g., an intersection), and an edge represents a
direct physical path between two vertices (e.g, a road segment
between two intersections). The advantage of this model over
full (geographic) trajectories is that it essentially encodes the
space of possible user decisions, but abstracts away any finer
but irrelevant details of the mobility process. In this model, a
user trajectory is simply a walk on the graph G from a starting
vertex s to a destination vertex d.

In this paper, we are interested in inferring the set of way-
points given a trajectory. We formulate this as a classification
problem for which every vertex on the trajectory as either a
waypoint or an intermediate point. This uses a statistic that
captures the evolution of the uncertainty about the trajectory
given only the waypoints. Specifically, we assume a Markovian
mobility model on the graph, and we compute the conditional
trajectory entropy given the candidate waypoints [6], [8]. This
conditional entropy captures the degree to which knowledge
of only the waypoints predicts the full trajectory.

We make two main contributions in this paper. First, we
find an empirical connection between the class of a vertex on a
trajectory (waypoint or intermediate point) and the conditional
Markov entropy of that vertex. More specifically, given a
trajectory from s to d that passes through some vertex u, we
compare Hg4, the unconditional uncertainty over the family
of all trajectories from s to d, to the conditional entropy
Hgj, of all trajectories s — d that pass through u. We
show that, through an extensive analysis of real mobility
traces, waypoints are those with a high ratio Hg),,/Hsq. We
provide the intuition behind this observation, and establish a
connection with random walk hitting times in the special case



of a regular graph. It is remarkable that waypoints can be
found from trajectories in the mobility graph G alone, i.e.,
in the absence of any timing information and any absolute
geographic locations.

Our second contribution builds on this insight. We develop
a segmentation algorithm that infers the likely waypoints of a
trajectory, based on conditional trajectory entropy. The entropy
is computed with respect to a Markovian mobility model,
which in a practical implementation would be trained from
a database of mobility traces. We evaluate this algorithm over
a large dataset of real mobility traces; we show that the points
corresponding to high conditional entropy tend to be those with
high residence time, which is much more likely for a waypoint
than an intermediate point. The entropy based heuristic used
by our algorithm outperforms alternative approaches: it is
43% more accurate than a geometric approach and 20% more
accurate than path stretch based approach. Moreover, it is
computationally efficient at online segmentation of trajectories,
given that offline computations are performed only once.

The remainder of the paper is structured as follows. In
Section II, we describe the trajectory entropy model. In Sec-
tion III, we mine a dataset of nearly 18,000 GPS trajectories
in order to explore the link between trajectory entropy and
waypoints. We build on these findings and present an algorithm
for trajectory segmentation in Section IV. We conduct, in
Section V, empirical experiments in order to evaluate the
performance of our approach at segmenting trajectories and
compare it to the performance of alternative approaches. In
Section VI, we present two empirical experiments that enable
us to gain more insight into the link between the evolution
of trajectory entropy, mobility predictability and the nature of
intermediate location. In Section VII, we present the related
work and we conclude in Section VIIL

II. TRAJECTORY ENTROPY MODEL

Human mobility is governed by both subjective principles
(e.g., personal preferences and habits, social relationships,
environment perception) and objective principles (roads and
geographic constraints). For an observer who knows only
partially the subject’s motivation and history, the mobility
process remains ambiguous and is therefore suitably modeled
as a stochastic process.

In our work, we model the mobility of a user as a random
walk on a finite graph G(V,E). A vertex of this graph
represents a decision point where the user can choose where
to move next (a semantic place such as home or work), and
an edge represents a direct physical path between two vertices
(work home routine). The advantage of this model, over a
continuous geographic model, is that it essentially represents
the space of possible user decisions, but abstracts away any
finer but irrelevant details of the mobility process. Moreover, it
has the advantage of being general enough to be representative
of most scenarios. A random walk on graph G is equivalent
to a finite state Markov chain (MC) {X;} characterized by
the matrix of transition probabilities P. The order of the MC
determines the memory of the process that it models: For a
first order MC, each state (vertex) represents a decision point,
whereas for higher order MCs, a state represents a sequence of
decision points. Naturally, a state can encode more information

than a sequence of points because we are able to add features
such as place semantics and time. For the rest of this paper,
we assume, if no stated otherwise, that a vertex of the graph
G and the corresponding state of the MC represent a location.

In this model, the sequence of locations a user visits as a
random trajectory Tsq of a MC. This trajectory Tsq4, as defined
by Ekroot and Cover [6], is a path with initial state s, final state
d and no intermediate state d, i.e., the trajectory is terminated
as soon as it reaches state d. Using the Markov property, the
probability of a realization tsq = sxs...xrd given that X7 = s
is

p(tsd) = PSIQPI2I3 ..
Let 754 be the set of all trajectories that start at state s and
end as soon as they reach state d. As the MC defined by the
matrix P is finite and irreducible, we have

Z p(tsd) =1

tsa€Tsa

Pya.

for all s, d.

