
Online Collaborative Prediction of Regional Vote Results

Vincent Etter∗, Mohammad Emtiyaz Khan†, Matthias Grossglauser‡, Patrick Thiran‡

École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
∗vincent@etter.io †emtiyaz.khan@epfl.ch ‡firstname.lastname@epfl.ch

Abstract—We consider online predictions of vote results,
where regions across a country vote on an issue under
discussion. Such online predictions before and during the day
of the vote are useful to media agencies, polling institutes,
and political parties, e.g., to identify regions that are crucial
in determining the national outcome of a vote. We analyze
a unique dataset from Switzerland. The dataset contains 281
votes from 2352 regions over a period of 34 years. We make
several contributions towards improving online predictions.
First, we show that these votes exhibit a bi-clustering of the vote
results, i.e., regions that are spatially close tend to vote simi-
larly, and issues that discuss similar topics show similar global
voting patterns. Second, we develop models that can exploit
this bi-clustering, as well as the features associated with the
votes and regions. Third, we show that, when combining vote
results and features together, Bayesian methods are essential to
obtaining good performance. Our results show that Bayesian
methods give better estimates of the hyperparameters than
non-Bayesian methods such as cross-validation. The resulting
models generalize well to many different tasks, produce robust
predictions, and are easily interpretable.

Keywords-vote prediction; political data mining; regression;
matrix factorization; gaussian process; bayesian methods

I. INTRODUCTION

In order to promote transparency and accountability, as
well as to stimulate citizen awareness, an increasing num-
ber of governments across the globe are adopting open
government directives [7]. These result in the release of
massive amounts of structured data about multiple aspects of
state affairs, politics, and governmental agencies in various
countries. As of 2016, the website Data Portals1 references
more than 500 such local, regional and national datasets.

Among these datasets, the detailed outcomes of issue
votes are published in many countries. Such votes are direct
expressions of the opinion of the people, on various issues
such as education, economy, and even ethics. In some
cases, the detailed results are released at a fine geographical
level, along with the national outcome of these votes. This
newly available data gives an unprecedented view into the
political landscape of a country. It enables us to gain a
deeper understanding of the different voting behaviors across
regions, and to investigate what makes regions similar, or
dissimilar.

Of course, political parties are very interested in this
information. Being able to identify patterns in vote results,

1http://dataportals.org

(a) Example of a vote result (b) Population density

Figure 1: We show in (a) the outcome of one vote across
all regions in grayscale, from regions that completely
rejected the issue in black (0 % of “yes”) to those
that completely accepted it in white (100 % of “yes”),
with everything else in between. In addition to spatial
correlations, the similarities between the results could be
partially explained by some of the characteristics of the
regions, e.g., their population densities, which are shown
in (b) where darker colors indicate lightly populated
regions and lighter colors indicate densely populated
regions.

based on characteristics of the vote or the regions, would
enable them to better focus their campaigning efforts. The
media also spend much of their resources trying to predict
the outcome of votes, both before and during the day of
the vote. Knowing whether a vote will be a narrow or clear
win, and being able to identify regions that are crucial in
determining the national outcome, would enable media and
polling agencies to better focus their attention.

In this paper, we analyze a unique dataset of vote
outcomes from Switzerland, where administrative regions
across the country cast their vote to either accept or reject an
issue under discussion. We show in Figure 1(a) an example
of such a vote where we color each region according
to its proportion of “yes” obtained for this vote; regions
completely rejecting the issue (0% of “yes”) are shown in
black and those completely accepting it (100% of “yes”)
are shown in white, with everything else in between. We
clearly see a structure in the pattern of results: some of
the similarities between regions can be partially explained
by their characteristics, such as their spatial proximity, their
demographic attributes, and their political orientations. For
example, the results of the votes, shown in Figure 1(a), seem
to be correlated with population densities of regions, shown

(a) Linguistic regions (b) “Röstigraben”: French-speaking versus others

(c) Population density (d) Densely-populated versus rural areas

Figure 2: This figure shows a few examples of vote results to demonstrate that the results for votes and regions are
correlated, and that the correlations depend on features of both the regions and the votes. Figure (a) shows regions
that speak French (in light gray), Italian (in dark gray), and German (in black), and Figure (b) shows the results of
three votes where the French-speaking regions, and sometimes the Italian-speaking regions, vote in opposition to the
rest of the country (lighter colors indicate a higher percentage of “yes”). Similarly, Figure (c) shows the population
density of regions across Switzerland, with lighter colors indicating a higher density of population, and Figure (d)
shows votes where densely-populated regions vote in opposition to the rural areas.

in Figure 1(b) with darker colors indicating lightly populated
regions and lighter colors indicating densely populated re-
gions.

In addition to correlations between regions, we observe
that the outcomes of different votes are correlated as well,
and that the correlations depend on features of both the
regions and the votes. We illustrate this in Figure 2. In Figure
2(a), we color regions that speak French in light gray, those
that speak Italian in dark gray, and those speaking German
in black. Figure 2(b) shows the results (again, lighter colors
indicate higher proportions of “yes”) of three votes that
share similar patterns of results, linked to the linguistic
regions: the French-speaking regions, and sometimes the
Italian-speaking regions, vote in opposition to the rest of
the country. Similarly, Figure 2(c) shows the population
density of regions across Switzerland, with lighter colors
indicating a higher density of population, and Figure 2(d)
shows votes where densely-populated regions have voted
in opposition to the rural areas. Other patterns, such as
unanimous results, are also very common. We propose
models to exploit the correlations across regions and votes,
as well as their features.

