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Abstract

Background: The alignment of protein-protein interaction (PPI) networks enables us to uncover the relationships
between different species, which leads to a deeper understanding of biological systems. Network alignment can be
used to transfer biological knowledge between species. Although different PPI-network alignment algorithms were
introduced during the last decade, developing an accurate and scalable algorithm that can find alignments with high
biological and structural similarities among PPI networks is still challenging.

Results: In this paper, we introduce a new global network alignment algorithm for PPI networks called PROPER.
Compared to other global network alignment methods, our algorithm shows higher accuracy and speed over real PPI
datasets and synthetic networks. We show that the PROPER algorithm can detect large portions of conserved
biological pathways between species. Also, using a simple parsimonious evolutionary model, we explain why PROPER
performs well based on several different comparison criteria.

Conclusions: We highlight that PROPER has high potential in further applications such as detecting biological
pathways, finding protein complexes and PPI prediction. The PROPER algorithm is available at http://proper.epfl.ch.
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Background
Proteins are large biomolecules that carry out vital func-
tions in living cells. They typically carry out these func-
tions in concert with other biomolecules, especially other
proteins, which enables their diverse functionality, such
as forming signaling networks and metabolic pathways,
and regulating enzymatic activities [1]. In this context,
the term protein-protein interaction (PPI) stands for the
mutual interactions between pairs of proteins.
PPI data are obtained by high-throughput experimental

techniques such as yeast 2-hybrid [2], synthetic lethality
[3] and co-immunoprecipitation coupled mass spectrom-
etry [4]. The data are deposited in more than 100 PPI
databases [5] such as BioGRID [6], the Molecular Interac-
tion Database (MINT) [7], the Human Protein Reference
Database (HPRD) [8], and IntAct [9]. Despite the large
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amount of PPI data, the detection of the protein pathways
and protein complexes is challenging because many of the
PPIs are noisy and non-reproducible.
A comparative analysis of PPI networks provides insight

into species evolution and information about evolution-
arily conserved biological interactions, such as pathways
across multiple species [1, 10–12]. Network alignment
(also known as graph matching or network reconciliation
in the computer science literature) algorithms were intro-
duced to compare PPI networks between two or more
species.
The comparison of PPI networks, by network align-

ment, shows that there are identical interaction patterns
between proteins with high sequence similarity across dif-
ferent species [13]. For example, there are many common
protein interactions between proteins in yeast networks
and their corresponding protein orthologs in PPI net-
works of worms [14]. Because functional interactions are
often conserved across species and false positives are
unlikely to occur in multiple species, network alignment
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can increase the confidence level of an observed interac-
tion in a database [15].
PPI-network alignment has many applications in areas

such as detection of new pathways and of conserved
motifs, prediction of the functions of proteins, orthol-
ogy detection, drug design, protein-protein interac-
tion prediction and phylogenetic tree reconstruction
[16, 17].
Generally, PPI-network alignment methods assume that

two functional ortholog proteins on two different PPI
networks are likely to interact with proteins in the corre-
sponding networks that are functionally orthologs them-
selves [1, 18, 19]. Following this line of thought, local
network alignment (LNA) and global network alignment
(GNA) methods are the main approaches for aligning
PPI networks [1, 20, 21]. The LNA algorithms search for
small but highly conserved subnetworks (e.g., homolo-
gous regions of biological pathways or protein complexes)
between species, whereas GNA algorithms try to align all
(or most of ) the proteins to find large subgraphs that are
functionally and structurally conserved over all the nodes
in the two networks [1, 20, 21].
PPI-network alignment algorithms use topological (e.g.,

local and global network structures) and biological (e.g.,
amino acid sequences of proteins) information to align
two networks. The topological information is more
important than sequence information for aligning func-
tionally conserved interactions [22, 23], hence the focus
of network alignment algorithms shifted from using only
biological information towards using topological informa-
tion. Most of the early works on PPI-network alignment,
such as PathBLAST [24], NetworkBLAST [10], NetAlign
[25], MaWISh [26] and Grælin [27], study the LNA prob-
lem. More recent methods, such as IsoRank [28, 29], the
GRAAL family [16, 23, 30–32], MAGNA and its succes-
sor MAGNA++ [33, 34], SPINAL [35], PINALOG [36],
Netcoffee [37] and BEAMS [38], are examples of GNA
algorithms.
In this paper, we consider the GNA of only two net-

works. Singh et al. [28] introduced IsoRank as the first
GNA algorithm for PPI networks. The IsoRank algorithm
is formulated as an eigenvalue problem, where it first
computes a pairwise protein similarity metric (as a con-
vex combination of protein sequence similarities and a
structural similarity score), and then generates the final
global alignment between the two networks based on this
metric. The authors of [39, 40] developed approxima-
tion algorithms for efficient computation of the IsoRank
similarities. GHOST [41] aligns two networks according
to the similarity of spectral signatures of node couples.
PINALOG [36] finds the final alignment by matching
the communities of the two networks first. The GRAAL
(GRAph ALigner) family is a group of GNA methods that
use the graphlet-degree signature similarity to align two

networks. GRAAL [30] is the first GNA algorithm that
uses only structure of the two networks for alignment.
It first selects a couple of nodes with high graphlet-
degree signature similarity, and then by a seed-and-extend
matching procedure it tries to expand the alignment
around this couple in a greedy way. In general, a seed-and-
extend algorithm starts the alignment procedure from a
set of highly similar couples called seed pairs. Then, it
proceeds to align iteratively similar couples among neigh-
bors of the seed pairs. H-GRAAL [31] uses the Hungarian
algorithm for improving the quality of alignments pro-
duced by GRAAL, at the cost of increased computational
complexity. To align two networks, MI-GRAAL [16] inte-
grates several metrics such as graphlet-degree signature
similarity, local clustering coefficient differences, degree
differences and protein sequence similarity. L-GRAAL
[23] is the latest algorithm from the GRAAL family; it
directly optimizes both the structural and sequence sim-
ilarities with a heuristic seed-and-extend strategy based
on a Lagrangian relaxation. The SPINAL algorithm [35]
iteratively grows an alignment based on an a priori com-
puted coarse-grained node similarity score. By using a
genetic algorithm,MAGNA [33] tries to optimize the edge
conservation between two networks.
In this paper, we design a new global pairwise-network

alignment algorithm for PPI networks; it is built upon
previous results for graph matching in computer science.
We show the excellent performance of our algorithm (in
terms of both accuracy and speed) compared to sev-
eral state-of-the-art algorithms. We also introduce a new
measure for evaluating the performance of algorithms in
aligning biological pathways between species. We argue
the suitability of our algorithm by analyzing its perfor-
mance in a bigraph-sampling model of network evolution
[42–44]. For this random-bigraph model, we use the
results of [43, 45] to guarantee the performance of our
algorithm.