So T4 is a discrete random variable that has as support the
set 754, with the probability mass function p(tsq).

The entropy of a random variable quantifies the uncertainty
or expected surprise of its realization. It is therefore a natural
choice when we are interested in quantifying the predictability
of a random variable. The entropy of a random variable is
maximized when all its realizations are equiprobable —high
uncertainty so low predictability —while it is minimized
when the random variable is deterministic —no uncertainty
so maximum predictability —. Consequently, the uncertainty
of the user’s trajectory, between the states s and d, is captured
by

Hyy = H(Ts ) = - Z p(tsd) Ing(tsd)-

tsa€Tsa

Let H denote the matrix of trajectories entropy where H;; =
H(T;;). Ekroot and Cover [6] provide a general closed-form
expression for the matrix H for the case of an irreducible,
aperiodic, and finite state MC.

Furthermore, if the user provides location updates along
his trajectory, the predictability of his mobility evolves and
is now captured by the entropy of his trajectory, conditional
on the intermediate locations revealed. We represent location
updates as a sequence of intermediate states w = ujus ... u;,
and the entropy of the user’s trajectory becomes

Hsd\'u, = H(T’Sd|T~$d € ::i)
=— > pltealTea € T35 logp(teal Toa € T34),

tsa€TY

ey

where 7% is the set of all trajectories in 7,q that exhibit the
intermediate states u

Tog ={tsa € Tsa 1 tsa=5...up...ug...up...dJ.

Computing the entropy H,q),, is challenging. Even the costly
approach of computing all the terms of the sum (1) is not
always possible because the set 7% has an infinite number of
members in the case where, after removing state d, the tran-
sition graph of the MC is not a DAG. Kafsi et al. [8] provide
a general closed-form expression to compute the entropy of
Markov trajectories conditional on multiple intermediate states.



Their approach is based on a transformation of the original
MC into a MC that exhibits the desired conditional distribution
p(TsalTsq € TH). It is important to emphasize that the entropy
Hgq),, is not the entropy of the random variable Ty given
another random variable, but the entropy of T4 conditional on
the realization of a dependent random variable. This implies
that the trajectory entropy does not necessarily decrease as we
condition on intermediate locations: the conditional entropy
H,q),, might be larger the unconditional trajectory entropy
Hgq.

In this work, we explore the link between the evolution of
conditional trajectory entropy and waypoints. Our intuition is
simple: An increase of the trajectory entropy due to condition-
ing on a intermediate location is an indicator that the posterior
distribution of trajectories p(Tsq|Tsq € T.%) is very different
from the prior distribution p(Ts4). In other words, revealing
this evidence contradicts our prior belief about the family
of trajectories. More precisely, it contradicts the assumption
of location d being the destination of the trajectory: the
intermediate location that most increases trajectory entropy is
the most likely to be an intermediate destination (waypoint) of
the user whose final destination is d. This intuition is confirmed
by both theoretical and empirical results. From the theoretical
side, we prove (detailed proof in Appendix A) that, for a
regular graph, the trajectory entropy Hgy is proportional to
the hitting time Sq .i.e., the expected length of the trajectory
Tsq. Consequently, the ratio Hg),, /Hgq captures the stretch
of the length of trajectory 754 when we condition on going
through state u. Naturally, for the case of non-regular graph,
the trajectory entropy captures properties that are richer than
the hitting time. We confirm this emprically in Section V.

In the next section, we explore this direction further and
show that there is, indeed, an empirical connection between
high conditional entropy and waypoints.

III. TRAJECTORY CONDITIONAL ENTROPY AND
WAYPOINTS

In this section, we explore the link between trajectory
conditional entropy and waypoints: We show empirically, using
a dataset of around 18,000 trajectories, that intermediate
locations that increase trajectory entropy are more likely to
be waypoints where users spend a significant amount of time.

A. Dataset and Mobility Model

Geolife dataset: Exploring the link between waypoints
and trajectory entropy necessitates a dataset that associates
trajectories with time information. The Geolife project [17]
consisted in collecting the mobility traces of 182 users over a
five-year period. The collected dataset contains around 18, 000
trajectories (more than 1,300,000 km) mainly located in
China. A trajectory of this dataset is represented as a sequence
of time-stamped points described by their latitude, longitude
and altitude. The sampling rates vary between users but remain
very high in general: 91.5% of the trajectories are logged
in a dense representation, e.g., every 1 — 5 seconds. These
trajectories present the advantage of being very diverse because
they are associated with different activities and transportation
modes. In fact, according to Zheng et al. [17] who collected

these traces, some trajectories are associated with home-
to-work routines, whereas some others are associated with
shopping and sightseeing.

Fig. 1. The majority of the GPS trajectories in the Geolife dataset are within
the city of Beijing, China.