As with many other works on voting-data analysis, we
are interested in predicting the outcome of a new vote at the
national level [9, 8, 4], but, unlike them, we would also like
to predict the outcome in an online manner, i.e., to revise
our prediction as more and more results are released region
by region on the day of the vote. In addition, we would like

to predict outcomes not only at the national level, but across
regions as well [2, 3]. Such predictions are useful, e.g., for
the media to focus their resources on a few key regions that
might play a crucial role in deciding the outcome. This is a
difficult task because, depending on the nature of the issue,
the outcomes can differ from each other significantly, and
the amount of data for a region alone may not be sufficient
for an accurate prediction of its outcome. It is thus important
to exploit the correlations across regions and votes.

A. Outline and Contributions

To achieve our goals, we make several contributions
in this paper by using many successful machine-learning
methods. First, to take into account the similarities between
votes and between regions, we formulate the problem as
a collaborative-filtering problem [15], where all regions
express their opinion towards all votes. We use a latent-
factor model to capture the bi-clustering of regions and
votes [6]. Second, to accurately predict outcomes before the
date of the vote, and when only a few regional results are
available, we incorporate several features about the regions
and the votes, which addresses the cold-start problem. These
features not only improve our online predictions early on, but
also enable us to interpret and understand voting behaviors.
Third, we make extensive use of uncertainty by using a
Bayesian approach. We show that such an approach gives
stable predictions and helps us generalize well on different
tasks. Fourth, we combine a Gaussian process model with

the latent factor model and show that such a combination
gives results better than using each of the models individu-
ally. Our Bayesian framework plays an important role here,
enabling us to combine the two models using an automatic
hyperparameter selection.

We show a variety of results in support of our analysis
and discuss how such methodologies provide a powerful
framework for analyzing general spatio-temporal data.

II. DATASET

We consider the case of Switzerland because it has a
very active political system with easily available data. Swiss
citizens vote on average eight times per year, on various
issues regarding military, finances, transportation, culture,
integration of foreigners, public health, etc. The results (i.e.,
the proportions of “yes”) are publicly available2 for each
Swiss municipality3. In December 2014, there were 2352
municipalities in Switzerland. Our dataset4 consists of the
outcomes of the federal (i.e., nationwide) issue votes in each
municipality between January 1981 and December 2014.
There were 281 such votes.

In addition to the vote results, we gather side informa-
tion about both votes and municipalities. For each vote,
political parties publish voting recommendations, such as
“in favor”, “against”, or “no recommendation”. We gather
these recommendations from the 13 main political parties in
Switzerland5. For each municipality, we gather 25 features
about its location, population, and electoral profile6.

A. Preprocessing

Administrative regions change over time. It is common to
have fusions and divisions of municipalities in Switzerland,
and the total number of municipalities has been reduced by
more than 10% since 2000. This means that some of the
current municipalities did not exist at some point in the past,
and thus have no explicit results for some past votes. To
make sure that all regions have a result for all votes, we
could simply discard all municipalities that did not exist
at some point in time during the whole 34 years that our
dataset spans. However, this would result in about 7% of
discarded regions. To have as much data as possible, and
to be able to make predictions about all regions that exist
today, we chose to interpolate missing results instead. We
also standardize the features of votes and regions, such that
they have zero mean and unit variance.

2http://www.bfs.admin.ch/bfs/portal/fr/index/themen/17/03/blank/data/
01.html

3Municipalities are the smallest administrative regions in Switzerland.
4Our dataset is available at http://vincent.etter.io/dsaa16.
5The voting recommendation are available on request at the Swiss Fed-

eral Statistics Office (http://www.bfs.admin.ch/bfs/portal/en/index.html).
6All the features describing Swiss municipalities are available online

(http://www.bfs.admin.ch/bfs/portal/en/index/regionen/02/daten.html).

Table I: Summary of the notation and the dataset sizes.

Variable Description

D Number of regions (= 2352), indexed by d
N Number of votes (= 281), indexed by n

ydn Outcome of the nth vote in the dth region
yn (Y) Vector (or D ×N matrix) of the outcomes of the

nth vote (or all votes) in all the regions
yn (y) National outcome of the nth vote (or vector of the

national outcome of all votes)

xd (X) Vector (or 25 × D matrix) of the features of the
dth region (or all regions)

wn (W) Vector (or 13 × N matrix) of the features of the
nth vote (or all votes)

III. NOTATION AND GOALS

We denote by ydn the outcome of the nth vote in the dth
region. We have D = 2352 regions and N = 281 votes. We
gather the outcomes of the nth vote into a D-dimensional
vector yn and all outcomes into the D ×N matrix Y. For
each vote n, the national outcome yn is the weighted average
of the regional results, with the weight equal to the number
of ballots in a region (i.e., a weighted average of the elements
of yn). We gather all national results into the N -dimensional
vector y. We denote the 25 features of the dth region by xd
and the 13 features of the nth vote by wn. Finally, we gather
the features xd of all regions into the 25×D matrix X and
the features wn of all votes into the 13×N matrix W. Our
dataset is thus D = {Y,y,X,W}. Table I summarizes the
notation and the dataset sizes.