Methods
GNA algorithms, by finding a one-to-one mapping of pro-
teins, try to find large conserved sub-networks (as they
are indicative of a common ancestor) and network motif1
between several species [46]. Global pairwise-network
alignment algorithms align proteins of only two species
in order to maximize the biological and topological sim-
ilarities (these concepts are defined precisely later in the
text) between aligned proteins; they have been extensively
studied in the literature [20, 21, 28, 35, 36].
A PPI network can be represented by a graph G(V ,E),

where V is the set of proteins and each edge (u, v) in E
is an indicator of interaction between the two proteins u
and v. Formally speaking, given two networks G1(V1,E1)
and G2(V2,E2), the purpose of global network alignment
is to identify a bijection between the full (or partial) vertex
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sets of two networks. The network alignment algorithms
use the protein similarities and the network topology. In
this study, the pairwise similarities between proteins are
computed by the well-known basic local-alignment search
tool (BLAST) [47] that considers the alignment of amino
acid sequences of those proteins.

The PROPER algorithm
Network alignment has been an active area of research in
the computer science literature. In the context of network
analysis, the main goal is to align social graphs from dif-
ferent domains [48, 49]. In computer vision and pattern
recognition, graph matching is used to find similar images
in a database [50–52].
In many scenarios, there is some side information that

could be used in the process of network alignment. For
example, it is possible to use information from a small
fraction of individuals who elect to reveal their identities
in two social networks. Alternatively, some users link their
accounts across multiple networks. This set of revealed
identities or linked nodes (henceforth called a seed set)
enables us to initiate an iterative procedure for matching
the two graphs. In this regard, one main category of net-
work alignment algorithms, known as percolation graph
matching (PGM), assumes that there is side information in
the form of a seed set of pre-matched node couples. In this
class of algorithms, the alignment starts with a small setA
of initial seed couples and percolates to other node cou-
ples, i.e., they build the alignment incrementally between
nodes of the two networks [45, 48, 53–55].
We use the ideas from PGM algorithms (mainly [45])

to design our PROPER (PROtein-protein interaction net-
work alignment based on PERcolatin) algorithm.

PROPER: two steps
In the process of PPI-network alignment by PROPER, ini-
tially we have as inputs two PPI networks G1(V1,E1) and
G2(V2,E2), the set of pairwise BLAST bit-score similar-
ities (call it S) for couples of proteins in V1 × V2, and
fixed thresholds �, r > 0, where � and r are the sequence
similarity and the local topological similarity thresholds,
respectively.
The PROPER algorithm uses the sequence similarities

and network structures in a two-stage procedure: (i) At
the first step, it uses the sequence similarities to generate
a seed set for a PGM algorithm; and (ii) at the second step,
to align remaining couples, it uses only the network struc-
ture and the seeds generated from the first step as inputs
to the PGM algorithm. This is in contrast with many
other pairwise-alignment algorithms, where they try to
simultaneously maximize a function of both sequence
and structural similarities. In this section, we first explain
the process of generating seed set A from S (the Seed-
Generation algorithm). Then, we explain how to align

new couples, starting from the setA (the MapPercolation
algorithm).
Initial seeds play an important role in the alignment pro-

cess. In the PPI setting, the BLAST bit-score is often a
good indicator of functional similarities between proteins
[56]. In other words, at high levels of sequence similar-
ity it is possible to make a functional inference with an
acceptable accuracy [57]. This means that, for couples of
proteins with a high sequence similarity it is very likely
that they have similar functions. The main approach in
this paper is to use such couples as a starting point to find
a global alignment. Indeed, the seeds to the PROPER algo-
rithm are those couples of proteins with high sequence
similarities. Also, a protein can be aligned with at most
one protein from the other species. The degree of similar-
ity between the couples in the seed set A is controlled by
the threshold �.
The seed set A is generated from the pairwise simi-

larities (the set S) in the following manner: Among all
the couples of proteins with BLAST bit-score similarity
above �, couples [i, j] are matched in a descending order
of sequence similarity, unless i or j is matched already.
More precisely, (i) we add the couple [i, j]∈ S with the
highest similarity to the seed set and match i to j; (ii)
all the couples [i, j′] and [i′, j] are now forbidden and we
remove them from S . We repeat the steps (i) and (ii) until
there is no remaining couple in the set S with BLAST bit-
score similarity at least �. Note that, in the process of seed
generation, when there are several couples with the same
sequence similarity, we randomly pick one of them.
Algorithm 1 describes the SeedGeneration algorithm in

detail. In this algorithm, for a set of couples A, V1(A)

defines the set of nodes from network G1 in A, i.e.,
V1(A) = {i|∃j s.t. [i, j]∈ A for somej}. We define V2(A)

similarly. Also, BlastBit(i, j) denotes the BLAST bit-score
similarity between two proteins i and j.
A priori, the probability of biological similarity of a pro-

tein couple decreases with a decrease in the sequence
similarity. Therefore, there is a trade-off between the
number of protein couples with the same biological func-
tions and the accuracy (i.e., the ratio of couples with the
same functions over the size of seed set) based on �.
Clearly, choosing a high value for � aligns proteins that,
with a high probability, have similar functions. However,
this can result in removing couples with lower sequence
similarities, but the same functions from the initial
seed-set.
The second step of PROPER (the MapPercolation algo-

rithm) starts the alignment process from the seed couples
(set A) obtained from the set of pairwise similarities S
(see the SeedGeneration algorithm). It then incrementally
generates the set π of matched couples amongV1×V2\A.
In the MapPercolation step, the PROPER algorithm relies
only on the structure of G1,2, and it does not use the
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Algorithm 1: The SeedGeneration Algorithm
Input: BLAST bit-score similarities S and �

Output: The seed setA
1 A ← ∅;
2 for all couples [i, j]∈ S from the highest similarity to
the lowest do

