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ABSTRACT
Abstract.

Source localization, the act of finding the originator of a
disease or rumor in a network, has become an important
problem in sociology and epidemiology. The localization is
done using the infection state and time of infection of a few
designated sensor nodes; however, maintaining sensors can
be very costly in practice.

We propose the first online approach to source localiza-
tion: We deploy a priori only a small number of sensors
(which reveal if they are reached by an infection) and then
iteratively choose the best location to place a new sensor in
order to localize the source. This approach allows for source
localization with a very small number of sensors; moreover,
the source can be found while the epidemic is still ongo-
ing. Our method applies to a general network topology and
performs well even with random transmission delays.

Keywords
Epidemics; Sensor Placement; Online Source Localization

1. INTRODUCTION
Computer worms, or rumors spreading on social networks,

often trigger the question of how to identify the source of an
epidemic. This problem also arises in epidemiology, when
health authorities investigate the origin of a disease out-
break. The problem of source localization has received con-
siderable attention in the past few years; because of its com-
binatorial nature, it is inherently difficult: the infection of a
few nodes can be explained by multiple and possibly very dif-
ferent epidemic propagations. Researchers have considered
various models and algorithms that differ in the epidemic
spreading model and in the information that is available
for source localization. Such models are often not realistic,
either because they rely on some strong assumptions about
the epidemic features (tree networks, deterministic transmis-
sion delays, etc.) or because they require an overwhelming
amount of information to localize the source.
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The costs of retrieving information for source localiza-
tion cannot be disregarded. Data collection is never free;
moreover, due to privacy concerns, individuals are becom-
ing aware of the value of their data and resistant to share
it for free [9]. In the case of infectious diseases, perform-
ing the necessary medical exams and the subsequent data
analysis on many suspected households or communities can
be exorbitantly expensive, whereas the efficient allocation of
resources can lead to enormous savings [29].

Driven by the demand for general models for source local-
ization and by practical resource-allocation constraints, we
adopt a very general setting in terms of the epidemic model
and prior information available, and we focus on designing
a resource-efficient algorithm for information collection and
source localization.

Our model. We model the connections across which an
epidemic can spread with an undirected network G(V,E) of
size N = |V |. Each edge uv ∈ E is given a weight wuv ∈ R+

that is the expected time required for an infection to spread
from u to v. The edge weights induce a distance metric d
on G: d(u, v) is the length of the shortest path from u to v.

An epidemic spreads on G starting from a single source v?

at an unknown time t?. The unknown source v? is drawn
from a prior distribution π on V . At any time, a node can
be in one of two states: susceptible or infected. If u becomes
infected at time tu, a susceptible neighbor v of u will become
infected at time tu + θuv, where θuv is a continuous random
variable with expected value wuv.

When a node is chosen as a sensor, it can reveal its infec-
tion state and, if it is infected, its infection time. We have
two different types of sensors: static sensors S and dynamic
sensors D. Static sensors are placed a priori in the network.
They serve the purpose of detecting any ongoing epidemic
and of triggering the source search process. When a static
sensor s0 ∈ S gets infected, the epidemic is detected and the
online placement of the dynamic sensors starts.

Our results. Most source-localization approaches assume
that all available sensors are chosen a priori, independently
of any particular epidemic instance, and, commonly, the
source can be localized only after the epidemic spreads
across the entire network. Instead, we propose a novel ap-
proach where we start the source-localization process as soon
as an epidemic is detected and we place dynamic sensors ac-
tively while the epidemic spreads.

We approach the problem of source-localization asking the
following question: Who is the most informative individual,
given our current knowledge about the ongoing epidemic?
Indeed, depending on the particular epidemic instance, the
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infection time or the state of some individuals might be more
informative than that of others, hence we want to observe
them, i.e., to choose them as sensors.

Our methods are practical because they apply to general
graphs and both deterministic and non-deterministic set-
tings. We validate our results with extensive experiments on
synthetic and real-world networks. We experimentally show
that, when we have a limited budget for the dynamic sensors,
we dramatically outperform a static strategy with the same
budget – improving the success rate of finding the source
from ∼5% to ∼75% of the time. Moreover, when we are
unconstrained by a budget, we can localize the source with
few sensors: Many purely-static approaches to sensor place-
ment require a large fraction of the nodes to be sensors (e.g.,
> 30%, see the discussion in Section 5), while our dynamic
placement uses ∼3% on all topologies (see Figure 2). Intu-
itively, the reason for these dramatic improvements is the
dual approach of using static and dynamic sensors: Once a
static sensor is infected, it effectively cuts down the network
to a region of size N/|S| that contains the source. Then,
the |D| dynamic sensors only need to localize the source in
this smaller network. Proving this formally would be an
interesting direction for future work.

We focus on studying source localization and dynamic sen-
sor placement, assuming that a set of static sensors is given.
We consider two objectives: first, under budget-constraints
for the number of sensors, we are interested in minimizing
the uncertainty on the identity of the source (i.e., the num-
ber of nodes that, given the available observations, have a
positive probability of being the source); second, when the
budget for sensors is not limited, we want to minimize the
number of sensors needed to exactly identify the source.

2. PRELIMINARIES

2.1 Model Assumptions
What we assume. We make the following assumptions.

(A.1) We assume that the network topology is known. This
is a common assumption when studying source local-
ization (see, e.g., [28, 1, 26, 27, 22]).

(A.2) We assume that, when a node is chosen as dynamic
sensor, it reveals its state (healthy or infected). If it
is infected, it also reveals the time at which it became
infected. This is not a strong assumption because, by
interviewing social-networks users (or, in the case of a
disease, patients), the infection time of an individual
can be retrieved [38].

What we do not assume. In order to obtain a tractable
setting, much prior work has made assumptions which are
not always feasible in practice and which we do not make.
In particular, we do not make the following assumptions.

(B.1) Knowledge of the state of all the nodes at a given point
in time. This might be prohibitively expensive when
one should maintain a very large number of monitor-
ing systems [40]. Instead, we detect the source based
on the infection time of a very small set of nodes.