We are interested in predicting the outcome of a new
vote, with a feature vector denoted by w?, in all regions.
Moreover, we would like to make these predictions in an
online manner, i.e., to refine the predictions as more regional
results are made available.

Suppose that, at a certain time t on the day of the vote, we
have observed the vote results in Dt < D regions. Denote
the set of observed regions by Ot = {d1, d2, . . . , dDt

} (the
ith observed outcome was that of region di). Denote the
corresponding Dt-dimensional vector of outcomes by yOt,?.

Given D, w?, and yOt,?, our goal is to make the following
two predictions at all future times greater than t:

1) predict the outcome yd? in all regions d /∈ Ot,
2) predict the national outcome y?.

In addition, we are interested in explaining and interpreting
the reasons behind the predictions.

IV. MODEL

A popular approach to modelling collaborative data such
as ours is to use matrix factorization, where we assume that
Y can be predicted using a low-rank matrix. As mentioned
above, this low-rank model can be combined with a regres-
sion model to address the cold-start problem [1]. We take a

Table II: Summary of the models we compare, along with their learning and inference methods. We give a short
description of all models and list their hyperparameters. LS stands for least-squares, ALS for alternating least-squares,
CV for cross-validation, Bayes for Bayesian inference, and ARD for automatic relevance determination.

Name Description Inference Hyperparameters Learning

BIAS Bias term only LS - -
LIN(r) Linear regression using region features LS λβ CV
LIN(v) Linear regression using vote features LS λγ CV
LIN(r) + LIN(v) Linear regression using region and vote features ALS {λβ , λγ} CV
GP(r) GP regression using region features Bayes {σ2

o , σ
2
s , l} ARD

MF Matrix factorization ALS {λu, λv} CV
MF + LIN(r) Matrix factorization with linear regression using region features ALS {λu, λv, λβ} CV
MF + GP(r) Matrix factorization with GP regression using region features Bayes {σ2

o , σ
2
s , l} ARD

MF + GP(r) + LIN(v) Matrix factorization with GP regression using region features and
linear regression using vote features

Bayes {σ2
o , σ

2
s , l, λγ} ARD

similar approach. We model the “preferences” zdn of the dth
region for the nth vote using an additive model with four
components (we describe each component in detail below):

zdn = µn︸︷︷︸
bias

+ fn(xd)︸ ︷︷ ︸
regression using
region features

+ fd(wn)︸ ︷︷ ︸
regression using

vote features

+ vTd un,︸ ︷︷ ︸
matrix

factorization

(1)

where µn ∈ R is a bias, fn : R25 → R and fd : R13 → R
are regression functions, and vd ∈ RL and un ∈ RL are
latent factors, and L is the dimensionality of latent factors.

A benefit of such a model is that we can obtain many
specialized models by adding/removing components. For our
analysis, this proves to be useful as it enables us to establish
the significance of individual components. Below, we first
describe each component and then list the combinations we
use in our experiments.

The first component µn is a bias term for each vote n.
We could also add a bias term µd for each region d and
a global bias µ, although in our experiments these do not
make any difference.

The second component fn(xd) is a regression term that
uses region features. We use two types of regression models.
The first type is a linear regression model as shown in
Equation 2, where βn is a 25-dimensional weight vector
associated with each vote n. We assume that each βn
is sampled independently from a normal distribution with
precision parameter λβ > 0 as shown in Equation 3.

Linear: fn(xd) := βTnxd (2)

βn ∼ N (βn | 0, λ−1β I) (3)

The second type of model is based on the Gaussian Pro-
cess (GP) regression [12] as shown in Equation 4. Here, each
fn is sampled independently from a GP with mean function
m(·) and covariance function k(·, ·). Throughout the paper,
we use a zero mean function and a squared-exponential (SE)
covariance function with two hyperparameters σs ∈ R and

l ∈ R25, as shown in Equation 5.

GP: fn(xd) ∼ GP(m(xd), k(xd,xd′)) (4)

k(x,x′) = σ2
se
− 1

2 (x−x
′)T diag(l2)−1(x−x′) (5)

The third component fd(wn) of Equation 1 is a regression
term that uses vote features and is defined similarly to the
model described in Equation 2. The precision parameter
associated with the prior on the weights of the vote features
is denoted by λγ .

Linear: fd(wn) := γ
T
d wn

γd ∼ N (γd | 0, λ−1γ I)

We do not include a GP version of this component, because
it gives similar results in our experiments but significantly
increases computations in the combined model.

The fourth and last component of Equation 1 is a matrix
factorization model. The latent features vd are associated
with the dth region and un are those associated with the nth
vote. These latent features are vectors of length L to which
we associate Gaussian priors, with precision parameter λv >
0 for vd and λu > 0 for un:

vd ∼ N (vd | 0, λ−1v I), un ∼ N (un | 0, λ−1u I).