3 if i /∈ V1(A), j /∈ V2(A) and BlastBit(i, j) ≥ � then
4 add the couple [i, j] toA;
5 end
6 end
7 returnA;

sequence similarities. In this regard, the seed couples are
added to the set of aligned couples π . Then, at each time-
step, the goal of the PGM algorithm is to add a new couple
to the set π so that structural similarity is maximized.
In the process of theMapPercolation algorithm, we look

at the neighboring couples of the previously matched cou-
ples. We say a couple of proteins [i′, j′]∈ V1 × V2 is a
neighbor of another couple [i, j] if and only if (i, i′) ∈ E1
and (j, j′) ∈ E2. Indeed, the evidence for deciding which
couple to match (called the score of a couple) is the num-
ber of common neighbors each couple has in the set of
currently aligned couples. To achieve the maximum struc-
tural similarity, our algorithm chooses the next couple in
a greedy way: it chooses the couple with the maximum
number of common neighbors scoremax (provided there
are at least r) in π and permanently aligns them. There-
fore the number of conserved interactions by adding the
couple with the highest score is scoremax. Note that a new
couple of proteins can be matched if its score is at least r.
When there are several couples with the maximum

score, we tie-break by the minimum degree-difference in
the two networks, i.e., we choose the couple [i, j] with
the minimum |d1,i − d2,j|, where d1,i and d2,j denote the
degrees of nodes i and j in the networks G1 and G2,
respectively. The proteins with closer number of interac-
tions (i.e., closer degrees) have more structural similarity.
If there is more than one couple with the minimum degree
difference, we choose the couple with the minimum d1,i +
d2,j. The couple with the minimum d1,i + d2,j minimizes
the number of mismatched interactions. Finally, if there
are still several candidate couples, we randomly pick one
of them. The process of alignment continues to the point
where there is no remaining unmatched couple of pro-
teins (we say a couple [i, j] is unmatched if i /∈ V1(π) and
j /∈ V2(π)) with at least r common neighbors, in the cur-
rent set of aligned proteins. Note that for a given value of
r, only nodes with degree at least r can get enough score to
be matched. More precisely, MapPercolation is not able to
align: (i) unmatched nodes with a degree less than r, and

(ii) couples that have not gained enough scores. Figure 1
presents an example of the second step of PROPER (the
MapPercolation algorithm). Algorithm 2 describes this
algorithm.

Algorithm 2: The MapPercolation algorithm
Input: G1(V1,E1),G2(V2,E2), seed setA and

threshold r
Output: The set of aligned couples π

1 π ← A;
2 while there exists an unmatched couple with score at
least r do

3 among all the couples with the highest score select
the unmatched couple [i, j] with the minimum
|d1,i − d2,j|. If there is more than one couple with
the minimum |d1,i − d2,j|, select the couple with
the minimum d1,i + d2,j. Finally, if there are still
several candidates, randomly pick one of them;

4 add [i, j] to the set π ;
5 end
6 return π ;

Performance measures
In this section, we explain the measures used for com-
paring alignment algorithms. As there is no single stan-
dard measure for evaluating the quality of alignments,
we use several existing measures [20, 21, 46]. In addi-
tion, we introduce a new measure for comparison based

Fig. 1 Dark-green nodes correspond the initial seed-set. Couples
[i1, i2] , [i1, j2] , [ j1, j2] , [ j1, i2] , [v1, i2] , [v1, j2] are neighboring couples of
the couple [u1, u2]. The couples [ i1, i2] and [ j1, j2] are the common
neighbors of the couple [u1, u1] in the set of already matched couples
π , i.e., the score of couple [u1, u2] is two. Light-green nodes are the
nodes that are matched after the first three steps of the
MapPercolation algorithm
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on the performance of algorithms in aligning biological
pathways.
For better illustration, in this section we assume that,

without loss of generality, G2 has at least as many nodes
as G1, i.e., |V1| ≤ |V2|. Let π denote the mapping pro-
duced by an alignment algorithm. Also, let G[U] denote
the induced subgraph of G on a set of vertices U. Assume
π maps the nodes V ′

1 ⊂ V1 to the nodes V ′
2 ⊂ V2,

i.e., V ′
2 = π

(
V ′
1
)
. Note that many global alignment algo-

rithms do not match all the nodes from graph G1 to a
node from graph G2, i.e., they align a large fraction of the
nodes but not all of them. We define graph G0(V0,E0) as
the intersection of the two graphs G1 and G2 under the
alignment π , i.e., V0 is the set of proteins in graph G1
aligned by π to a protein in graph G2; and E0 is the set
of interactions in G1, conserved under the alignment π

in the graph G2. Formally, we have V0 = V ′
1 and E0 =

EG1[V ′
1] ∩ π−1(EG2[V ′

2]).

Structural and functional similaritymeasures
In this section, we review the measures that are used
widely to evaluate the performance of network alignment
algorithms.
(i) Node correctness (NC) of an alignment is defined as

the ratio of the number of correctly aligned couples to the
number of nodes in the smaller network (i.e., |V1|) [30].
The precision is defined as the ratio of number of cor-
rectly aligned couples to the total number of couples |π |
in the alignment π . These measures are applicable only
to synthetic networks, because they can be used only for
alignments with known ground-truth [21].
As the true alignment between the proteins of two

species is not known completely for real networks, it is
not possible to directly calculate the NC and precision of
an alignment [20, 21, 46]. To compare the performance of
algorithms over real datasets, two different types of mea-
sures were introduced in the literature. The first group
of measures uses the topological similarity of aligned
networks. The second group measures the quality of an
alignment by using other biological information.
The following measures are used for evaluating the

topological similarity of aligned networks.
(ii) The number of conserved interactions under the

alignment π (call it �π ) is one of the measures used to
evaluate the quality of algorithms based on the topological
similarity [1]. Formally,

�π = |π(E1) ∩ E2|.

(iii) Edge correctness (EC) is a measure of topological
similarity among the aligned networks [30]. EC com-
putes the ratio of edges from graph G1, i.e., all the edges
in the smaller network, which are conserved under the
alignment π . Formally,

EC = |π(E1) ∩ E2|
|E1| .