(B.2) Knowledge of the time at which the epidemic starts.
This information is in most practical cases not avail-
able [15, 26]. Hence we do not make assumptions
about the starting time of the epidemic.

(B.3) Observation of multiple epidemics. Observing mul-
tiple epidemics started by the same source certainly

helps in its localization [26, 11]. In this work, we con-
sider a single epidemic because we are interested in
localizing the source while the epidemic spreads.

(B.4) A specific class of network topologies. A large part
of the literature assumes tree topologies. Having a
unique path between any two nodes makes source
localization much easier [15]. Instead, our methods
work on arbitrary graphs.

(B.5) Deterministic or discretized transmission delays.
When the transmission delays are deterministic, given
the position of the source, the epidemic is determin-
istic. Hence, if the source is unknown, tracking back
its position becomes much easier [30]. Also, assuming
that infection times are discrete is limiting and may
result in a loss of important information [4]. We as-
sume transmission delays to be randomly drawn from
continuous distributions with bounded support, which
include deterministic delays as a particular case and
can, in practice, approximate unimodal distributions
with unbounded support (e.g., Gaussians).

(B.6) A specific epidemic model. Our method only uses the
time of first-infection of the sensors (no assumption on
recovery or re-infection dynamics is made). Hence, it
can be applied to most epidemic models, including the
well known SIS or SIR (provided that nodes do not
recover before infecting their neighbors).

2.2 Model Description and Notation
Sensor Placement. The set of static sensors is denoted by
S, with |S| = Ks. Let τ0 ∈ R be the first time at which a
subset of static sensors S0 ⊆ S are infected. At this time the
placement of dynamic sensors starts. A new dynamic sensor
is placed at each time τi = τ0 + iδ, i ∈ N+, where δ > 0 is
called the placement delay.

The ith dynamic sensor, i.e., the one placed at time τi, is
denoted by di. The set of dynamic sensors deployed in the
network before or at step i is denoted by Di. The number
of dynamic sensors is limited by a budget Kd, hence the
maximum total number of sensors is Ks +Kd. If we do not
have a limited budget for dynamic sensors, we trivially set
Kd =∞. We stop adding dynamic sensors when the source
is localized or when the number of dynamic sensors reaches
the budget Kd. The set of all static and dynamic sensors is
denoted by U . The cardinality of the latter set, |U|, is the
total number of sensors used in the localization process and
is our metric for the cost of localization.

Positive and Negative Observations. A sensor gives
information in two possible ways: If it is infected, it reveals
its infection time; otherwise it reveals that it is susceptible.
In the first (respectively, second) case we say that the sen-
sor gives a positive (respectively, negative) observation. We
will see that an observation contributes to the localization
process even if it is negative. We represent each observation
ω as a tuple (uω, tω) where uω ∈ V denotes the sensor and
tω ∈ R is its infection time if the observation is positive,
whereas tω = ∅ if the observation is negative. For every step
i of the localization process, we denote the set of all observa-
tions (positive or negative) collected before or at time τi by
Oi. Specifically, O0 = {(s, τ0), s ∈ S0} ∪ {(s, ∅), s ∈ S\S0}
and, for i ∈ N+, Oi\Oi−1 contains the new observation of
sensor di and the positive observations (if any) of the previ-
ously placed sensors that get infected in (τi−1, τi]. Denoting
with Ii the set of nodes which become infected in (τi−1, τi]
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Notation

N (N+) positive integers including (excluding) 0
G(E, V ) network
wuv weight of edge (u, v)
S set of static sensors
D set of dynamic sensors
U S ∪ D
Ks number of static sensors, Ks = |S|
Kd budget for the dynamic sensors
τ0 time at which the epidemic is detected

τi, i ∈ N+ time at which the ith dynamic sensor
is placed

δ placement delay, τi − τi−1 = δ ∀i ∈ N+

Di, i ∈ N+ set of dynamic sensors at time τi
Oi, i ∈ N set of observations at time τi

observation of node uω :
ω = (uω, tω) if uω is infected, tω is its infection time

if uω is not infected, tω = ∅
Bi, i ∈ N set of candidate sources given Oi

Ci, i ∈ N+ set of candidate dynamic sensors at τi

we have

Oi\Oi−1 =
{

(di, tdi)
}⋃{

(u, tu) : u ∈ (S ∪ Di−1) ∩ Ii
}
.

Candidate Dynamic Sensors. The set of nodes among
which we can choose a dynamic sensor at time τi is called
Ci. Clearly, C1 = V \S and, for i ≥ 2, Ci = V \(S ∪ Di−1).

Candidate Sources. At step i, v is a candidate source if,
conditioned on Oi it has a non-zero probability of being the
source. Bi is the set of candidate sources at step i, i.e.,

Bi , {v ∈ V : P(v = v?|Oi) > 0}. (1)

In particular, the initial set of candidate sources is

B0 = {v ∈ V : P(v = v?|O0) > 0}.

Double Metric Dimension. Finally we recall the defi-
nition of Double Resolving Set (DRS) and Double Metric
Dimension (DMD) of a network [3], which will be useful in
the following sections.

Given a network G(V,E), a DRS is a subset Z ⊆ V such
that for every v1, v2 ∈ V there exist z1, z2 ∈ Z such that
d(v1, z1)− d(v2, z1) 6= d(v1, z2)− d(v2, z2), i.e., v1, v2 can be
distinguished based on their distances to z1, z2. We will use
the following lemma [6].

Lemma 1. Let Z be a DRS containing z′. Then, for ev-
ery v1, v2 ∈ V there exists z′′ ∈ Z such that d(v1, z

′) −
d(v2, z

′) 6= d(v1, z
′′)− d(v2, z

′′).

When an epidemic spreads on G and the transmission de-
lays are deterministic, the infection times of a DRS suffice
for distinguishing between any two possible sources [6]. The
minimum size of a DRS of G is called the DMD of G. Com-
puting the DMD of a network is NP-hard [6]. Finding the
set U of k nodes that maximize the number of nodes that
are distinguished by any two nodes in U is also a NP-hard
problem to which we refer as k-DRS [30]. An approximate
solution of k-DRS can be found with a natural greedy heuris-
tic [30] (see the extended version [31] for details). With a
slight abuse of notation we denote by k-DRS the set Z, such
that |Z| = k, obtained via the latter heuristic.