Finally, given the preference zdn of the dth region for the
nth vote, we model the corresponding outcome as

ydn = zdn + εdn,

where εdn is the observation noise. For each vote and each
region, the noise is drawn i.i.d. from a Gaussian prior
N (εdn | 0, σ2

o), where σ2
o is the noise variance.

This is not an ideal choice, as ydn lies in the inter-
val [0, 1], however this choice does lead to simple infer-
ence algorithms. It is straightforward to use a different
likelihood function by using more sophisticated inference
methods, such expectation-propagation or sampling-based
methods [12].

A. Models and Inference Methods

We now summarize the models we use in the remainder
of this paper. Our models can be categorized into two
categories: Bayesian and non-Bayesian. Our goal is to show
that Bayesian methods give more accurate predictions than
non-Bayesian ones. We design our experiments to clearly
understand the reasons behind the better performance of
Bayesian approaches. The complete list of the models we
use in our experiments is given in Table II. We describe
each model in details below.

The first model BIAS is our baseline, and it consists of
the bias term only. For the Gaussian likelihood, µn is simply
the sample mean of the vector yn. All of our models include
the bias term.

The next three models are linear regression models in-
volving a combination of fn(xd) using region features and
fd(wn) using vote features. We fit LIN(r) and LIN(v)
using least-squares (LS) and we use alternating least-squares
(ALS) [17] for LIN(r) + LIN(v). We outline the ALS algo-
rithm in the appendix. Intuitively, we expect LIN(r)+LIN(v)
to perform better than either LIN(r) or LIN(v). However, we
will show that, if we use cross-validation to set the hyperpa-
rameters, the combination does always perform better than
the individual models.

The next model GP(r) is a GP regression model that
uses region features. We use the standard Bayesian method
for inference with GPs. We learn the hyperparameters by
maximizing the marginal likelihood [12, Section 5.4].

The next four models combine regression models with the
matrix-factorization model. The first model MF does not
have any regression terms, and is expected to give worse
predictions for new votes. We learn the latent features of
the MF model with an ALS algorithm, similar to the one
used for LIN(r) + LIN(v). We outline this procedure in the
appendix.

The second model MF + LIN(r) is an extension of MF,
obtained by adding LIN(r). We train it using a combination
of the two ALS methods presented above, where we append
the explicit features of regions to their latent features. This
model is expected to perform better than MF, but again we
will show that CV leads to a sub-optimal performance.

In the third model, the component LIN(r) is replaced with
GP(r) in order to enable the use of non-linear kernels. The
resulting model bears similarities to a socialized Gaussian
Process [13, 14]. For inference, we use a Bayesian method
that works directly on zdn and show that this model does
not suffer from the problem of hyperparameters setting that
affects MF + LIN(r). This is made possible by adapting the
EM algorithm of Khan et al. [5] to select the hyperparam-
eters using the automatic relevance determination (ARD).
Most importantly, this method automatically chooses a good
value for the hyperparameter σs (shown in Equation 5) in
order to combine the MF and GP(r) terms appropriately. The

automatic selection is done by maximizing the marginal like-
lihood. We give the outline of this method in the appendix.

The fourth model adds the component LIN(v) to address
the cold-start problem of new votes. However, we cannot
easily integrate this component into the EM algorithm pre-
sented above. Thus, we first remove its contribution from Y
and then apply the EM algorithm on the remainder. As we
will show, this model obtains the best performance of all the
models, while remaining computationally simple.

Overall, the purpose of our comparison is to demonstrate
that, for online prediction of vote results, Bayesian methods
work better than non-Bayesian methods. In our experiments,
we show that this happens mainly for the following two
reasons. First, during offline learning, a Bayesian approach
enables us to find good hyperparameter values by us-
ing the automatic relevance determination (ARD) frame-
work [12, Section 5.1]. This approach, as we will show,
generalizes much better than non-Bayesian methods such as
cross-validation (CV). Second, during online predictions, a
Bayesian method uses uncertainty in the estimates to appro-
priately combine the components of Equation 1. Specifically,
our Bayesian inference algorithm automatically computes
the scale hyperparameter σ2

s of the GP prior, shown in
Equation 5, by maximizing the marginal likelihood. Note
that this hyperparameter controls the weight given to the
features compared to the matrix-factorization component.
We show that, in our experiments, this results in a better
accuracy compared to a non-Bayesian method that uses a
fixed value of the hyperparameter.

B. Hyperparameter Learning

We keep the last 50 votes of our dataset as the test set and
train our models on the first 231 votes. We implement all
our models using Matlab7. For the non-Bayesian models, we
use 10-fold cross validation to set the hyperparameters and
we monitor the validation root-mean-square error (RMSE)
to test the convergence. For each fold, we randomly select
10% of the outcomes as our validation data and use the rest
to train the model. This means that, on average, we observe
the results of 90% of the regions for each vote of the training
set, and we predict the outcome of the remaining 10% of
regions. Therefore, the models are trained for the “weak”
generalization, as opposed to a “strong” generalization (see
Section 3.3 of [10]). This is not optimal, as it means that
the hyperparameters selected by this procedure will give the
best results when we observe many outcomes for a vote, but
not necessarily with only a few observations.

