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Abstract

Detecting where an epidemic started, i.e., which node in a network was the source, is of
crucial importance in many contexts. However, finding the source of an epidemic can
be challenging, especially because the information available is often sparse and noisy.
We consider a setting in which we want to localize the source based exclusively on the
information provided by a small number of observers – i.e., nodes that can reveal if and
when they are infected – and we study where such observers should be placed.
We show that the optimal observer placement depends not only on the topology of the
network, but also on the variance of the node-to-node transmission delays. We consider
both low-variance and high-variance regimes for the transmission delays and propose
algorithms for observer placement in both cases. In the low-variance regime, it suffices
to only consider the network-topology and to choose observers that, based on their
distances to all other nodes in the network, can distinguish among possible sources.
However, the high-variance regime requires a new approach in order to guarantee that
the observed infection times are sufficiently informative about the location of the
source and do not get masked by the noise in the transmission delays; this is
accomplished by additionally ensuring that the observers are not placed too far apart.
We validate our approaches with simulations on three real-world networks. Compared
to state-of-the-art strategies for observer placement, our methods have a better
performance in terms of source-localization accuracy for both the low- and the
high-variance regimes.
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Introduction
Regardless of whether a network comprises computers, individuals or cities, in many
applications we want to detect whenever any anomalous or malicious activity spreads
across the network and, in particular, where the activity originated. In effect, we wish to
answer questions such as what was the origin of a worm in a computer network?, who was
the instigator of a false rumor in a social network? and can we identify patient zero of a
virulent disease? We call the spread of any such phenomenon an epidemic and its orig-
inator the source. Clearly, monitoring all network nodes is not feasible due to cost and
overhead constraints: The number of nodes in the network may be prohibitively large
and some of them may be unable or unwilling to provide information about their state.
Thus, studies have focused on how to localize the source based on information from a
few nodes (called observers). Given a set of observers, many models and estimators for
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source localization have been developed (Pinto et al. 2012; Louni and Subbalakshmi 2014;
Zhang et al. 2016). However, the selection of observers has not yet received a satisfactory
answer:Mostmethods consider only the structure of the network when placing observers.
However, depending on the particular epidemic model, the expected transmission delay
between two nodes, and its variance, can differ widely and this can have a significant
impact on source localization. We show that different transmission models require differ-
ent observer placements as illustrated in Figs. 1 and 2: As the variance of the transmission
delays changes, the optimal set of observers also changes.
The difficulties faced in finding the optimal observers for source localization are two-

fold. First, computing the likelihood of a node being the source conditional on the
available observations can be computationally prohibitive (Shah and Zaman 2011; Pinto
et al. 2012); evaluating the probability of correct localization given a set of observers is,
in general, even harder. Second, the optimal selection of a limited number of observers
is NP-hard, even when the transmission delays are deterministic. We take a principled
approach that begins with considering deterministic transmission delays (zero-variance
regime), andwe build on this intuition in order to develop heuristics for both low-variance
and high-variance regimes for the transmission delays.1

Model and problem statement

Transmissionmodel.We assume that the epidemic spreads in a known contact network.
The transmission delay through edge uv, i.e., the time it takes for a node u to infect a
neighbor node v is encoded by the random variable Xuv.
We assume a transmission model which is both natural and versatile as it comprises

deterministic transmissions, which we call zero-variance, and arbitrary random indepen-
dent transmission models. We study, in particular, how the amount of randomness (i.e.,
the variance of Xuv) in the transmission delays affects the choice of observers for source
localization. Towards this, we are the first to separately analyze two different regimes for
the amount of randomness of the transmission delays: low-variance and high-variance. A
dichotomy exists between the two, and our approach for observer placement differs.