3. ONLINE SENSOR PLACEMENT &
SOURCE LOCALIZATION

3.1 Deterministic Transmission Delays
For ease of exposition, we first present our algorithm in the

case of deterministic transmission delays, i.e., θuv = wuv. In
Section 3.2 we will show that our results naturally extend
to random delays.

The following lemma formalizes that, when epidemics
spread deterministically, the only source of randomness is
the position of v?.

Lemma 2. Let i ∈ N+ and let Oi be the set of observa-
tions collected before or at τi. Then, P(Oi|v = v?) ∈ {0, 1}.

Since the starting time t? of the epidemic is unknown, no
single observation taken in isolation is informative about
the position of the source (see Assumption (B.2)). Instead,
two (or more) observations can become informative (which
explains the importance of DMD and DRS for source local-
ization). For this reason, we only consider the probability

of two or more observations together. Let ω1 , (u, tu), and

ω2 , (w, tw) two observations. If tu, tw 6= ∅, we define the

event {ω1, ω2} as {ω1, ω2} , {v = v? : d(v, u) − d(v, w) =
tu− tw}. If tu 6= ∅, tw = ∅ and j is the smallest integer such
that ω2 ∈ Oj for j ∈ N+, i.e., ω2 ∈ Oj\Oj−1, we define

{ω1, ω2} , {v = v? : d(v, u)− d(v, w) < tu − τj}.
We have the following lemma, which immediately follows

from the definitions above.

Lemma 3. Let ω1 , (u, tu), and ω2 , (w, tw) be two ob-
servations, then

(a) if tu, tw 6= ∅, then P({ω1, ω2}|v = v?) = 1 if and only
if d(v, u)− d(v, w) = tu − tw.

(b) if tu 6= ∅, tw = ∅ and j is the smallest integer such that
ω2 ∈ Oj for j ∈ N+, then P({ω1, ω2}|v = v?) = 1 if
and only if d(v, u)− d(v, w) < tu − τj .

Algorithm description. The key idea is to iteratively
choose the most informative node as a dynamic sensor. At
every step i, we first select as new dynamic sensor di the
node that maximizes the expected improvement (gain) in
the localization process; then, we compute Bi using the in-
formation given by the dynamic sensor di and by the nodes
in S ∪ Di−1 that became infected in (τi−1, τi]. The pseudo-
code for our algorithm is given in Algorithm 1.

The running time of Algorithm 1 depends on the defini-
tion of Gain and will be discussed at the end of this sec-
tion. We describe the functions InitializeCandSources,
Update and Gain in the following subsections.

Initial Candidate-Sources Set B0. Based on the first
observation available (i.e., the infection time τ0 of the first
infected static sensors S0 ⊆ S), the initial set of candidate
sources B0 contains all nodes that are closer to S0 than to
S\S0.

Proposition 1. Let S0 be the set of the first infected
static sensors and O0 be the first observation set. For ev-
ery v ∈ V , let Sv

0 be the set of the static sensors that are
at minimum distance from v, i.e., Sv

0 = {s ∈ S : d(v, s) =
minr∈S d(v, r)}. Then, v ∈ B0 if and only if π(v) > 0 and
Sv
0 = S0.

1153



Algorithm 1 Online Sensor Placement & Source Localiza-
tion

Require: Kd budget for dynamic sensors
Require: Set S of static sensors, set O0 of initial observa-

tions
budget ← Kd

B0 ← InitializeCandSources(S, O0) cand. sources
C1 ← V \S candidate-sensors
D0 ← {}, time ← τ0 + δ, i← 1
while |Bi−1| > 1 and budget > 0 do

di ← arg maxc∈CiGain(c,Bi−1)
Di ← Di−1 ∪ {di}
Oi+1 ← Oi ∪ {new observations}
Bi ← Update(Bi−1,Oi)
Ci+1 ← Ci\di
time ← time +δ, budget ← budget −1, i← i+ 1

end while
return Bi−1

Proof. By definition of B0, v ∈ B0 if and only if
P(v = v?|O0) > 0. In the deterministic setting any O0 col-
lected from a given epidemic has non-zero probability, hence
P(O0) > 0. Now,

P(v = v?|O0) = P(O0|v = v?)π(v)/P(O0) > 0

if and only if π(v) > 0 and P(O0|v = v?) > 0. Hence,
by Lemma 2, P(O0|v = v?) = 1, which means that v is at
distance minr∈S d(v, r) from all static sensors in S0 and at
distance larger than minr∈S d(v, r) from all nodes in S\S0,
i.e., Sv

0 = S0.

UpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdate. We now show how the set of candidate sources is
updated at every step.

Lemma 4. Let i ∈ N+. Then, Bi ⊆ Bi−1.

Proof. Let v ∈ Bi−1. Since Oi−1 ⊆ Oi, P(v = v?|Oi) >
0 implies P(v = v?|Oi−1) > 0 and, from (1), we have that
Bi ⊆ Bi−1.

Using Lemma 4, at step i, we compute the set of candidate
sources Bi based on Bi−1 and on Oi\Oi−1. More specifically,
in Update we compute Bi by applying Proposition 2.

Proposition 2. Let i ∈ N+ and take s0 ∈ S0 arbitrarily.
Moreover, for ω ∈ Oi\Oi−1, define the set Bi

ω as

Biω ,
{
{v ∈ Bi−1 : d(uω , v)− d(s0, v) = tω − τ0}, if tω 6= ∅
{v ∈ Bi−1 : d(uω , v)− d(s0, v) > τi − τ0}, if tω = ∅.

(2)

Then, Bi =
⋂

ω∈Oi\Oi−1
Bi

ω.

Proof. The proof is decomposed in the following steps:

(A) Oi\Oi−1 = {ω}, tω 6= ∅ ⇒ Bi = Bi
ω

(B) Oi\Oi−1 = {ω}, tω = ∅ ⇒ Bi = Bi
ω

(C) Bi =
⋂

ω∈Oi\Oi−1
Bi

ω.