Pre-processing: We process the data as follows: First,
we discretize the GPS records by dividing the surface of
the globe into identical areas (squares whose side lengths
are 1km). A square basically represents the set of locations
enclosed within the area it covers. Then we represent each
trajectory in the dataset as the sequence of areas visited and
the associated residence time in each area, i.e., the total time
spent by the user in this area. We will use the information
about residence time in order to detect waypoints. In Figure 2,
we show the empirical distribution of trajectory length given
as the number of areas covered. The trajectory lengths range
from very short trajectories (1 or 2 locations) that correspond
to short urban trips to very long trajectories that correspond
to inter-city trips. In fact, in the raw dataset, 36% of the
trajectories span a distance that is less than 5 km, whereas
5% of the trajectories span a distance superior to 100 km.
Moreover, as the majority of the trajectories are geographically
within the city of Beijing [17], we choose to focus on the data
produced in this capital.

Constructing the mobility MC: After the pre-processing
phase, we construct a weighted graph G(V, E) whose vertices
represent geographical areas and edges represent direct transi-
tions between areas. As we are interested in actual transitions
between areas, we exclude jumps that are due to a loss of
GPS signal and also exclude self-transitions that reflect only
multiple location samples within the same area. As a result, the
weight of an edge (7,j) € F is equal to the number of direct
transitions from area ¢ to area j. We infer, using a maximum
likelihood estimator, the first order MC that has generated the
observed data. The training set 7y,;, contains the trajectories of
all users and the MC obtained is therefore a low order mobility
model that captures the population mobility pattern. Note that
we choose a low order MC because the training data available
does not allow for training a higher order MC, similar to the
one we present in Section VI-A. In fact, the number of samples
needed to train a MC increases exponentially with the order
of the MC. Having samples fewer than the number needed
for a correct training of a high order MC leads to severe over-
fitting. Having constructed the MC that captures the patterns of



population mobility, we can analyze the link between trajectory
entropy and waypoints.
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Fig. 2. Histogram of the length of Geolife trajectories after pre-processing.
The trajectory lengths range from very short trajectories that correspond to
short urban trips to very long trajectories that correspond to inter-city trips.

B. Waypoints Increase Trajectory Entropy

As discussed in Section II, revealing some intermediate
locations might increase trajectory entropy, because it implies
a conditioning that drastically changes the distribution of tra-
jectories. A plausible explanation for such a Bayesian surprise
—the posterior distribution of trajectory is very different from
the prior distribution—is that the location revealed is not
simply an intermediate location: it is a waypoint in itself.
In order to explore this direction, we conduct the following
experiment: we observe the mobility of a user whose trajectory
tsq starts at location s and ends at location d. Suppose that this
user has a waypoint u along his trajectory. As this waypoint
is more important than the intermediate locations that lead
to it, the time the user would spend at this waypoint u is
presumably larger than the average time spent at the other
intermediate locations. If the locations that increase the entropy
are more likely to be waypoints, the average time spent by
the users at these locations —a proxy for their importance
—should be larger than the average time spent at other
intermediate locations. If our hypothesis is true, we would be
able to quantify more accurately the importance of a location,
even when the location records are not associated with time
steps; observing the evolution of trajectory conditional entropy
evolution would enable us to detect these important waypoints.

In order to test this hypothesis, we conduct the following
experiment: we associate with each trajectory ts4 the set of
locations U, (tsq) that is defined as

ua(tsd) = {u € tsd|Hsd|u > aHsd}- (2)

This set contains the intermediate locations u whose condi-
tional entropy Hq),, is larger than aHyq. For o = 0, the set
U, (tsq) is equal to the trajectory tsq, whereas for a = 1,
the set U, (tsq) is the set of locations in ¢4 that increase the
trajectory entropy.

We introduce the continuous random variable R(u) that
represents the residence time at location u. We are interested
in analyzing the evolution of the expected residence time at a
location as a function of the change of trajectory entropy if we
reveal this location. More formally, we analyze the evolution
of

fro = E[R(u)|u € Ua(Tsa)] &)

as we increase the value of the parameter a.
We approximate the quantity (3) by the empirical average
P ZtSdEWmm Zuetsd T(U’tSd)]lueua(tsd)

flo = ) 4
: ZtsdGﬁ-aiu Zuetsd ]]-uel/{(,(tsd)

where r(u,tsq) is the residence time at location u along the
trajectory tgq.

Figure 3 illustrates the evolution of fi, as a function of
«a. As we increase the value of o, we become increasingly
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Fig. 3. Evolution of the average time spent at a location /i as a function of
the entropy ratio . We observe a sharp transition in the value of fi, as we
consider only the points that increase trajectory entropy. This strongly supports
our hypothesis stating that locations that increase trajectory entropy are more
likely to be waypoints.

restrictive and consider only the intermediate locations that
satisfy the inequality Hq, > «H;q. We notice that the
average time ji, increases with «. More importantly, we
observe a sharp transition in the value of (i, as soon as we
consider only the points that increase the trajectory entropy. In
fact, the average time a user spends at a location is less than
4 minutes, whereas the average time spent at locations that
increase the trajectory entropy (Hgg, > 1.3 Hsq) is longer
than 8 minutes.