(iv) Recall that the numbers of proteins (nodes) in the
two networks are not equal. Therefore, one drawback
of the EC measure is that aligning sparse regions of G1
with dense regions of G2 can result in high values of EC.
The induced conserved-structure score (ICS) measures
the structural similarity of aligned networks by penalizing
dense regions of G2 [41]. The ICS score for an alignment
π from graph G1 with graph G2 is

ICS = |π(E1) ∩ E2|
|EG2[π(V1)]|

.

(v) The symmetric substructure score (S3) is defined
with respect to both G1,2 networks [33]. The S3 measure
penalizes the alignments that map sparse regions of one
network to denser regions of the other network. Formally,
S3 is defined as follows.

S3 = |π(E1) ∩ E2|
|E1| + |EG2[π(V1)]| − |π(E1) ∩ E2| .

Note that |E1| refers to all the edges in the smaller net-
work.
(vi) The largest connected shared-component (LCSC) is

the largest connected subgraph of G1, which is found to
also exist in G2, i.e., the largest connected component in
graph G0 [46]. Let |LCSC| denote the number of nodes
in LCSC. Also, the share of nodes in LCSC is defined as
|LCSC|
|V1| [16].
We now introduce the second group of measures that

are used for evaluating the biological quality of align-
ments.
(vii) The gene-ontology consistency (GOC) score mea-

sures the functional similarity of aligned proteins. Note
that usually more than one gene ontology (GO) terms are
assigned to a protein [58]. Also, as the GO datasets are
noisy and proteins have diverse functions, it is possible
that true ortholog proteins do not have exactly the same
set of GO terms. GOC for an aligned couple of proteins
u ∈ V1 and v ∈ V2 is defined as the Jaccard similarity
coefficient between the GO terms of the two proteins [35].
Formally, it is defined as

GOC(u, v) = |GO(u) ∩ GO(v)|
|GO(u) ∪ GO(v)| ,

whereGO(u) denotes the set of GO terms associated with
the protein u. GOC(π) is calculated by summation over
the GOC terms of all the aligned couples in π :

GOC(π) =
∑

u∈V1

GOC(u,π(u)). (1)

For ease of notation we refer to GOC(π) as GOC score.
(viii) To compare algorithms based on the sequence sim-

ilarities of aligned proteins, we use a slightly modified ver-
sion of the average normalized bit–score (ANBS) measure
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proposed in [59]. ANBS for two graphs G1(V1,E1) and
G2(V2,E2) under the alignment π is defined as follows.

ANBS(π) =
|V1|−1

∑

i∈V1(π)

BlastBit(i,π(i))√
BlastBit(i, i)BlastBit(π(i),π(i))

.

Pathway comparisonmeasures
In order to evaluate the performance of algorithms in
aligning biological pathways, we introduce a new mea-
sure in this section. This measure captures the quality of
alignments based on a higher level of functional and struc-
tural similarities (beyond the introducedmeasures such as
the similarity of GO terms and the number of conserved
interactions).
It is known that there are many biological pathways

with similar functions in different species [12]. The KEGG
PATHWAY database [60] provides a set of experimentally
found biological pathways. In this database, a pathway is
called by the name of a species (e.g., hsa for Homo sapi-
ens), followed by a number. The pathways with the same
number have the same function in different species. For
example, hsa03040, mmu03040, dme03040 and sce03040
are in Homo sapiens (human), Mus musculus (mouse),
Drosophila melanogaster (fruit fly) and Saccharomyces
cerevisiae (budding yeast), respectively. These pathways
have the same functions.2 Assume PWi,1 denotes the set of
proteins from a pathway with number i in the PPI network
of the first species (i.e.,G1). Similarly, we define PWi,2. For
pathway i, �π ,i denotes the number of conserved inter-
actions between the proteins in this pathway under the
alignment π , i.e., �π ,i = EG1[PWi,1] ∩π−1(EG2[PWi,2]). Note
that we are looking for pathways that are present in both
aligned species.
We say a protein u from a pathway is aligned correctly, if

it is mapped to a protein v from a pathway with the same
function. For pathway i, we define the number of correctly
mapped proteins as |PWi,1 ∩ π−1(PWi,2)|. This measure
corresponds to the number of proteins that, from path-
way i in the first species, are mapped to a protein from
the same pathway in the second species. For pathway i, we
define the accuracy as

accπ ,i = 2|PWi,1 ∩ π−1(PWi,2)|
|PWi,1| + |PWi,2| . (2)

This measure corresponds to the fraction of correctly
mapped proteins in pathway i.
We conjecture that a good alignment algorithm should

align proteins from pathways with the same functions
across species, and many interactions among these pro-
teins are conserved. To quantify this expectation, we set
a threshold over the structural similarity of aligned path-
ways to consider them as a correct alignment. We say that

an alignment π successfully aligns a pathway i, if there are
at least δ conserved interactions under the alignment π

for proteins in that pathway, i.e., if �π ,i ≥ δ. This thresh-
olding guarantees that the structural similarity of aligned
pathways are more than a minimum value (here, δ con-
served interactions). To evaluate the performance of an
algorithm based on this thresholding criterion, we define
a set of measures as follows.

1. We consider pathways with at least δ (say δ ≥ 2)
interactions in each of the species. Let “#PWδ”
denote the number of such pathways.

2. Alignment π successfully aligns pathway i, if
�π ,i ≥ δ. The variable “#FPWδ” refers to the number
of successfully aligned pathways. We define the recall
as

recallπ ,δ = #FPWδ

#PWδ

. (3)

3. Again, for a correctly aligned pathway i, we define
accπ ,δ,i similar to (2).

The averages over all i of all the accπ ,i and accπ ,δ,i values
are represented by accπ and accπ ,δ , respectively. Figure 2
provides a toy example of how to calculate the pathway
alignment measures.