(A) Let Oi\Oi−1 = {ω} and tω 6= ∅.
(i) We show first that Bi ⊆ Bi

ω. Let ω0 , (s0, τ0) ∈ O0

and take v ∈ Bi. Because of (1), P(v = v?|Oi) > 0.
This implies that P(v = v?|{ω0, ω}) > 0. Applying

Lemma 4 recursively, we have that v ∈ B0 and therefore
π(v) > 0 because of Prop. 1. With P(v = v?|{ω0, ω}) >
0, this implies that P({ω0, ω}|v = v?) > 0. By
Lemma 2, we have that P({ω0, ω}|v = v?) = 1. Hence
v satisfies d(uω, v)− d(s0, v) = tω − τ0 and v ∈ Bi

ω.
(ii) We show that Bi

ω ⊆ Bi. Let v ∈ Bi
ω. In order to

show that P(v = v?|Oi) > 0, it suffices to show that
for any two observations ω1, ω2 ∈ Oi, P({ω1, ω2}|v =
v?) = 1, since then we also have that P(Oi|v = v?) = 1,
which implies in turn that P(v = v?|Oi) > 0 with a
similar Bayesian argument as in the proof of Prop. 1.
Therefore, we only have to prove that P({ω1, ω2}|v =
v?) = 1 for any ω1, ω2 ∈ Oi. If ω1, ω2 ∈ Oi−1, since
v ∈ Bi−1 because of (2), P(v = v?|{ω1, ω2}) > 0, hence,
as in (A)(i), P({ω1, ω2}|v = v?) = 1. Let us assume,

without loss of generality that ω1 , (z, tz) ∈ Oi−1 and

ω2 , ω = (uω, tω). Then (2) implies that

d(uω, v)− d(s0, v) = tω − τ0, (3)

and two situations can arise depending on tz.
a) tz 6= ∅. Since v ∈ Bi−1 and ω1 ∈ Oi−1, by Lemmas
2 and 3, d(z, v)− d(s0, v) = tz − τ0. Together with (3),
this implies that d(uω, v) − d(z, v) = tω − tz and, by
Lemma 3 we conclude that P({ω1, ω2}|v = v?) = 1.
b) tz = ∅. Let j ∈ N be the smallest integer such that
ω1 ∈ Oj . Since v ∈ Bi−1 and ω1 ∈ Oi−1 we have
by Lemmas 2 and 3 that d(z, v) − d(s0, v) > τj − τ0.
Together with (3), this implies d(z, v)−d(uω, v) > τj−
tω and, by Lemma 3, we conclude that P({ω1, ω2}|v =
v?) = 1.

(B) The proof follows similarly to (A).

(C) If v ∈ Bi
ω for all ω ∈ Oi\Oi−1, by (2), we have that

P({ω, ω0}|v = v?) = 1 for all ω ∈ Oi\Oi−1. By a rea-
soning similar to (A)(ii), this implies that P(Oi|v =
v?) = 1, hence v ∈ Bi and

⋂
ω∈Oi\Oi−1

Bi
ω ⊆ Bi. More-

over, if v /∈
⋂

ω∈Oi\Oi−1
Bi

ω, then P({ω, ω0}|v = v?) =

0 for some ω ∈ Oi\Oi−1, hence v /∈ Bi. �

Correctness of Algorithm 1. We are now ready to prove
the correctness of Algorithm 1, which, in fact, does not de-
pend on the definition of Gain: As we will see in Section 4,
Gain has an effect on the convergence speed of Algorithm 1
but not on the localization of the source.

Theorem 1. Let the budget for the dynamic sensors be
unrestricted (Kd =∞). Algorithm 1 always returns {v?}.

Proof. From Prop. 1, it follows that v? ∈ B0. Moreover,
from Prop. 2, it follows that v? ∈ Bi at every step i of the
algorithm. Thus, it only remains to prove that we make
progress, i.e., that for any v ∈ B0\{v?}, there is a step i
such that v /∈ Bi. By Lemma 1, for any v ∈ B0\{v?} and
s0 ∈ S0, there exists w ∈ V such that d(v, w) − d(v?, w) 6=
d(v, s0) − d(v?, s0). Let i ∈ N+ be the first step such that
the infection time tw of w satisfies tw ≤ τi. Then, if w ∈ S,
we have v /∈ Bi

(w,tw) (where Bi
(w,tw) is defined by (2)) and

hence v /∈ Bi. If w /∈ S, let j ∈ N+ be the iteration step
at which we choose w as a sensor. Then, for ` = max(i, j),
v /∈ B`

(w,tw), and hence v /∈ B`.

We know from Prop. 2 that every new observation poten-
tially reduces the number of candidate sources and makes
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the localization progress. At each step of Algorithm 1, Gain
evaluates the expected progress in localization for all candi-
date sensors and we choose as dynamic sensor the node that
yields to the maximum value. We consider three possible
Gain functions: Size-Gain, DRS-Gain and RC-Gain. It
is not a priori clear which version of Gain leads to a faster
convergence. Hence, we experiment with all of them.

Size-GainSize-GainSize-GainSize-GainSize-GainSize-GainSize-GainSize-GainSize-GainSize-GainSize-GainSize-GainSize-GainSize-GainSize-GainSize-GainSize-Gain. Perhaps the most natural Gain function is the
one that computes the expected reduction in the number of

candidate sources. Call B(c)
i the set of candidate sources af-

ter adding c as dynamic sensor at step i. We define the Size-

Gain of adding c at step i as gSIZEi (c) , E[|Bi−1| − |B(c)
i |].

In practice, gSIZEi (c) can be easily computed by summing
over the set T c

i of the possible infection times for c (see
Definition 1).

Definition 1. Let i ∈ N+ and Ci be the set of possible
dynamic sensors at step i. Let c ∈ Ci. Then,

T c
i , {h ∈ (−∞, τi] : h = d(v, c)− d(v, s0)− τ0

for some v ∈ Bi−1} (4)

is the set of possible infection times of c by step i.