In order to explore further this direction, we compare
the distribution of the residence time R(u) at locations that
decrease the entropy (Hq, < Hsq) with the distribution
of residence time at locations that increase it (Hgq, >
H,,). Figure 4 shows two CCDFs (complementary cumulative
distribution functions) of the residence time R(u) for both
situations. We clearly observe that the CCDFs have the same
evolution for low values of residence time but diverge starting
at r = 8 minutes. Above this value, there will more likely be
a large residence time in a location that increases the entropy
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Fig. 4. Log-log plot of the complementary cumulative distribution function
(CCDF) of the residence time R.

rather than in a location that decreases it. For example, it is 10
times more likely that a user spends more than 30 minutes at
a location that increases the entropy rather than at a location
that decreases it. Taken together, our results strongly support
our hypothesis stating that locations that increase trajectory
entropy are more likely to be waypoints where a user will
spend more time. Furthermore, these results imply that, using
a low order mobility model that is based on the patterns of
population mobility, we are able —with no time information
—to segment individual trajectories by detecting waypoints.

In the next section, we build on these findings and propose
an algorithm that is able to automatically segment a given
trajectory by using a heuristic based on trajectory entropy.

IV. ALGORITHM

We propose here a recursive algorithm that segments a
trajectory by finding intermediate locations that increase the
conditional entropy.

Algorithm for trajectory segmentation: We show in
Algorithm 1 the pseudo-code of our segmentation algorithm.
The input of the algorithm is a trajectory ts4, a MC transition
probability matrix P and a sensitivity parameter o > 0. The
algorithm recursively segments the trajectory tsq by finding
the intermediate point u that maximizes the conditional entropy
Hg),, (line 21). If this conditional entropy H g, is larger than
aHsq, the point v is added to the sequence of waypoints U.
Note that the sensitivity parameter « controls to which extent
the segmentation process is conservative: The higher alpha is,
the more selective we are at declaring a point as a waypoint. If
a waypoint u is chosen, the segmentation algorithm continues
by applying the same procedure to the two sub-trajectories tg,,
and t,4.

Our algorithm bears similarity with the Ramer-Douglas-
Peuker algorithm [11] that is used for polygonal approximation
of plane curves. The conditional trajectory entropy in our
algorithm is analogous to the Euclidean distance between the
original curve and the simplified curve in [11].

Algorithm 1: Trajectory segmentation

Input: trajectory traj, transition probabilities matrix P,
sensitivity «
Output: indices of waypoints U

1 begin

2 U<+— 0 // global variable
3 if len (traj) > 2 then

4 | segment (traj, 0, len (traj) — 1)

5 end

6 return U

7 end

8 Function segment (traj, i, j)

9 k <— partition (traj, i, j)
10 if £ > 0 then

1 U<+—UU{k}

12 if i + 1 < k then

13 | segment (traj, i, k)
14 end

15 if £+ 1 < j then

16 | segment (traj, k, j)
17 end

18 end

19 Function partition (traj, i, j)

20 s « trajli], d + traj[j]

21 k «— argmax; i ; Hodjtrajk)

the element that maximizes
conditional entropy

22 u +— trajlk]

23 if H,q, > aHgsq then

// finding

24 | return k
25 else

26 | return —1
27 end

Complexity: We study the average case complexity of
our algorithm for a N states MC and a trajectory of length
l. The expected number of nested calls is upped bounded by
logl: in the most balanced situation, we divide the trajectory
into two sub-trajectories with approximately the same length.
Typically, the number of nested calls is much lower than log!
because the number of waypoints in a trajectory of length [ is
much lower than [. For each call, we compute the conditional
entropy for O (I) candidates; this necessitates the computation
of the fundamental matrix associated with the Markov chain.

A naive computation of the fundamental matrix has a
O (N 3) complexity because it necessitates the inversion of
a matrix of size O (N). However, for a given MC, we can
pre-compute offline the conditional entropies H,q),, and then
use these results in order to segment all the trajectories on
this MC. In such a situation, the expected time complexity of
segmenting a trajectory of length [ is O (Ilog!), which allows
for a very efficient online segmentation of trajectories.

Another interesting direction we explore is the approx-
imation of the conditional entropy Hgq, by the sum of
entropies Hg, + H,4. Such an approximation would reduce
the complexity of computing the conditional entropies H g,
because we would be able to use the matrix of trajectory



entropies H —O (N 3) complexity to compute the entropy
between all pairs s,d € V2 —to approximate the conditional
entropy Hqj,,. In fact, a short development of the results of
Kafsi et al. [6], [8] gives

Hsd\u - (Hsu + Hud) = Hg — HSU\J’

which implies that quantities Hq),, and Hy, + H,q are very
close if the distributions p(Ts,,) and p(Ts,|Ts, & TL,) are very
similar. This is the case, for example, if the probability that
the trajectory T, goes through the state d is very low. In such
a situation, the pre-computation, which is performed once, has
a complexity O (N 3), and the expected time complexity of
segmenting a trajectory of length [ is O (Ilogl). For future
work, we plan to work on this approximation and provide
bounds for the difference between the H,q),, by the sum of
entropies Hg, + Hyyq.