Results
In this section, we compare PROPER with the main state-
of-the-art network alignment algorithms, specifically (i)
with L-GRAAL as the most recent member of GRAAL
family that takes into account both sequence and struc-
tural similarities [23]; (ii) with MAGNA++ that tries to
maximize one of the EC, ICS or S3 measures [33, 34]
(In our experiments we run MAGNA++ in two different

Fig. 2 In this figure, two example PPI networks are given. Green nodes
are proteins which are in the same pathway (i.e., a pathway with the
same number in both species). Dotted lines represent the alignment π
between these two networks. Under this alignment, there are five
conserved interactions between proteins in this pathway (shown by
thick black edges in each network). Also, the number of correctly
mapped proteins is four. Therefore, the accuracy of aligning this
pathway is accπ ,i = 2×4

6+5 , where there are six and five proteins from
this pathway in each species, respectively
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modes of maximizing S3, which is the superior mode for
MAGNA++ [33], and EC); (iii) with IsoRank [28] as one
of the first global PPI-network alignment algorithms; (iv)
with PINALOG [36]; and (v) with SPINAL I and II [35]
as their performances are reported to be among the best
alignment-algorithms [46]. Table 1 provides an overview
of the arguments and parameters of the algorithms used
in our comparisons. Note that it is recommended to use
SPINAL and MAGNA++ in modes I and S3, respectively.
Also, the recommended settings for IsoRank is α = 0.6.
For the other algorithms, no default setting is provided.
We evaluate the performance of PROPER with r = 1 and
different values of �.
All the algorithms use two sets of data as input: (i) the

PPI networks of two species, and (ii) the pairwise BLAST
similarities (in form of BLAST bit-score) between pro-
teins from the first species and proteins from the second
species. We use two different PPI-network databases for
our comparisons. The first one is from IntAct molecular
interaction database [9, 61]. This database enables us to
compare algorithms based on large and more recent PPI
networks. The GO annotation terms are extracted from
the Gene Ontology Annotation (UniProt-GOA) Database
[62, 63]. For pathway comparisons over these networks we
can use data from [60]. The second database is Isobase
[64], a common dataset used in comparison of recent
algorithms [20, 46]. The results for experiments over
Isobase dataset are provided in Additional file 1. For fur-
ther evaluations, we use synthetic networks with a known
ground-truth.

Structural and functional based comparisons
Table 2 provides a brief description of the PPI networks
for five major eukaryotic species, namely C. elegans (ce),
D. melanogaster (dm), H. sapiens (hs), M. musculus (mm)
and S. cerevisiae (sc); they are extracted from the IntAct
database [9, 61]: The last column of Table 2 shows the
number of pathways of each species from KEGG PATH-
WAY database [60]. The amino-acid sequences of proteins
for each species are extracted in the FASTA format from
UniProt database [65, 66]. The BLAST bit-score similari-
ties [47] are calculated using these amino acid sequences.

Table 2 PPI networks of five major eukaryotic species from
IntAct molecular interaction database [9, 61]

Species #nodes #edges Avg. deg. #pathways

C. elegans 4950 11550 4.67 117

D. melanogaster 8532 26289 6.16 127

H. sapiens 19141 83312 8.71 288

M. musculus 10765 22345 4.15 284

S. cerevisiae 6283 76497 24.35 98

Figure 3 compares algorithms based on the average ICS
versus average GOC score for all the possible 10 pair-
wise alignments between the species. We observe that
PROPER outperforms the other algorithms in both mea-
sures, i.e., the PROPER algorithm finds alignments with
higher functional (GOC score) and structural (ICS) sim-
ilarities. For the detailed comparisons of the algorithms
refer to Figs. 6, 7, 8 and Additional files 1 and 2.
Note that many of the GO annotations are based on

only sequence similarities, and these annotations could
increase the GOC scores artificially. Clark and Kalita [46]
(similar to [35]) propose to also compare algorithms by
using only the experimentally verified GO terms (along
the comparisons based on all the GO terms) to eliminate
the effects of sequence similarities in the GOC evalua-
tions. For this reason, in our next experiment, we consider
only GO terms with codes “EXP”, “IDA”, “IMP”, “IGI”, “IEP”
and “IPI” (the codes for experimental GO terms), and
we exclude the annotations derived from computational
methods. Figure 4 compares the GOC (based on experi-
mentally verified GO terms) versus EC score. The result of
this experiment confirms the superiority of PROPER over
the other algorithms.
Figure 5 evaluates the performance of algorithms based

on S3 (for structural similarity) and ANBS (for functional
similarity) measures. Again, the PROPER algorithm per-
forms the best based on the twomeasures, simultaneously.
Table 3 reports the average number of aligned couples

and the average of share of nodes in LCSC. We observe
thatMAGNA++ and IsoRank find, irrespective of the sim-
ilarity of networks, alignments with full coverages, i.e., the

Table 1 Algorithms and their parameters

Algorithm Commandline arguments Parameters

IsoRank [28] –K 50 –thresh 1e-5 –alpha α –maxveclen 1000000 α ∈ {0.3, 0.5, 0.6, 0.7}
PINALOG [36, 77] do not require arguments none

L-GRAAL [23] –a α –I 50 α ∈ {0.3, 0.5, 0.7}
MAGNA++(S3) [34] –m S3 –p 1000 –n 15000 –f 5 –a α –t 16 α ∈ {0.3, 0.5, 0.7}
MAGNA++(EC) [34] –m EC –p 1000 –n 15000 –f 5 –a α –t 16 α ∈ {0.3, 0.5, 0.7}
SPINAL I [35] –mode -I –alpha α α ∈ {0.3, 0.5, 0.7}
SPINAL II [35] –mode -II –alpha α α ∈ {0.3, 0.5, 0.7}
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Fig. 3 Comparison of different global network aligners based on the
average GO consistency vs. average integrated conserved structure
score. For the PROPER algorithm, we set r = 1 and each point
corresponds to a different value of �. Also, the red, blue, magenta and
green points correspond to the parameters α = 0.3, 0.5, 0.6 and 0.7,
respectively

size of their alignments is equal to the number of nodes in
the smaller network; and PINALOG has the lowest cover-
age among the algorithms. The size of an alignment alone
is not a good indicator of its quality, because an algorithm
with a large coverage might find alignments with low
functional-similarities and structural-similarities. Instead,
we can consider the sum of functional similarities of
aligned proteins. To address this point, for example,
GOC score (1) captures the total functional similarity, by

Fig. 4 Comparison of different global network aligners based on the
average GO consistency (by considering only experimentally verified
GO terms) vs. EC score. For the PROPER algorithm, we set r = 1 and
each point corresponds to a different value of �. Also, the red, blue,
magenta and green points correspond to the parameters
α = 0.3, 0.5, 0.6 and 0.7, respectively