We could repeat this procedure for several percentages of
observed results, e.g., with only 5% of observed result for
each vote. Our goal however is to have a single model that
is able to make predictions with any number of observed
results. We thus choose to train the ALS models with

7Our code is available at http://vincent.etter.io/dsaa16.

Table III: Hyperparameters selected for each of the non-
Bayesian models, using 10-fold cross validation. We also
show the hyperparameters of the hand-tuned version
of MF + LIN(r) used in Figure 3(b), that are simply
the hyperparameters found by CV for MF and LIN(r)
individually.

Model λu λv λβ λγ

LIN(r) — — 34 —
LIN(v) — — — 32
LIN(r) + LIN(v) — — 36 80

MF 0.03 31 — —
MF + LIN(r) (CV) 0.08 28 100 —
MF + LIN(r) (hand) 0.03 31 34 —

almost all the results observed, so that they have enough
data to learn the global patterns of results. We show in
Table III the hyperparameter values selected using 10-fold
cross-validation for the non-Bayesian methods.

For the Bayesian models, we select the hyperparameters
by maximizing the marginal likelihood [12, Section 5.4]. We
can thus use all of the 231 train votes and do not need to
use cross-validation8. We rely on the GPML toolbox [11]
for the GP computations.

We use L = 25 as the dimension of the latent features
of all models that have a MF component, as we empirically
found that higher values do not increase the performances
but result in longer training and evaluation times.

V. RESULTS FOR ONLINE PREDICTIONS

Our goal is to estimate the accuracy of the online predic-
tions. We thus proceed as follows. First, we pick a random
“reveal” order, which specifies the order in which we observe
the results of 90% of the regions (a total number of 2116
regions). We use the remaining last 10% of the regions (a
total number of 236 regions) as the test regions on which
we will evaluate the error. We report the RMSE on the last
10% of the regions, averaged over the 50 test votes and 500
random reveal-orders. The errors over the 50 test votes and
500 orders do not vary significantly, therefore we do not
show error bars on the figures.

We first show in Figure 3(a) the results of the baseline, i.e.,
the BIAS model, and the models that only use linear regres-
sion, i.e., LIN(r), LIN(v), and LIN(r) + LIN(v). The model
LIN(v) gets the best early performances, which clearly
shows that the vote features are useful when only a few
observations are available. However, with many observed
regions, LIN(v) quickly reaches its limit. Next, the model

8As the hyperparameter of the LIN(v) component of MF+GP(r)+LIN(v)
is not automatically set by the EM algorithm, we set it to λγ = 200.
We empirically found that this value is small enough to take advantage
of the vote features for early predictions, while not damaging the end
performances.

LIN(r) starts with performances similar to those of BIAS
and worse than those of LIN(v), but quickly outperforms
both of them. The combined model LIN(r) + LIN(v) gets
a slight advantage over LIN(r) by taking into account the
voting recommendations, but is not able to reach the same
early ”drop” in the error as LIN(v). As we will see next,
this is because the hyperparameters selected by CV tend to
overpenalize the LIN(v) component.

The same problem occurs with MF + LIN(r), as shown
in Figure 3(b). First, we see in this figure that MF needs
a few hundred observed regions before it can get perfor-
mances better than LIN(r). This is because the MF model
does not perform well for the “cold start” problem, and
it needs a sufficient number of observations before it can
achieve a reasonable performance. By combining the MF
and LIN(r) components, we obtain performances better
than those obtained by the MF model only, but now this
gives a slightly worse performance compared to the LIN(r)
model sometimes, e.g., when we have between 10 and 100
observations. The reason is the same – the hyperparameters
obtained by CV do not result in performances matching
those of the individual models. We can fix this by using
hand-tuned hyperparameters, i.e., by using the parameter
values shown in the last row of Table III. We can see in
Figure 3(b) that MF+LIN(r) (hand) matches the early results
of LIN(r) and gets performances better than MF. This clearly
demonstrates that the hyperparameters obtained using CV
are inferior.

We show in Figure 3(c) that the solution to this problem
is to use a Bayesian model. Indeed, the MF + GP(r) model
is able to beat both the cross-validated and the hand-tuned
versions of MF + LIN(r). To make sure that the improved
performance does not come from the non-linearity of the SE
kernel of the GP(r) component, we also show a variant of
the MF + GP(r) that uses a linear isotropic kernel, which
also beats the two non-Bayesian models.

Finally, we show in Figure 3(d) that adding the LIN(v)
component to MF+GP(r) enables us to obtain the same early
performances as those of LIN(v), completing the model. The
final combination MF+GP(r)+LIN(v) thus obtains the best
overall performances.

VI. NATIONAL RESULTS PREDICTION

We use the models presented above to predict the national
result of a vote. To do so, we first predict the result in all
unobserved regions, using the result of those observed. Then,
we simply compute the average of the results of all regions
(observed and predicted), weighted by their population. To
achieve the most accurate predictions of the national result,
we should use the turnout in each region as the weights,
instead of their population. However, we do not have access
to this information on the day of the vote, hence we cannot
use it.