V. EXPERIMENTAL EVALUATION

In this section, we apply the entropy-based segmentation to
the GPS trajectories of the Geolife Project, and show that it is
able to accurately infer waypoints along a trajectory, without
having access to time information.

A. Trajectory Segmentation

Detecting waypoints: As we do not have data that clas-
sifies intermediate locations as waypoints, we use the available
time information in order to detect potential waypoints. This
bears similarity with the approach taken by Zheng et al. [17]
who analyze the same dataset and classify a location as a stay
point if an individual stays within an area around it for more
than 20 minutes. We take this idea further and improve it by
comparing the individual behavior to the collective behavior:
We assume that a location visited by a user along his trajectory
is likely to be a waypoint if this user spends significantly
more time at this location than the other users typically do.
As a consequence, locations where most of the users spend a
relatively long time (e.g., crowded areas or train stations) will
not be declared as waypoints. More formally, we associate
with each location x a Gaussian distribution of residence
time N (pz, 0,), whose parameters are learnt from behavior
of the whole population observed. For a user moving along
a given trajectory ts4, an intermediate location u € tgq is
considered to be an intermediate destination if the time this
user spends at u is classified as an outlier by the Chauvenet’s
criterion [15] applied on the distribution A (5, 0,). This
criterion states that, given a dataset of n observations produced
by a Gaussian distribution, we consider a data point as an
outlier only if the probability of observing its deviation from
the mean is less than ﬁ In order to check whether our
results are consistent independently of the choice of outlier
detection method, we tested different outlier detection methods
and obtained consistent results. We denote by W(t;4) The set
of waypoints associated with the trajectory 4.

We apply this waypoint detection procedure to the Geolife
GPS trajectories and observe that the majority (more than
87%) of the trajectories has no waypoints, i.e., W(tsq) = 0.
Among the trajectories that admit at least one waypoint, the
clear majority (around 90%) has only one waypoint. We
will therefore focus on assessing the performance of different

segmentation methods on finding, for a given trajectory tsq
a) whether this trajectory admits waypoints, and b) if yes,
finding the waypoint where the user spends most of her time

w = argmax 7 (tsq, u)
uEW(tsa)

Baseline methods: In order to assess the performance of
our approach at trajectory segmentation, we consider different
baseline methods that rely on different heuristics for trajectory
segmentation. As the challenge is to uncover waypoints with
no information about time, all the methods presented here
share the fact that their heuristics are based on the structure
of the trajectory only. Each method first constructs a set of
candidate waypoints W(t¢s4), and then chooses the way point
w that maximizes a given heuristic . The baseline methods are
as follows:

Random (R) assumes that each trajectory admits waypoints
and selects uniformly at random one the points of the
trajectory tsq. R

Geo Stretch (GS) The set of candidate waypoints W(ts4)
is composed of the intermediates locations that are not
on the direct line from s to d. The waypoint is the
intermediate location that is the furthest from the segment
with s and d as end points. This simple yet strong
baseline is used in the very popular Ramer-Douglas-
Peuker algorithm [11] to select the point on a trajectory
that is the furthest from the approximating line segment
between s and d.

Path Stretch (PS) We consider the weighted mobility graph
introduced in III-A. The weight associated with an edge
(4,7) is equal to —log(P;;) where P;; is the probability
of visiting location j given that we are at location i. These
weights favor the transitions that are the most frequently
observed. A simple computation gives that the cost of
a trajectory tyq is equal to —logp (tsq), which implies
that the more probable a path is, the less costly it is. The
set of candidate waypoints W (ts4) is composed of the
intermediate locations that are not along the shortest path
from s to d. The waypoint is the candidate location w
that maximizes the path cost. .

Entropy (E) The set of candidate waypoints W(¢54) is com-
posed of the intermediate locations whose conditional
entropy Hgq, is larger than the trajectory entropy Hgq.
The waypoint is the candidate location w that maximizes
conditional entropy

w = arg max Hygj,
ueW(tsd)

Empirical evaluation: In order to evaluate the perfor-
mance of the different segmentation methods, we repeat the
following process 100 times: we divide randomly the dataset
of trajectories in a training set (90 % of the data) and a test
set (10 % of the data). Then, we train a Markovian mobility
model based on the trajectories of the training set and we
apply the different segmentation methods to the trajectories
of the test set. As we do not have access to a ground truth
about waypoints, we consider the results produced by the time-
based classification procedure, introduced in the beginning
of Section V-A, as target values. We assess the performance
of each segmentation method by measuring a) its average



| Residence time (std) [s] | Distance (std) [hops]

R 209 (73) 6.1 (1.2)

GS 570 (121) 2.5 (0.6)