Fig. 5 Comparison of different global network aligners based on the
average ANBS vs. average S3 score. For the PROPER algorithm, we set
r = 1 and each point corresponds to a different value of �. The
parameter α is 0.7

summation over all the couples in π (see Figs. 3 and 4).
We can also consider the size of shared structure between
networks. To address this second point, we use LCSC. A
larger LCSC implies that we have found a larger amount of
shared structure between the two PPI networks [16]. From
Table 3, we observe that PROPER, L-GRAAL and SPINAL
II outperform the other algorithms (with huge margins),
based on the share of nodes in LCSC.
Figure 6 provides a detailed comparison between the

algorithms based on their performance in aligningH. sapi-
ens with S. cerevisiae. Also, detailed comparisons between
C. elegans and D. melanogaster, and M. musculus and S.
cerevisiae are provided in Figs. 7 and 8, respectively. Note
that in Figs. 6, 7 and 8, the values for each measure are
normalized to the highest value, i.e., for each measure, in

Table 3 The average number of aligned couples (i.e., |π |) and
the average of share of nodes in LCSC (i.e., |LCSC|/|V1|). We use
α = 0.7 for SPINAL, IsoRank, MAGNA and L-GRAAL, and r = 1 for
PROPER

Algorithms |π | |LCSC|/|V1|
PROPER (� = 150) 5521.2 0.528

PROPER (� = 600) 5320.5 0.728

SPINAL I 6364.3 0.219

SPINAL II 6433.4 0.720

PINALOG 3740.9 0.233

L-GRAAL 5616.4 0.726

MAGNA++(S3) 6647.8 0.292

MAGNA++(EC) 6647.8 0.353

IsoRank 6647.8 0.051

The best value for each column is highlighted in boldface
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Fig. 6 Comparison of different global network aligners on aligning H. sapiens and S. cerevisiae based on six different measures. For the PROPER
algorithm, we set r = 1 and � ∈ {150, 500}. The parameter α is 0.7

these figures, the maximum is 1 for the best algorithm
and values for the other algorithms are normalized with
respect to the maximum. We observe that PROPER out-
performs the other algorithms in terms of most of GOC,
ANBS, ICS, S3, EC and LCSC measures.

The MapPercolation algorithm and r
The PROPER algorithm has two main steps: (i) SeedGen-
eration and (ii) MapPercolation. The numbers of aligned
couples in the first and second steps depend on � and
r, respectively. In Table 4, we report the average num-
ber of aligned couples (i.e., |π |) in the first and second
steps of PROPER for different values of � and r ∈ {1, 2}.
We observe that by increasing the value of �, the num-
ber of aligned couples in the first step decreases. This is

because the number of couples with BLAST bit-score of
at least � has an inverse relationship with �. In the sec-
ond step, |π | increases by a factor of 2.5 to 7.6 for � ∈
{150, 200, 300, 400, 500, 600} with r = 1. For the detailed
experimental result of PROPER with r ∈ {1, 2} refer to
Table S1 in Additional file 2.
Choosing smaller values of r reduces the required struc-

tural similarity for aligning a couple. This explains why
the number of aligned couples for r = 1 is larger than for
r = 2 in Table 4. Note that the MapPercolation algorithm,
for a given value of r, cannot align nodes with degrees
less than r. From Fig. 9, which reports the degree distri-
bution of different networks, we observe that there are
many nodes with degree one, e.g, almost half of nodes for
C. elegans and M. musculus. These nodes of degree one

Fig. 7 Comparison of different global network aligners on aligning C. elegans and D. melanogaster based on six different measures. For the PROPER
algorithm, we set r = 1 and � ∈ {150, 500}. The parameter α is 0.7
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Fig. 8 Comparison of different global network aligners on aligning M. musculus and S. cerevisiae based on six different measures. For the PROPER
algorithm, we set r = 1 and � ∈ {150, 500}. The parameter α is 0.7

can not be aligned with r = 2, and this is the reason we
choose r = 1 for our experiments. In general, the value of
r controls the strength of the structural evidence required
before we decide to align a couple and a larger r makes
errors less likely.We believe that by the increasing number
of known PPI interactions over time, which consequently
results in a decrease of the number of low-degree nodes, a
larger value of r will generate better alignments.

Synthetic networks
In this section, we compare algorithms based on their per-
formance over synthetic networks. For this, we consider
the high-confidence yeast Saccharomyces cerevisiae PPI
network with 1004 nodes and 8323 edges [33, 67]; this net-
work serves as our “ground-truth”. For this experiment, a
noisy version of the yeast network is generated by sam-
pling each of its nodes and interactions with a probability
s. Here, s controls the similarity of a sampled network with
the original network, and we take 1 − s as the “level of

Table 4 The average number of aligned couples when running (i)
only the first step of PROPER (i.e., the SeedGeneration algorithm),
and (ii,iii) PROPER with r = {1, 2} with different values of �

� SeedGeneration r = 2 r = 1

150 2198.4 3116.1 5521.2

200 1875.6 2900.3 5471.4

300 1393.9 2618.4 5432.9

400 1083.1 2408.7 5416.4

500 861.0 2216.1 5347.4

600 696.4 2094.0 5320.5

noise”. Also, the sequence similarity for a subset of ran-
domly chosen proteins is provided as a side information.
In this experiment, the ground-truth node mapping is
known by design, which enables us to calculate NC and
precision. Note that in order to account for the random-
ness of our experiments, we provide the average of 50
different alignments for each level of noise and available
sequence similarity.
In the first experiment, we align the original network

with five networks that are generated by different lev-
els of noise 1 − s ∈ {5%, 10%, 15%, 20%, 25%}. Also, the
sequence similarity for 50% of randomly chosen pro-
teins is provided. Figure 10 provides NC comparison over
these synthetic networks for different levels of noise. From
Fig. 10, for example, we observe that PROPER aligns net-
works which are sampled with the noise level 1 − s =
15% with NC=0.86. Note that the average number of

Fig. 9 Cumulative degree distribution for all the networks from Table 2
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Fig. 10 Comparison of different global network aligners over
synthetic networks based on node correctness (NC). The sequence
similarity for 50% of randomly chosen proteins is provided. For the
PROPER algorithm, we set r = 1 and � = 150. The parameter α is 0.7

nodes for different noise levels (from 5 to 25%) is 946.48,
893.24, 832.54, 780.4 and 730.96, respectively. This means
that PROPER correctly aligns 0.86 × 832.54 ≈ 716 cou-
ples. Figure S1 in Additional file 2 compares algorithms
based on precision. From the result of this experiment,
we observe that for a low level of noise (1 − s =
5%) L-GRAAL has the best performance and PROPER
comes second. With increasing level of noise, the perfor-
mance of PROPER remains almost unaffected, whereas
the quality of the other alignments decreases quite
markedly.
In the second experiment, we investigate the effect

of available sequence similarity on the performance of
algorithms. We consider different amounts of avail-
able sequence similarity and fix the level of noise to
1 − s = 20%. Figure 11 compares algorithms when the
sequence similarities for 20%, 30%, 40%, 50%, 60% and 70%
of randomly chosen proteins are provided. Figure S2 in
Additional file 2 compares algorithms based on preci-
sion. We observe that PROPER outperforms the other
algorithms over the entire range of available sequence
similarities.
These two experiments confirm the success of the

PROPER algorithm in aligning synthetic networks and its
robustness to high levels of noise.