100 101 102 103

Number of observed regions

5

6

7

8

9

10

11

12

13

R
M
S
E

o
n
te
st

re
g
io
n
s
[%

]

BIAS
LIN(r)

LIN(v)
LIN(r) + LIN(v)

(a) While LIN(r) + LIN(v) achieves the best performance with
many observations, its early performances do not match those
of LIN(v).

100 101 102 103

Number of observed regions

5

6

7

8

9

10

11

12

13

R
M
S
E

o
n
te
st

re
g
io
n
s
[%

]

LIN(r)
MF
MF + LIN(r) (CV)
MF + LIN(r) (hand)

(b) The hyperparameters selected by CV for MF+LIN(r) do not
result in performances always matching those of the individual
models. By hand-tuning the hyperparameters, however, we are
able to obtain a model that has good performances all along,
suggesting that the hyperparmeters obtained by CV are inferior.

100 101 102 103

Number of observed regions

5

6

7

8

9

10

11

12

13

R
M
S
E

o
n
te
st

re
g
io
n
s
[%

]

MF + LIN(r) (CV)
MF + LIN(r) (hand)
MF + GP(r) (linear)
MF + GP(r)

(c) The Bayesian model MF + GP(r) gets better performances
with few observations than both the cross-validated and hand-
tuned MF + LIN(r) models, even with a simple linear kernel.

100 101 102 103

Number of observed regions

5

6

7

8

9

10

11

12

13

R
M
S
E

o
n
te
st

re
g
io
n
s
[%

]

LIN(v)
MF + GP(r)
MF + GP(r) + LIN(v)

(d) MF + GP(r) + LIN(v) is able to properly combine the
LIN(v) component with MF + GP(r) to obtain both good early
performances and good results with many observed regions.

Figure 3: Comparison of the performance of the different models. We show the RMSE on the predicted result of
the last 10 % of regions, averaged over 500 random reveal orders and 50 test votes.

Similarly to the results presented above, we show in
Figure 4 the RMSE on the national result, averaged over 50
test votes and 500 random reveal orders. The difference in
performance between MF+GP(r) and MF+GP(r)+LIN(v) is
smaller than when predicting the result of individual regions.
They can both predict the national outcome of a vote with
an error smaller than 1%, after having observed the result
of only 50 regions.

As we show in Figure 5, the national outcome of the
votes in our dataset are very diverse, spanning nearly the
entire interval of possible results. To investigate whether
votes whose outcome is close to 50% have a larger error
than others, we show in Figure 6 the relationship between
the true outcome of votes and the error made by the
MF + GP(r) + LIN(v) model. We first group the 50 test
votes by their national result into eight bins, each 10% wide.
We then consider these bins separately, and show—for each
bin—the distribution of the RMSE on the national result with
50 observed regions, over 500 random reveal orders. We see

100 101 102 103

Number of observed regions

0

1

2

3

4

5

6

7

8

R
M
S
E

o
n
n
a
ti
o
n
a
l
re
su

lt
[%

]

BIAS
LIN(v)
MF + GP(r)
MF + GP(r) + LIN(v)

Figure 4: RMSE of the predicted national result, aver-
aged over 500 random reveal orders and 50 test votes.
Both MF + GP(r) and MF + GP(r) + LIN(v) are able to
predict the national outcome of a vote within 1 % using
the results of only 50 municipalities.

0 20 40 60 80 100

National result [%]

0

5

10

15

20

25

N
u
m
b
er

o
f
v
o
te
s

Figure 5: Distribution of the national results of the 281
votes in our dataset. The national results span nearly
the whole range of possible results and are not biased
towards the extremes.

that there is no systematic relationship between the outcome
of a vote and the error made by MF+GP(r)+LIN(v), with
very similar distribution of errors over all bins. Therefore,
our model is not biased towards any particular type of vote
and can predict all votes equally well.

20 30 40 50 60 70 80 90

National result [%]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
b
so
lu
te

n
a
ti
o
n
a
l
er
ro
r
[%

]

Figure 6: Distribution of the RMSE of the national
predictions with respect to the true national outcome
of the vote. We group the 50 test votes by their national
result into eight bins. There is no systematic relationship
between the national result and the errors made by the
model.

Finally, we compare the accuracy of the models when
predicting the binary outcome of a vote, i.e., whether it is
accepted or not. To do so, we simply predict the national
result as explained above, and then convert this predicted
result to a binary outcome (a predicted national result
greater than or equal to 50% means that the issue is
accepted, otherwise it is rejected). We show in Figure 7
the accuracy of these predictions for several models. With
binary predictions, we see that the models with the LIN(v)
component obtain a slight advantage when observing only a
few regions, similar to what we observed in Figure 3(d). For
example, MF+GP(r)+LIN(v) obtains an accuracy of 99%
with just 100 observed regions. We see a drop in accuracy
with many observed regions, which could result from using

100 101 102 103

Number of observed regions

84

86

88

90

92

94

96

98

100

A
cc
u
ra
cy

o
f
n
a
ti
o
n
a
l
re
su

lt
[%

]

BIAS
LIN(v)
MF + GP(r)
MF + GP(r) + LIN(v)

Figure 7: Accuracy of the national binary predictions,
averaged over 500 random reveal orders and 50 test
votes. MF+GP(r)+LIN(v) obtains an accuracy of 99 %
with just 100 observed regions.

the population of regions instead of the true turnout when
computing the national result.