PS 700 (114) 1.76 (0.27)
E | 1151 (150) \ 1.41 (0.28)

TABLE 1. THE AVERAGE PERFORMANCE OF THE ENTROPY BASED
SEGMENTATION (E) COMPARED TO BASELINE METHODS (R, GS, PS). THE
AVERAGE DISTANCE BETWEEN THE ENTROPY-BASED METHOD’S GUESS
AND THE ACTUAL WAYPOINT IS 1.4 HOPS ON AVERAGE, WHICH
REPRESENTS A 43% IMPROVEMENT OVER THE GS SEGMENTATION, AND
20% IMPROVEMENT OVER THE PS SEGMENTATION.

| Accuracy | Fy score

R 0.1 0.16
GS | 0.12 0.18
PS | 047 0.25

E| 07 | 06

TABLE II. THE AVERAGE CLASSIFICATION ACCURACY AND AVERAGE
F; SCORE OF THE ENTROPY BASED SEGMENTATION (E) COMPARED TO
BASELINE METHODS (R, GS, PS).

classification accuracy and the average F}-score (harmonic
mean of precision and recall), b) the average residence time
r(tsq, W) at the location classified as waypoint, and c) the
average distance (number of hops) between the waypoint guess
w and the actual waypoint w.

We report the results, obtained by averaging the results
of the process presented above, in Tables I and II. The
methods whose heuristics are based on the statistics related
to the population mobility (PS and E) perform better than
purely geographical heuristics (GS). This is not surprising
as heuristics that are based on geographical distances fail to
capture paths that are geographically costly but very popular
(i.e., a long route that includes many points of interests is more
popular than a short route that has none).

Among the methods that are based on the mobility graph,
the entropy-based segmentation is clearly the best: It takes
advantage of the entropy-based heuristic that describes the
evolution of whole the distribution of trajectories, as opposed
to the PS that is based on the evolution of path probability
only. This also confirms that trajectory entropy captures much
more than simply the evolution of the cost of the shortest path.

By looking at Table I, we see that the average residence
time at the locations classified as waypoints by our method is
larger than the residence time at the locations classified as such
by the baseline methods (102% larger than GS, 64% larger than
PS). This indicates clearly that the entropy based segmentation
is the best at retrieving intermediate locations where users
spend significant amounts of time. More importantly, the
average distance between our method’s guess and the actual
waypoint is 1.4 on average, which is a 43% improvement over
the GS segmentation, and a 20% improvement over the PS
segmentation. We can see this average distance as a measure
of the waypoints’ privacy [12], which implies that the privacy
of waypoints is the lowest when the adversary’s estimate of
the waypoint is based on trajectory entropy.

Table II shows the average accuracy and F) score of

each method. The fact that R and GS perform poorly is not
surprising if we know that the majority of the trajectories in our
dataset admits no waypoints: the random segmentation method
declares systematically that a trajectory admits a waypoint
while GS declares the same as soon as the trajectory tgq
deviates from the direct line from s to d. Our method is
the most accurate —48% more accurate than PS —and is
able to classify correctly an important proportion (70%) of
the trajectories that have a waypoint. Moreover, it offers the
best trade-off between precision and recall, with a F} score
equal to 0.60. Note that, for all methods, the precision is
lower than the recall: observing an intermediate location that
deviates significantly from the most probable path, or increases
trajectory entropy does not always imply, with certainty, that
this location is a waypoint.

Taken together, these results strongly support the possibility
of uncovering waypoints of a trajectory without having access
to time information: Computing the conditional trajectory
entropy associated with a parsimonious mobility model enables
us to detect structural outliers that are very likely to be
waypoints and not simple intermediate locations.

VI. INTERPRETATION

In this section, we explore further the link between tra-
jectory conditional entropy and the nature of intermediate
locations and analyse an additional dataset in order to confirm
the results found. In the first part of this section, we consider
a mobility graph with a very high location-resolution: We
consider a real city map and represent a user’s mobility using
a route choice model borrowed from the research literature on
urban mobility [7]. In the second part of this section, we focus
on a subset of the Geolife datatset [17] and illustrate which
intermediate locations increase/decrease trajectory entropy for
a specific pair of source and destination.

A. Trajectories on City Maps

Open Street Map dataset: The urban environment in
which we evolve is usually described by a road map that is rep-
resented as a graph. In order to obtain this representation, we
use the data freely available from the project OpenStreetMap
(OSM). OSM is a collaborative project, with over 1.9 million
registered users, created in order to provide free geographic
data. The maps provided by the OSM project are represented
using a standard geospatial vector data format called shapefile.
We download these shapefiles and process them in order to
represent the city road map as a graph G(V, E) similar to the
one shown in Figure 5. In addition to being connected, the
graph G is weighted: we associate with each edge (i,j) € F
a cost ¢;; > 0 equal to its length.