Proposition 3. Let i ∈ N+ and Ci be the set of possible
dynamic sensors at step i. Let c ∈ Ci. For h ∈ Tc, define

bi(c, h) , {v ∈ Bi−1 : P(v = v?|tc = h) > 0}
= {v ∈ Bi−1 : h = d(v, c)− d(v, s0) + τ0},

b̃i(c) , {v ∈ Bi−1 : P(v = v?|tc > τi) > 0}
= {v ∈ Bi−1 : τi < d(v, c)− d(v, s0) + τ0}.

Then, gSIZEi (c) =
∑
h∈Tc

π(bi(c, h)) · (|Bi−1| − |bi(c, h)|)

+ π(b̃i(c)) · (|Bi−1| − |b̃i(c)|).
(5)

Drs-GainDrs-GainDrs-GainDrs-GainDrs-GainDrs-GainDrs-GainDrs-GainDrs-GainDrs-GainDrs-GainDrs-GainDrs-GainDrs-GainDrs-GainDrs-GainDrs-Gain. The definition of this Gain is inspired by the
notion of DRS (see Section 2). After the first static sensor
is infected, it is clearly possible to detect the source with at
most DMD(B0) additional observations. Indeed, observing
the infection times of a DRS of B0 removes all ambiguities
about the source identity. Drs-Gain is a dynamic greedy
implementation of this observation, where at each step i we
choose the sensor that gives the most progress in forming a
DRS of Bi. Let c ∈ Ci and let Xc = 1 if there exists v ∈ Bi−1

such that the infection time tc of c is larger than τi (i.e., such
that d(v, c) − d(v, s0) − τ0 > τi), Xc = 0 otherwise. Then,
the value of Drs-Gain at step i is

gDRS
i (c) , |T c

i |+Xc. (6)

Note that both Size-Gain and DRS-Gain account only
for the benefit of adding the dynamic sensor c: For tractabil-
ity, we ignore all observations ω ∈ Oi\Oi−1 such that
uω 6= c.

RC-GainRC-GainRC-GainRC-GainRC-GainRC-GainRC-GainRC-GainRC-GainRC-GainRC-GainRC-GainRC-GainRC-GainRC-GainRC-GainRC-Gain. RC-Gain (Random-Candidate-Gain) assigns
gain 1 to all candidates sources and gain 0 to all nodes
that are not candidate sources: At step i, for c ∈ Ci we
set gRC(c) = 1 if c ∈ Bi−1, gRC(c) = 0 otherwise. In other
words, we randomly choose the dynamic sensors among the
candidate sources. Note that if the infection time of at least
one node in Bi−1 is already observed, adding a sensor in

any other node in Bi−1 implies |Bi| ≤ |Bi−1|. Hence, this
very simple Gain ensure that the source-localization makes
progress at each step.

Running time. In the worst case, the while loop of Algo-
rithm 1 is entered N times. At step i, both the Update and
the computation of any of the proposed Gain functions takes
O(|Bi|) steps. Hence, with the proposed definitions of Gain,
the ith iteration takes O(|Ci| · |Bi|) ⊆ O(N2). Although the
running time can potentially reach Θ(N3), our experiments
show that, in many practical cases, |Bi| is sublinear.

3.2 Non-Deterministic Transmission Delays
In this section we assume that the transmission delays

are independent continuous random variables such that,
for every uv ∈ E, the support of the transmission delay
θuv is bounded and symmetric with respect to wuv, i.e., is
[wuv(1−ε), wuv(1+ε)], with ε ∈ [0, 1]. We refer to ε as noise
parameter. For ε > 0, the transmission delay over an edge
of weight w can deviate up to εw from its expected value.
ε = 0 corresponds to the deterministic model of Section 3.1.

The structure of the algorithm for sensor placement and
source localization is identical to that of Algorithm 1, the
only changes are in InitializeCandSources and Update.

The following proposition characterizes the candidate
sources at step i through necessary conditions. It is used
in InitializeCandSources and in Update to discard, at
step i, the nodes v such that P(v = v?|Oi) = 0.

Proposition 4. Let s0 be the first infected sensor, that
is infected at time τ0 and let i ∈ N+.

1. If v ∈ B0, then

d(s0, v)−min
s∈S

d(v, s) ≤ ε(d(s0, v) + min
s∈S

d(v, s)).

2. Let ω1, ω2 ∈ Oi with tωi 6= ∅ for i ∈ {1, 2}. If v ∈ Bi,
then

|d(uω2 , v)− d(uω1 , v)− tω2 + tω1 | ≤
ε(d(uω1 , v) + d(uω2 , v)). (7)

3. Let ω1, ω2 ∈ Oi with tω1 6= ∅, tω2 = ∅ and let ω2 ∈ Oi. If
v ∈ Bi, then

τi − tω1 − d(uω2 , v) + d(uω1 , v) <

ε(d(uω1 , v) + d(uω2 , v)). (8)

Proof. Follows from θuv ∈ [wuv(1 − ε), wuv(1 + ε)] for
every uv ∈ E.

Prop. 4 is similar in spirit to Prop. 2. Note in particular,
that by setting ε = 0 in (7) and (8) we get, for two arbitrary
observations ω1, ω2 ∈ Oi, the respective of the conditions on
the infection times used to define Bi

ω in (2). However, dif-
ferently from Prop. 2, when ε > 0, we cannot give necessary
and sufficient conditions for a node to be the source by sim-
ply comparing all observations with a reference observation.
Hence, when ε > 0, at step i the function Update keeps in
Bi only the nodes such that both (7) and (8) hold for any
ω1, ω2 ∈ Oi. This increases the running time of iteration i
by at most O(S ∪ Di).
Correctness of Algorithm 1. The correctness of The-
orem 1 also holds when the transmission delays are non-
deterministic and is independent of the definition of Gain.
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ER BA RGG RT PLT FB U-WAN WAN
(p=0.016) (m=2) (R=0.3)

|V | 250 250 250 250 250 3732 2258 2258
|E| 511 496 696 249 249 82305 17695 17695
avg degree 4.09 3.96 5.6 1.99 1.99 44.1 15.67 15.67
avg shortest path 4.09 3.47 9.68 7.45 37.8 5.34 6.94 3.56
avg clustering 0.02 0.06 0.56 0 0 0.54 0.65 0.65

Table 1: Statistics for the networks considered in the experiments.
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Figure 1: Relative cost of source localization.