VII. MODEL INTERPRETATION

As we already mentioned, one of the advantages of the
models presented above is that they are easily interpretable.
This means that political scientists, for example, could use
such models to study the voting behavior of a country and
verify the effect of some characteristics of the regions.

To illustrate the interpretability of these models, we show
in Figure 8 the relative importance of the features of the
regions, as learned by the MF + GP(r) + LIN(v) model.
These weights can be directly obtained from l, one of the
hyperparameters of the GP(r) component. We see that this
component mostly explains the correlation between the re-
sults of two regions using their geographical proximity, and
then their election results, i.e., their political orientations.

To explore further the correlation between regions, we
show in Figure 9 a map of Switzerland with its cantons out-
lined. On this map, we draw a line between two municipali-
ties if their correlation according to the MF+GP(r)+LIN(v)
model is higher than 0.8. Again, such a map could lead
to interesting interpretations. For example, we see that the
Zürich area, in the North, is heavily clustered. We also
clearly see a separation between the French-speaking and
the German-speaking parts of the canton of Valais.

VIII. CONCLUSION

In this paper, we have introduced a novel dataset of politi-
cal data. It is composed of the outcome of 281 national votes
in 2352 administrative regions of Switzerland, along with
25 region features and 13 vote features. We introduced the
problem of jointly predicting the outcome of a vote across
all the regions, given the results in some observed regions.
We showed that combining latent features with regression
terms on the features of both regions and votes enabled

0.0 0.2 0.4 0.6 0.8 1.0

Relative importance

Speaks Italian
Speaks German

Population
Jobs

Speaks Romansh
Population density

Speaks French
Age 65+
Social aid
Foreigners

Election PEV
Election FDP
Election GL

Election Greens
Age 0-19

Election SP
Elevation

Election PST
Election other right

Age 20-64
Election SVP
Election BDP
Election CVP

y
x

Figure 8: Relative importance of the region features
learned by the GP(r) component of the MF + GP(r) +
LIN(v) model. We see that most of the correlation
between two municipalities is explained by their geo-
graphical proximity, with more weight given to the X-
axis as it also partially encodes the language dimension
(a large distance on the X axis usually implies different
languages).

us to obtain accurate predictions, regardless of the number
of observed results. Moreover, we have demonstrated that
taking a Bayesian approach is key to finding the proper
combination of these terms, with proper hyperparameter
setting and results better than with non-Bayesian methods.
The resulting model are easily interpretable and also give
accurate predictions of the national outcome of the votes.

REFERENCES

[1] D Agarwal and B.-C. Chen. Regression-based latent
factor models. In KDD’09, pages 19–28. ACM, 2009.

[2] J. E. Campbell. Forecasting the presidential vote in
the states. American Journal of Political Science, 36
(2):386–407, 1992.

[3] J. Gao and P. Revesz. Voting prediction using new spa-
tiotemporal interpolation methods. In dg.o’06, pages
293–300, 2006.

[4] R. J. Jones Jr. The state of presidential election fore-
casting: The 2004 experience. International Journal of
Forecasting, 24(2):310–321, 2008.

[5] M. E. Khan, Y. J. Ko, and M. Seeger. Scalable collab-
orative bayesian preference learning. In AISTATS’14,
volume 33, pages 475–483, 2014.

[6] Yehuda Koren, Robert Bell, and Chris Volinsky. Ma-
trix factorization techniques for recommender systems.
Computer, (8):30–37, 2009.

Figure 9: Visualization of the correlation between the
results of municipalities captured by the MF + GP(r) +
LIN(v) model. We show a link between two regions
if their correlation is larger than 0.8, and add the
boundaries of the cantons to have a frame of reference.
Interestingly, we can clearly see the separation between
the French-speaking and the German-speaking parts of
the canton of Valais, in the southwestern part of the
country.

[7] D. Lathrop and L. Ruma. Open government: Collab-
oration, transparency, and participation in practice.
O’Reilly Media, Inc., 2010.

[8] A. Leigh and J. Wolfers. Competing approaches
to forecasting elections: Economic models, opinion
polling and prediction markets. Economic Record, 82
(258):325–340, 2006.

[9] M. S. Lewis-Beck. Election forecasting: Principles and
practice. The British Journal of Politics & International
Relations, 7(2):145–164, 2005.

[10] B. Marlin. Collaborative filtering: A machine learning
perspective. PhD thesis, University of Toronto, 2004.

[11] C. E. Rasmussen and H. Nickisch. Gaussian processes
for machine learning (GPML) toolbox. JMLR, 11:
3011–3015, 2010.

[12] C. E. Rasmussen and C. K. I. Williams. Gaussian
Processes for Machine Learning. The MIT Press, 2006.