Route choice model: For a given source vertex s and
destination vertex d, we associate with each edge (i,7) a
weight w; ;5,4 defined as

Dyq o)
wipsa=1—[1-(=—"0d .G
(@0)]s.d (Dsz +c¢ij + Djd) ©)

where D;; is the cost of the shortest path between vertices
1 and j. The weight (5) is inspired from the cumulative



Fig. 5.

The graph extracted from the geospatial data of OSM about an
European city. The vertices and edges of the graph enables the representation
of the geometrical shape of the roads.

distribution function of Kumaraswamy’s double-bounded dis-
tribution [9], defined on the interval [0, 1] and having two non-
negative shape parameters by and b,. It indicates to which
extent the cost of a path going through the edge (i, j) deviates
from the cost of the shortest path between the vertices s and d.
The weights definition is based on the paper [7] in which the
authors propose a method to stochastically generate paths for
a given origin-destination pair, without having to enumerate
all paths between these points. We model the user mobility as
a second order MC whose state space is the set of vertices V.
We choose a second order MC because we want to keep in
memory the momentum of the mobility and to have a more
realistic behavior: The next location a user will visit is different
from the one she just left. Equivalently, we can represent this
second order MC as a first order Markov chain X; with an
extended state space E: a state represents a sequence of two
connected vertices (4, j). Therefore, the transition probabilities
are given by

P gy, k) = P(Xng1 = (k, 1) X0 = (4, 7))

As we are interested in the mobility between two fixed vertices
s and d, we define the transition probabilities between the
states (7,7), (k,l) € E as

Wk,1)|s,d if =k,
P(i,j),(k,l) = Zl'eF(k)\l W(k,1")|s,d (6)
0 otherwise,

where I'(k) is the neighborhood set of vertex k. In Figure 6,
we plot the road map G, = (V, EL) of an area surrounding
the train station in an European city. We are interested in the
trajectories between two locations represented by the vertices
s (green star) and d (red triangle). Using the mobility model
defined in (6) with b; = 2 and by = 1, we obtain a second
order MC, where a state represents a sequence of two vertices
or, more simply, a directed edge in .

Trajectory entropy and mobility predictability: The
entropy Hgq is equal to 7.13 bits, the expected number of
bits needed to represent the random trajectory T,4. We plot in
the Figure 6 the graph 1, and color each edge (i,j) € EL,
with a color that is proportional to the value Hq(;,;)/Hsa-
First, we notice a high variability of this quantity whose range

02 03 04 05 06 07 08 09 10 11

Fig. 6. The graph G = (VL, EL) represents an area around the train
station of an European city. We focus on the trajectory between the vertices
s (green star) and d (red triangle), and color each directed edge (u,v) with
a color proportional to the value of the conditional entropy Hg|(y,v) /Hgq.
Light gray represents a low value of entropy and hence a high trajectory
predictability.

is the interval [0.13,1.1]. Unsurprisingly, this means that we
cannot consider location updates as having an equal effect
on the trajectory predictability: revealing one location can
have almost no effect on the predictability of a trajectory,
whereas revealing another location can be very threatening
to privacy as it drastically increases trajectory predictability.
In order to understand the cause of an important decrease in
the entropy value, we have to dig a bit deeper and study
the trajectory conditional distribution. We observe that the
distribution of trajectories conditioned on the directed edge
that minimizes entropy is dominated by two trajectories with
very close probabilities. If we reveal this intermediate edge,
the randomness of the trajectory would be equivalent to the
randomness of Bernoulli random variable with p =~ 0.5.
Naturally, a location along this edge will not be classified by
our algorithm as a waypoint because it decreases trajectory
entropy.

B. Entropy and Mobility Predictability

We take the same approach presented in Section III-A but
focus on the pair of locations (s,d) with the largest set of
trajectory realizations. As we are able to visualize these raw
trajectories, this enables us to gain more intuition into the
link between conditional trajectory entropy and the nature of
intermediate locations. We plot the raw trajectories in Figure 7
and observe that two main roads, with similar lengths, allow
for reaching the destination d.

We show in Figure 8 the set of locations that, when
revealed, decreases most significantly the trajectory entropy.
They are within the square that is along one of the two
main roads leading from s to d. Knowing this, we are not
surprised that the entropy decreases to 73% of its initial
value by just conditioning the trajectory on going through this
blue square. Revealing this intermediate location excludes the



Fig. 7. We plot all the raw trajectories, starting inside the area delimited by
the green square (upper part) and ending inside the area delimited by the red
square (lower part). Observe that the starting and ending areas are connected
by two main roads.
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Fig. 8. It is not surprising that revealing an intermediate location that is
adjacent to the starting location has a small effect on the trajectory distribution
and decreases the entropy by only 2%. However, revealing an intermediate
location in an area along one of the two main paths decreases the trajectory
entropy to 73% of its initial value, which significantly increases trajectory
predictability. Moreover, revealing the location in the lower-right corner
changes completely the distribution of trajectories and maximizes conditional
entropy.

trajectories that go through the second main road leading to d,
thus increasing significantly the predictability of the trajectory
taken.