Aligning biological pathways
In this section, we compare algorithms based on their per-
formance in aligning biological pathways. We use α =
0.7 for SPINAL, IsoRank, MAGNA and L-GRAAL, and
r = 1, l = 150 for PROPER. We use the measures intro-
duced in the Pathway comparison measures section. For
our comparisons, we consider the alignment of H. sapi-
ens with the other four species from Table 2. We know
that there are several proteins that belong to more than
one pathway, because some proteins could be involved in
different biological processes. For this reason, along the

Fig. 11 Comparison of different global network aligners over
synthetic networks based on node correctness (NC). The level of
noise is set to 1 − s = 20%. For the PROPER algorithm, we set r = 1
and � = 150. The parameter α is 0.7

results for all the pathways, we consider a subset of non-
overlapping pathways for each pair of species. Table 5
reports the number of common KEGG pathways between
different pairs of species, where we consider (i) all the
pathways, (ii) pathways with at least δ = 4 interactions in
each of the species, and (iii) a subset of non-overlapping
pathways.
For the first experiment, we do not consider the topo-

logical similarities of aligned pathways. The result for
alignments of pathways from different algorithms is pro-
vided in Table 6. We observe that PROPER outperforms
the other algorithms in terms of accuracy. In the second
experiment, for each algorithm we consider only the path-
ways with at least δ = 4 conserved interactions across
species (i.e., �π ,i ≥ 4). Table 7 provides the results for
this case. Again, we observe that the PROPER algorithm
outperforms the other algorithms, i.e., on average it aligns
more pathways with a higher accuracy. MAGNA++ per-
forms very poorly in this experiment and we omit it from
Table 7.
For many pathways, the PROPER algorithm, compared

to other algorithms, returns alignments with a larger
portion of connected conserved subgraphs. For exam-
ple, Fig. 12 shows the connected conserved subgraph of
pathways hsa05200 and mmu05200 between human and
mouse3 The connected subgraph of this pathway has 37
nodes and 42 edges, which is larger than alignments by

Table 5 Number of common KEGG pathways between different
pairs of species

Pair of species #PW #PW(δ = 4) #PW (no-overlap)

hs-ce 116 19 37

hs-dm 122 31 40

hs-mm 283 152 49

hs-sc 98 32 34



Kazemi et al. BMC Bioinformatics  (2016) 17:527 Page 12 of 16

Table 6 Comparison of algorithms based on aligning biological
pathways. This table reports the average value of accπ for
pairwise alignments between Home sapiens and the four other
species from Table 2

Algorithms accπ accπ (no-overlap)

PROPER 0.471 0.442

SPINAL I 0.447 0.426

SPINAL II 0.115 0.134

PINALOG 0.409 0.397

L-GRAAL 0.232 0.218

MAGNA++(S3) 0.016 0.020

MAGNA++(EC) 0.017 0.020

IsoRank 0.202 0.195

The best value for each column is highlighted in boldface

the other algorithms (see Additional file 3 for the detailed
comparison results).

Execution time
A fast and scalable alignment algorithm is needed with
the growing size of PPI networks. One of the key fea-
tures of the PROPER algorithm is its low computa-
tional complexity and scalability. PROPER is able to
align synthesis networks with millions of nodes in less
than a hour. In fact, the complexity of our algorithm is
O ((|E1| + |E2|)min(D1,D2)), where D1,2 are the maxi-
mum degrees in the two networks. Table 8 provides the
total execution time of algorithms for 10 pairwise align-
ments between the five species from Table 2. All compu-
tations are done on the same Linuxmachine with 16 GB of
memory and 8 Intel Xeon E3-1270 CPUs working at clock
speeds 3.50 GHz. We observe that PROPER runs much
faster than the other algorithms.

Discussion
The purpose of network alignment algorithms is to find
functional and structural similarities between PPI net-
works of different species [21]. Most of the works in
the literature model global network alignment as an

Table 7 Comparison of algorithms based on pathway alignment
measures for δ = 4 (i.e., �π ,i ≥ 4). This table reports the average
value of measures for pairwise alignments between Home
sapiens and the four other species from Table 2

Algorithms #FPW accπ ,δ recallπ

PROPER 42.5 0.585 0.584

SPINAL I 38.75 0.554 0.536

SPINAL II 9.0 0.223 0.102

PINALOG 39.75 0.497 0.547

L-GRAAL 25.5 0.320 0.235

IsoRank 18.5 0.356 0.225

The best value for each column is highlighted in boldface

optimization problem over the convex combination of
sequence and structural similarities between two net-
works [1, 28, 30]. This class of algorithms aims to max-
imize a cost function in order to increase the following
two quantities simultaneously: (i) the pairwise similar-
ities between aligned proteins (e.g., by maximizing the
summation over all the BLAST similarities of aligned pro-
teins), and (ii) the structural similarity between the two
graphs, (e.g., by maximizing the conserved PPIs under the
alignment) [46].
It appears that this particular formulation of the opti-

mization problem precludes these algorithms from mak-
ing good alignments by using both similarities jointly [46].
For example, the authors of [40] have shown that in the
IsoRank algorithm for the structure-only (α = 1) align-
ment, the similarity of two nodes is only a function of their
degrees. Their results explicate the poor performance of
IsoRank in finding alignments with good structural simi-
larities. Also, our experimental results confirm the trade-
off between structural and functional similarities in most
of the state-of-the-art network alignment algorithms. We
observe that each of the five algorithms evaluated here,
namely L-GRAAL, MAGNA++, IsoRank, PINALOG and
SPINAL, covers only a small portion of the trade-off fron-
tier (see Figs. 3 and 4). In summary, we believe that these
observations make it necessary to study the PPI network
alignment problem under rigorous mathematical models.
The PROPER algorithm, in comparison, shows less