Theorem 2. Let ε ∈ [0, 1] and θuv be a continuous ran-
dom variable with support [(1− ε)wuv, (1 + ε)wuv] for every
uv ∈ E. Moreover let the budget for dynamic sensors be
unrestricted (Kd =∞). Algorithm 1 always returns {v?}.

Proof. The proof follows the structure of that of Theo-
rem 1. First note that nodes are removed from the set of can-
didate sources if and only if they do not satisfy some of the
necessary conditions expressed by inequalities (7) and (8).
Hence, because of Proposition 4, the source v? is never re-
moved from the set of candidates. Next, we want to prove
that, for every node v 6= v?, there exists a node w ∈ V
such that, when the infection time of w is observed, v is re-
moved from the set of candidate sources. Take w = v? and
suppose that its infection time tw is observed. Let v 6= w
be another node for which the infection tv time is also ob-
served. As w = v?, we have tv > tw. Note that inequal-
ity (7) cannot hold for v and w: Indeed, we would have
0 < (1 − ε)d(v, w) ≤ tw − tv < 0, which gives a contradic-
tion. Let i ∈ N+ such that w, v ∈ S ∪Di and such that tv is
smaller than τi. Then, v /∈ Bi.

GainGainGainGainGainGainGainGainGainGainGainGainGainGainGainGainGain. Building on the deterministic case, we can compute
an approximate version of the Size-Gain value gSIZE

i (c) for
the case in which ε 6= 0. For the details of this computation
see the extended version [31]. DRS-Gain and RC-Gain do
not depend on the epidemic model, hence remain unchanged
with respect to Section 3.1.

Approximate Source Localization. When Kd <∞ and
the convergence of the algorithm is not guaranteed, we could
consider substituting ε with ε̃ = Cε, 0 < C ≤ 1, in inequal-
ities (7) and (8). Here, C plays the role of a tolerance con-
stant. Intuitively, when C is small, we quickly narrow the
candidate sources set, but the probability that the correct
source is not identified by the algorithm is high; when C is
large, the probability that the algorithm identifies the real
source as a candidate source is high, but possibly we have

many false positives. The setting C < 1 can be interest-
ing for the case in which the transmission delays θuv are not
uniform, e.g., when the delays are more concentrated around
their expected value values. A study of this extension is left
for future work.

4. EXPERIMENTAL RESULTS

4.1 Experimental Setup
In our experiments, the transmission delays are uniformly

distributed. The uniform distribution is, among the uni-
modal distributions on a bounded support, the one that
maximizes the variance [13]. Hence, uniform delays are a
very challenging setting for source localization.

The choice of static sensors is inspired by the work of
Spinelli et al. [30], where static sensor placement is exten-
sively studied. We let S = k-DRS with k = Ks (see Sec-
tion 2), so that the number of nodes that are distinguished
by the static sensors is maximized.1 We also do not evaluate
the impact of the budget Ks, rather we are concerned with
decreasing total number of sensors |U|. We set Ks = 0.02·N .

A study of different static placement strategies and of the
trade-off between Ks and the timeliness of source localiza-
tion is left for future work.

We evaluate the performance of the different approaches
in terms of the (relative) cost of the sensor placement, i.e.,
the fraction |U|/N of the sensors used for localization. All
results are averaged over at least 100 simulations in which
the position of the source is chosen uniformly at random.

The placement delay δ, unless otherwise specified, is δ = 1.
This means that the epidemic and the localization process
have approximately the same speed, which we believe is a

1The optimal choice of the static sensors depends on the objective
considered. For example, an alternative goal might be to minimize
the expected time before the first static sensor is infected, for which
one would choose a Ks-Median [16] set as S.
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realistic assumption in many applications. Moreover, in Sec-
tion 4.3 we present an experiment that evaluates the effect of
this parameter and in which δ = 1 emerges as a good trade-
off between the cost of the algorithm and the time needed
for detection (see Figure 3).

Algorithms & Baselines. We study the performance of
Algorithm 1 for Size-Gain, Drs-Gain and RC-Gain (see
Section 3.1).

As recalled in Section 2, with a static sensor placement
(i.e, Kd = 0), the minimum number of sensors required to
localize the source when the transmission delays are deter-
ministic is the DMD of the network [6]. Hence, we use DMD
as one natural benchmark for the cost of our algorithm.

Moreover we compare with the following baselines:

� Random. We run Algorithm 1 but, at each step i, we
select di at random from V \(S ∪ Di−1).
� AllStatic. When Kd < N , we compare the performance

of Algorithm 1 (with Ks static and Kd dynamic sensors)
with an entirely static version of Algorithm 1 where the
budget for static sensors is K′s = Ks +Kd and the budget
for dynamic sensors is K′d = 0.

4.2 Network Topologies
We consider both synthetic and real-world networks; the

network properties and statistics are reported in Table 1.

Synthetic networks. We generated synthetic networks
from the following classes: Erdös-Rényi networks (ER) [10],
Barabási-Albert networks (BA) [2], Random Geometric
Graph on the sphere (RGG) [25], regular trees of degree
3 (RT) and trees with power-law distributed node degree
(PLT). For each network class, 10 connected instances of
size 250 with unit edge weights were generated.