In contrast, revealing some other locations has a small
effect on the predictability of the trajectory. In fact, revealing
the blue square just next to the starting location when heading
towards the destination has a small effect on the trajectory
distribution and decreases the entropy by only 2%.

Figure 8 shows how revealing an intermediate location
—this location is on a lengthy path between the source
and destination —increases the entropy by 70%. Visualizing

the raw trajectories enables us to see that this intermediate
destination is not on the most popular paths between the
source and destination. Our segmentation algorithm, applied to
a trajectory that goes through this intermediate location, will
correctly classify this intermediate location as a waypoint.

VII. RELATED WORK

In this section, we briefly present additional references
to the related work about trajectory segmentation, trajectory
entropy and mobility predictability.

Trajectory segmentation: The classic idea of trajec-
tory segmentation [2], [5], [16] is to obtain segments where
movement characteristics inside each segment are similar.
Movement characteristics might be attributes of the points
of the trajectory such as speed, direction, or curviness. For
example, the Ramer-Douglas-Peuker algorithm [11] segments
a trajectory based on the deviation of its points from the
segmented curve. Buchin et al. [2] propose a segmentation
algorithm that associates a profile to every point based on its
attributes (speed, heading and curvature). Then, they express
the segmentation process as an optimization problem where
the goal is to have a similarity within a segment higher than a
given threshold. In this work, our goal is to segment trajectories
by measuring the “deviation” from the typical distribution of
trajectories followed by the population. To the best of our
knowledge, we are the first to segment trajectories, using a
model of population mobility and with no time information.

Trajectory entropy: In [6], Ekroot and Cover study the
computational aspect of the depth measure as introduced by
Lloyd and Pagel [10]. In order to quantify the number of
bits of randomness in a Markov trajectory, they propose a
closed-form expression for the entropy of trajectories of an
irreducible Markov chain. Kafsi et al. [8] provide a general
closed-form expression to compute the entropy of Markov
trajectories conditional on multiple intermediate states.

Mobility predictability: Song et al [13] study the pre-
dictability of human mobility using a mobile phone dataset
of 45,000 mobile phone users. They quantified the users’
mobility predictability by approximating their mobility entropy
rate and found out that, on average, 1 bit of information
is needed to describe the next cell tower visited by a user
given his whole mobility history. In our work, we go beyond
the predictability of the next location visited and are able to
quantify in the predictability of the whole trajectory. Moreover,
we quantify the impact of revealing a subset of the locations
visited on mobility predictability.

VIII. CONCLUSION

In this work we have proposed a trajectory segmentation
method based on the computation of the entropy of conditional
Markov trajectories. We have shown empirically that the
entropy of a trajectory conditioned on a particular location is a
powerful metric for estimating whether this location is likely
to be a waypoint or not, and more generally for revealing
whether knowing this location makes the trajectory more or
less predictable. Using this observation, we have developed an
algorithm that is able to efficiently segment trajectories: We
take advantage of a model of population mobility and quantify
to which extent this individual trajectory deviates from the



plausible behaviors. The advantage of our approach is that
little information about the individual trajectory is needed. In
particular, no timestamps nor absolute geographic locations
are used. This implies that data miners would be able to
uncover important intermediate locations for privacy-preserved
trajectories that are not associated with time information or for
very sparse trajectories.

More generally, we believe the entropy of conditional
trajectories is a powerful tool to study dynamics on graphs,
because it captures the evolution of the distribution of tra-
jectories as intermediate locations are revealed. The results
presented in Section VI also open up interesting directions for
future research. For example, we are able to quantify, using
the trajectory entropy framework, the privacy risk of revealing
a subset of the locations visited (check-ins) along a trajectory.

APPENDIX

We study the particular case of a random walk on a regular
graph and show how the entropy H,, is proportional to the
hitting time Sgq .i.e., the expected number of steps before
the state d is visited, starting from state s. This equality is
particularly interesting because it links trajectory entropy to
the hitting times, a popular measure in graph theory and used,
among others, to quantify the similarity between vertices [3].

Proposition 1: Consider a random walk on a §-regular
graph G(V, E) defined by the transition probability matrix P
whose entries read

1/8 if (i,5) € E,

0 otherwise.

ij =

Then, we have the following equality for all s,d € Vs # d
Hgq = log(d) Ssq-

Proof: By definition, we have
Hyq = —E [log p(Tsq)] -
Since the trajectory is generated by a random walk on a §-
regular graph, we have
1
p(tsd) = 5l(tsd) 5

where [(ts4) be the length of the trajectory ts4. Thus

= -5 [ie ()] =% [
= log(0) E [I(Tsa)]

The expected length E [I(T54)] of the random trajectory Tq is
equal to the hitting time S,4 because the trajectory T,y is a
path from s to d that terminates as soon as it reaches state d.
Therefore

Hsd = log(é) Ssd-
| |

In other words, since all nodes have the same degree, the
entropy of a trajectory generated by a random walk on a regular
graph is proportional to its expected length.
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