compromise between the functional similarities among
aligned proteins and the topological similarity. Figures 3, 4
and 5 show that our algorithm sweeps the frontier (i.e.,
has the best trade-off between both measures) more
robustly than the other algorithms. In addition, large con-
served subgraphs with the same function are aligned with
PROPER. The PROPER algorithm not only aligns proteins
and their corresponding interactions from two different
species better than other algorithms, it also aligns the con-
served pathways between the species with higher accu-
racy. This shows that instead of finding conserved single
pairwise PPIs, PROPER represents a more biologically
realistic performance by detecting sub-networks of con-
served interactions from pathways with the same function
among species.
In addition to its superior accuracy, PROPER performs

better in terms of memory usage and speed, because
the alignment process of PROPER is a very simple local
propagation method.

Why the PROPER algorithm?
In the following, we provide two reasons why PROPER
performs well in terms of the cost functions considered.
The first reason is that a high BLAST bit-score is a

reliable indicator of a match, whereas a low BLAST bit-
score is very unreliable for many functional characteristics
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Fig. 12 The connected subgraph of hsa05200 and mmu05200 pathways in human and mouse from the PROPER algorithm, with conserved
interactions in both species. This connected subgraph has 37 nodes and 42 edges. The PINALOG algorithm returns the second largest connected
subgraph. The rectangular nodes and solid edges are the proteins and interactions among them that are found only by the PROPER algorithm

[68]. As a consequence, rather than optimizing a convex
combination of functional similarity with structural sim-
ilarity, it is advantageous to ascribe high confidence to
the sparse set of high-BLAST couples, and to completely
ignore low BLAST bit-scores. This is what PROPER does,
by generating an initial seed-set of high BLAST couples,
and then by propagating outwards from this seed set as
a purely structure-driven process. Note that as the PGM
class of algorithms are shown to be robust against noise
in the seed set [45], PROPER is not too sensitive to the

Table 8 The total execution time of algorithms for 10 pairwise
alignments between the five species from Table 2

Aligner Time

PROPER 317 s

L-GRAAL 4 h and 2 min

MAGNA++(S3) 7 h and 47 min

MAGNA++(EC) 7 h and 41 min

PINALOG 2 days, 5 h and 26 min

SPINAL I 10 h and 51 min

SPINAL II 11 h and 56 min

IsoRank 12 h and 43 min

sequence similarity threshold � for aligning new couples of
proteins.
The second reason is more speculative and has to

do with the statistical structure of the two networks
being matched. Computational biology postulates evo-
lutionary models to explain the difference between PPI
networks. Studies have identified gene duplication and
the gain or loss of genes and their interactions as the
key evolutionary events in forming biological networks
[69–71]. Several evolutionary models for regulatory net-
works and protein–interaction networks have been intro-
duced based on these observed evolutionary processes
[72–74].
Percolation-based methods for network alignment are

well-suited for network pairs whose structural differences
arise from the random deletions of nodes and edges.
Specifically, in prior works, the authors of [42, 43] define
the G(n, p; t, s) random bigraph model for generating two
correlated networks G1,2 that rely on node and edge
sampling processes. The two parameters t and s control
the node and edge similarity of the generated graphs.
Although the analysis in these prior works is for a differ-
ent algorithm within the PGM class, we believe the main
concepts carry over to PROPER.
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More specifically, for the sake of simplicity, we assume
that the evolutionary process can only delete proteins
and interactions among proteins. We call this model
Evolve(G, t, s), where we postulate an ancestor network
G(V ,E), fromwhich both observable networksG1,2 derive
through independent evolutionary processes. The param-
eter t is the probability that a protein in G survives in G1,2
(proteins are lost with probability 1 − t); and parameter
s is the probability that an interaction between proteins,
i.e., an edge in G, survives in G1,2 (interactions are lost
with probability 1 − s). With the additional assumption
that the ancestor network G is an Erdős-Rényi [75] ran-
dom graph (i.e., a G(n, p) graph with n nodes, where
each of the

(n
2
)
possible edges occurs independently with

probability 0 < p < 1) this evolutionary model is equiv-
alent to the G(n, p; t, s) model studied in the literature
[42–44].
Under this model, conditions for the success of PGM-

based network alignment have been established. In par-
ticular, a sharp phase transition in terms of the seed-set
size have been shown: If the seed-set size is above some
threshold (which depends on the network parameters n,
p, t, and s), PGM-based alignment can correctly match,
with high probability, almost all the node couples by using
a purely structural process. Also, from the result of [43],
we know that under a similar random bigraph model, the
correct alignment maximizes the number of conserved
interactions between the two networks. This simple par-
simonious evolutionary model provides guarantees for
the performance of the PROPER algorithm over random
graphs similar to [45]. Note that, in practice, these algo-
rithms are able to successfully align large real-networks,
as well as many types of random graphs. In conclusion,
it seems that mapping a (small) subset of nodes through
a seed-generation step and matching the rest by using
only structure of the two graphs works very well under an
evolutionary model.

Conclusion
In this paper, we have introduced a new global
pairwise-network alignment algorithm called PROPER.
We have compared our algorithm with the state-of-
the-art algorithms. We have shown that PROPER out-
performs the other algorithms in both accuracy and
speed. Also, we have shown that the PROPER algo-
rithm can detect large conserved subnetworks between
species.
Our results suggest that network-evolutionary mod-

els could be beneficial in designing network alignment
algorithms. We believe that, for future work, consider-
ing a model that also takes into account gene duplication,
network motifs, clustering within networks and modu-
larity of biological networks (e.g., [76]) would increase
the accuracy of global network alignments. Finally, to

find biological pathways and protein complexes using the
PROPER algorithm, the next step would be to design
methods that can detect sub-networks as potential path-
ways or complexes (similar to the method used in
[12, 24]).

Endnotes
1A network motif is a small recurrent connected-

subgraph that occurs in PPI and other biological networks
significantly more often than in random networks.

2 These pathways are Spliceosome. Spliceosome
removes introns from a transcribed pre-mRNA, a type of
primary transcript.

3 Pathways hsa05200 and mmu05200 are in the class
cancer Homo sapiens (human).
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