Real-world networks. Facebook Egonets (FB). This
dataset is a subset of the Facebook network, consisting of
3732 nodes. It was obtained from the union of 10 Facebook
egonet networks [23] after removing the ego nodes2 and tak-
ing the largest connected component. We set all weights to
w = 1 as there is not a straightforward method for deriving
realistic edge weights for this network.
World Airline Network (WAN). This network is obtained
from a publicly available dataset [24] that provides the air-
craft type used for every daily connection between over three
thousands airports. Using this data we can derive the num-
ber of seats available on each route daily. We preprocess the
network by removing the connections on which less than 20
seats per day are available and by assigning to each connec-
tion (u, v) the average between the number of seats available
from u to v and from v to u. Also, we iteratively remove
leaf nodes (for which we believe connections are not well rep-
resented in the dataset), and we obtain a network of 2258
nodes. The definition of the edge weights is inspired by a
work by Colizza et al [7]. An edge (u, v) is weighted with
an integer3 approximation of the expected time between the
infection of city u and the arrival of an infected individual at
city j (see the extended version [31] for details). This gives

2The ego nodes were removed in order to ensure that the sampling of
contacts across the nodes in the network is uniform.
3Integer weights actually make the problem more difficult when ε = 0
(because it is more difficult to distinguish among nodes based on their
distances to the sensors); when ε > 0 the problem is again harder
because we consider a continuous distribution for the transmission
delays.
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Figure 2: Sensors needed for source-localization by Algorithm 1
with Size-Gain and ε = 0 compared with the number needed by
an optimal offline placement (DMD). Larger markers represent
higher concentrations of data points.

a very skewed weight distribution. Our experiments show
that the diversity of the edge weights brings an additional
challenge to source localization. In order to evaluate the im-
pact of non-uniform weights, we also run our experiments on
an unweighted version (U-WAN) of this network (in which
all weights are set to 1).

4.3 Results
Different Gain functions. We study the effect of Gain on
the performance of Algorithm 1. For each variant, i.e., Size-
Gain, DRS-Gain, RC-Gain, and for the Random heuris-
tic, we report the relative cost. We let Kd = ∞; hence, by
Theorems 1 and 2, Algorithm 1 always localizes the source.
We consider both a deterministic setting (ε = 0) and a non-
deterministic setting with ε = 0.2, which means that the
transmission delays can deviate up to 20% from their aver-
age value. The results are depicted in Figure 1(a)-1(b). We
observe that for the real networks and ε = 0 all proposed
Gain have similar performance. For FB and U-WAN, this is
true also when ε > 0. These are also the cases where our al-
gorithm has the smallest cost, hence we conclude that, when
source localization is less challenging, Gain does not have
a strong impact. In all other cases, Size-Gain consistently
gives the best performance. The improvement with respect
to Drs-Gain is most noticeable when ε > 0; indeed, in
this setting Drs-Gain is outperformed by the simple RC-
Gain. We attribute this to the fact that, when there is
high variance in the transmission delays, splitting the can-
didate sources into subsets of nodes which have different
average infection times (see the definition of Drs-Gain in
Eq. (6)), does not guarantee that we are able to distinguish
them based on the observed infection times [30]. Instead,
as mentioned in Section 3.1, RC-Gain enforces a continu-
ous progress in shrinking the set of candidate sources. Since
Size-Gain emerges as the best Gain among those we con-
sider, we will use it in the remaining experiments (unless
otherwise specified).

DMD vs. Cost of Algorithm 1. We now focus on the de-
terministic case (ε = 0) when Kd =∞, and compare |U|/N
with the (approximate) DMD. We recall (see Section 2) that
the DMD is the size of the optimal offline sensor placement
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detect the source for different values of the placement delay δ;
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Fraction µ of infected nodes at localization time. The noise pa-
rameter is ε = 0.2.

for this setting. The results are depicted in Figure 2. For
all topologies, |U|/N is much smaller than DMD/N . The
improvement is particularly significant for trees where, on
the one hand, DMD is very large (equal to the number of
leaves [6]) and, on the other hand, the topology makes it
easy for our algorithm to rapidly narrow the search for the
source to a small set of candidates.

AllStatic vs. Algorithm 1. We look at the performance of
Algorithm 1 when the budget for dynamic sensors is limited
to a small fraction of nodes; we let Kd = 0.02 ·N = Kd.

We compare Algorithm 1 with different Gain (Size-Gain,
DRS-Gain and RC-Gain) against the AllStatic baseline
with K′d = 0 and K′s = Ks +Kd = 0.04 ·N (see Section 4.1).
As Kd <∞, it is no longer guaranteed that we localize the
source; instead we evaluate the success of an algorithm with
the metric 1/|BKd

|, where BKd is the set of candidate sources
at the last iteration step. Hence, the success is 1 when the
source is localized (since |BKd | = 1), and is decreasing in the
size of BKd . Note that |U| ≤ 0.04·N and, in particular, |U| <
0.04 · N , only if the source was localized with fewer than
Kd dynamic sensors. The results are presented in Figure 4.
We observe that our approach outperforms the static sensor
placement in terms of the budget used by the algorithm.
Furthermore, for both ε = 0 and ε > 0, our algorithm gives a
much higher success in source localization than AllStatic.
Among the Gain tested, Size-Gain is again the best one,
giving both the higher success and the minimum cost.

Placement delay. An important parameter used by Al-
gorithm 1 is the placement delay δ, i.e., the time between
two consecutive placements of a dynamic sensor. On the
one hand, the larger δ is, the smaller we expect the cost of
our algorithm to be; on the other hand, the smaller δ is, the
less time we expect to need for localizing the source, hence
the fewer individuals are infected before we do so. We vary
δ and look at the number |D| of dynamic sensors used, the
fraction µ of infected individuals at the time of localization,
and the time T between the beginning of the epidemic and
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Figure 4: Average relative cost |U|/N and success 1/|BKd
| of

source localization when Ks = Kd = 0.02 ·N .

the localization of the source4 (see Figure 3). We observe a
trade-off between |D| and both T and µ.