[13] Y. Shen, R. Jin, D. Dou, et al. Socialized gaussian
process model for human behavior prediction in a
health social network. In ICDM’12, pages 1110–1115.
IEEE, 2012.

[14] Y. Shen, N. Phan, X. Xiao, et al. Dynamic socialized
gaussian process models for human behavior prediction
in a health social network. KAIS, pages 1–25, 2015.

[15] X. Su and T. M. Khoshgoftaar. A survey of col-
laborative filtering techniques. Advances in Artificial
Intelligence, 2009, January 2009.

[16] M. E. Tipping and C. M. Bishop. Probabilistic principal
component analysis. Journal of the Royal Statistical
Society, 61(3):611–622, 1999.

[17] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan.
Large-scale parallel collaborative filtering for the net-
flix prize. In Algorithmic Aspects in Information and
Management, volume 5034, pages 337–348. 2008.

APPENDIX

The LIN(r) + LIN(v) model simply combines regression
terms on vote and on region features:

znd = µn + βTnxd + γ
T
d wn.

We denote the 25×N vote weights matrix by B and the
13×D region weights matrix by Γ. Algorithm 1 summarizes
the resulting alternating least-squares algorithm for finding
B and Γ, the parameters of LIN(r) + LIN(v).

Algorithm 1: Alternating least-squares algorithm for the
LIN(r) + LIN(v) model

Input: Vote outcomes Y, region features X, vote features
W, weight precision parameters λβ and λγ

Output: Weight matrices B and Γ

Initialize Γ
while convergence criterion is not met do

B =
(
XXT + λβI

)−1 (
X

(
Y − ΓTW

))
Γ =

(
WWT + λγI

)−1 (
W

(
YT −BTX

))
The MF model expresses the outcome of a vote as the

product of two latent factors:

znd = µn + vTd un.

We denote by V the L×D matrix of latent factors associated
with regions and by U the L × N matrix of latent factors
associated with votes. Algorithm 2 summarizes the resulting
alternating least-squares algorithm for finding U and V, the
parameters of MF.

Algorithm 2: Alternating least-squares algorithm for the
MF model

Input: Vote outcomes Y, latent features precision parameters
λu and λv

Output: Latent feature matrices V and U

Initialize V
while convergence criterion is not met do

U =
(
VVT + λuI

)−1
VY

V =
(
UUT + λvI

)−1
UYT

The MF+GP(r) model is adapted from the work of Khan
et al. [5]. It combines a matrix-factorization term with a GP
regression term:

znd = µn + vTd un + fn(xd),

where un ∼ N (0, I), vd is a parameter that will be esti-
mated, and each fn ∼ GP (0, σ2

sK). The covariance func-
tion K is a matrix whose (i, j)th component is k(xn,xm),

where k is a squared-exponential function defined as fol-
lows:

k(x,x′) = e−
1
2 (x−x

′)T diag(l2)−1(x−x′) (6)

The parameters σs and V can be estimated using an EM
algorithm, which is summarized in Algorithm 3. The key
idea of the algorithm is to estimate the posterior distribution
of zn rather than un, vd, and fn. Since all the subcompo-
nents are Gaussian, zn is also a Gaussian with mean µn and
covariance Σ = VVT + σ2

sK. We can compute the mean
E(zn) and covariance Cov(zn) in closed form, because the
likelihood is also a Gaussian. This is shown in the E-step
of Algorithm 3.

Given the sufficient statistics, we can then compute the
marginal likelihood, which is given as follows:

min
V,σs

N∑
n=1

E[− logN (zn|µn,Σ)] =
N

2
[log |2πΣ|+Tr(Σ−1C)],

C :=
1

N

N∑
n=1

[Cov(zn) + (µ− E(zn))T (µ− E(zn))].

The above optimization problem has a closed-form solu-
tion which can be obtained by using the probabilistic PCA
model [16]. The hyperparameter σ2

s is equal to the vari-
ance unexplained by the principal components and can be
computed given the eigenvalues of the D−L eigenvectors.
For details, see Khan et al. [5]. A significant benefit of this
algorithm is that it sets σ2

s , thus automatically finding the
proper combination of the MF and GP(r) terms.

Algorithm 3: EM algorithm for the MF + GP(r) model
Input: Vote outcomes Y, region features X
Output: Latent feature matrix V

Initialize V, σ2
s ,θ = {σ2

o , l}
while convergence criterion is not met do

Compute the covariance matrix K using X and θ
Compute its Cholesky L = chol(K)
Let Σ = VTV + σ2

sK
Initialize C = 0

// E step
for each vote n do

E (zn) = Σ(Σ + σ2
oI)

−1yn
cov(zn) = Σ−Σ(Σ + σ2

oI)
−1Σ

C = C + 1
N

(
cov(zn) + E (zn)E (zn)

T
)

Let C̃ = L−1CL−T

Compute R, the matrix of eigenvectors of C̃, and Λ, the
corresponding diagonal matrix of eigenvalues

// M step

σ2
s = Tr(R)−Tr(Λ)

D−L
V = LR(Λ− σ2

sI)
1
2

Update Σ = VTV + σ2
sK

Find θ maximizing the likelihood of
yn ∼ GP (0,Σ + σ2

oI) for all n