Cost of localization and size of |Bi| for real networks.
Finally, we evaluate the cost of localization in the practical
setting of real networks with random delays. Moreover, to
estimate how the running time varies for different values of
the noise parameter and for the different topologies consid-
ered, we look at how the cardinality of the candidate set Bi
defined by Eq. (1) decreases along the successive steps. We
note beforehand that the approximate DMD is 303 (around
0.08 ·N) for the FB network, 751 (around 0.3 ·N) for WAN
and 484 for U-WAN. Hence, source localization is more chal-
lenging on the WAN network. This is confirmed by the re-
sults shown in Figure 5. On the FB network, with noise
parameter ε = 0.3, the correct localization of the source is
achieved with a total cost |U| ≈ 0.025 · N of sensors. The
average number of sensors needed is slightly larger for the
U-WAN network (|U| ≈ 0.03 · N). We attribute this effect
to the presence of bottleneck edges, i.e., edges that appear
on many different shortest paths and make it difficult to es-
timate the source based on its distance to the sensors. This
effect becomes even stronger with the weighted version of
the WAN network (where the total cost needed is around
|U| ≈ 0.085 · N). This last result highlights that the high
variability among the edge-weights makes source localiza-
tion substantially more difficult, especially for ε > 0 (see
Figure 1 for a comparison of the cost between deterministic
and non-deterministic delays). Given the high regime of the
noise parameter we consider and the small percentage of sen-
sors deployed, we conclude that our algorithm outperforms
most other approaches to source-localization, which either
need more sensors or tolerate smaller amounts of noise.

4To choose δ, one must consider also the scale of edge weights, here,
for simplicity of exposition, we ignore this aspect and experiment only
with unweighted networks.
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5. RELATED WORK
We briefly review some important contributions to source

localization (see [15] for an in-depth discussion).

Complete observation. The first source-estimator was
proposed by Shah and Zaman [28] in 2009. This work, and
many others that followed, rely on what is often called a
complete observation of the epidemic (see Assumption (B.1)
in Section 1) [37, 27, 32]. In these models, the source is
estimated by maximum likelihood estimation (MLE).

The results of [28] have been extended in many ways, e.g.,
to the case of multiple sources [21] or to obtain a local source
estimator [8]. An alternate line of work that also uses As-
sumption (B.1), allows the observed states to be noisy, i.e.,
potentially inaccurate. For example, a model in which it is
not possible to distinguish between susceptible and recov-
ered nodes was studied by Zhu et al. [39].

Partial observation. Follow-up work considers a partial
observation setting where a randomly-selected fraction of
nodes reveal their state [18, 40, 22, 33]. These works do not
assume that the infection times are known (see Assumption
(A.2)), hence they need a large fraction of the nodes to be
sensors (typically more than 30%) to localize the source.

Static sensor placement. Other works address the prob-
lem of strategically selecting sensor nodes a-priori, i.e., find-
ing a static sensor placement. In the deterministic setting
(see Assumption (B.5)) some works considered the problem
of minimizing the budget required for detecting the source.
This question is similar to the one we address, except that we
allow random transmission delays and, most importantly, we
propose an online solution. On trees, under (B.2) and (B.5),
the minimization of the number of sensors has been stud-
ied [34]. Without (B.2) and (B.4), but with (B.5), approxi-
mation algorithms have been developed by Chen et al. [6].

Budgeted sensor placement. In a network of N nodes,
the minimal budget required for source-localization can go
up to N − 1, in which case the result of Chen et al. is not
practical. Hence, researchers have looked into a budgeted
version of the problem, i.e., how to place sensors given that
only a limited number of them is available. In this direction,
“common sense” approaches, e.g., using high-degree vertices,
or centrality measures were first evaluated [26, 20]. Later,
the budgeted optimization problem was solved on trees [5]
(B.4). Without (B.4), a heuristic approach, based on the
definition of Double Resolving Set of a graph (see Section 2),
has been shown to outperform all previous heuristics [30].

Due to budget restrictions, none of the works mentioned
above can guarantee exact source localization.

Sequential sensor placement. Working under (B.5)
and (B.2), Zejnilovic et al. [35], proposed an algorithm that
sequentially places sensors in order to localize the source
after the epidemic has spread through the entire network.
Adopting very different techniques, we propose a solution
that selects the sensors while the epidemic evolves, enhanc-
ing both cost- and time-efficiency. Moreover, our approach
works without (B.5) and (B.2).

Transmission delays. Several models for how the epi-
demic spreads have been studied [17]. Discrete-time trans-
mission delays were initially very common (see Assump-
tion (B.5)) [22, 27, 1]. Then, to better approximate re-
alistic settings, continuous-time transmission models with
varying distributions for the transmission delays have been
adopted; e.g., exponential [28, 21], Gaussian [26, 20, 19, 36]
or truncated Gaussians [30]. We consider general contin-
uous bounded-support distributions that are tractable but
yet versatile.

Other related work. Two-stage resource allocation is also
studied in the context of robust optimization where, to reach
some objective, we allocate a-priori only a part of the re-
sources and another part is deployed, at a higher cost, when
more information is available [14]. Another related line of
work in the Artificial Intelligence field is that of active learn-
ing which studies how one can, based on sparse data, adap-
tively take a sequence of decisions in order to optimize a
given objective [12].
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[35] S. Zejnilović, J. Gomes, and B. Sinopoli. Sequential
observer selection for source localization. In IEEE
GlobalSIP, pages 1220–1224, 2015.

[36] X. Zhang, Y. Zhang, T. Lv, and Y. Yin. Identification
of efficient observers for locating spreading source in
complex networks. Physica A: Statistical Mechanics
and its Applications, 442, 2016.

[37] L. Zheng and C. Tan. A probabilistic characterization
of the rumor graph boundary in rumor source
detection. In IEEE DSP, 2015.

[38] K. Zhu, Z. Chen, and L. Ying. Locating the contagion
source in networks with partial timestamps. Data
Mining and Knowledge Discovery, 2015.

[39] K. Zhu and L. Ying. Information source detection in
the SIR model: A sample path based approach. In
IEEE ITA, 2013.

[40] K. Zhu and L. Ying. A robust information source
estimator with sparse observations. Computational
Social Networks, 1(1), 2014.

1160

https://www.theguardian.com/news/datablog/2014/apr/22/how-much-is-personal-data-worth
https://www.theguardian.com/news/datablog/2014/apr/22/how-much-is-personal-data-worth
http://openflights.org/data.html#route
https://arxiv.org/pdf/1702.01056v1.pdf

	Introduction
	Preliminaries
	Model Assumptions
	Model Description and Notation

	Online Sensor Placement &  Source Localization
	Deterministic Transmission Delays
	Non-Deterministic Transmission Delays

	Experimental Results
	Experimental Setup
	Network Topologies
	Results

	Related work
	References