Fig. 1 Sequence of optimal observer placements for increasing transmission variance. We assume the
transmission transmission delays {Xuv}uv∈E to be such that E[Xuv ]= wuv ∈ R+ and such that the variance is a
growing function of a variance parameter σ , i.e., Var(Xuv) = g(wuv , σ) with g(x, 0) = 0 for all x ∈ R

+ . For
σ ∈ (0, σ0) the transmission delays are effectively deterministic (i.e., σ does not affect source localization). For
σ ∈ (σ0, σ1), σ affects the accuracy of source localization but the optimal observer placement is stillO0. For
larger σ , the optimal observer placement might change, possibly multiple times (Ok denotes the optimal
placement for σ ∈ (σk , σk+1)) up to σ = σF . For σ > σF the optimal placement remains the same (OF )
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a b

Fig. 2 Optimal observers for Gaussian-distributed transmission delays with unit mean and standard
deviation σ on a path graph. In this casePs and, consequently, the optimal observer placements, can be
explicitly computed. a different observer placements; b their performance in terms of probability of success
Ps for w = 20 and 30 edges

We use the SI epidemic model adopted, e.g., in (Pinto et al. 2012; Luo and Tay 2012).
Nonetheless, since our methods for source localization only uses the time at which the
sensors are first infected (no assumption on recovery or re-infection dynamics is made),
they can be applied to any epidemic model, including the well known SIS or SIR (provided
that nodes do not recover before infecting their neighbors).
Source localization.We assume that there is a single source that initiates the epidemic,

an extension of our results to the case the case of multiple sources could use the recent
work by Zhang et al. (2015) on a related problem and is left for future work.
LetO ⊆ V be the set of observer nodes (which we will select). We assume we know the

time at which each observer is infected, and we refer to this vector of infection times as
TO . Knowing TO is a standard and realistic assumption (Netrapalli and Sanghavi 2012).
We want to identify the source using only the information contained in TO .
We use maximum likelihood estimation (MLE) to produce an estimate ŝ of the true

unknown source s� as in (Pinto et al. 2012). This approach is common (see e.g., (Shah and
Zaman 2011; Dong et al. 2013)), although the exact form of the estimator depends on the
model and assumptions. In our case we have

ŝ ∈ argmaxs∈VP(TO|s� = s)π(s�),

where π denotes the prior on the position of the source. In this paper, unless otherwise
specified we assume π to be uniform (i.e., π(s�) = 1/n for all nodes s ∈ V where n = |V |).
Metrics. We assume that we are given a budget k on the number of observers we can

use, and that we must select our observers once and for all, i.e., independently of any
particular epidemic instance. In order to select the best set of observersO of size k wemust
first define our metric of interest. In this work we are mainly interested in the success
probability

Ps = P(ŝ = s�)

which is a widely used metric for source localization (see, e.g., (Shah and Zaman 2011;
Pinto et al. 2012; Louni and Subbalakshmi 2014)). In our experiments we also evalu-
ate another important metric, the expected distance between the estimated source and
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the real source (Celis et al. 2015; Louni et al. 2015), i.e., E[d(s�, ŝ)], where d denotes the
distance between two nodes in the network.
In “Metrics for source localization” section we present several alternatives to these two

metrics, including worst-case metrics, and show that optimizing different metrics can
require different sets of observers.

Main contributions

Low-variance regime. When the variance in the transmission delays is low (see “The
low-variance regime” section), we prove that the set of optimal observers is exactly the
optimal set for the zero-variance regime. In the zero- and low- variance regime, both the
probability of success Ps (as well as other possible metrics of interest) can be explicitly
computed. Despite this seeming simplicity, the problem remains NP-hard. We tackle the
problem by using its connection with the well-studied related Double Resolving Set (DRS)
problem (Cáceres et al. 2007) that minimizes the number of observers for correct local-
ization. This minimum number is, in many cases, still prohibitively large, and can be as
much as n − 1, hence we cannot use this approach directly. However, from the connec-
tion between observer placement and DRS, we find inspiration for our algorithm which,
by selecting one observer at a time until the budget is exhausted in order to reach a DRS
set, greedily improves Ps.
High-variance regime.When the noise in the transmission delays is high, it is no longer

negligible and it poses an additional challenge to source localization; in effect, the accu-
mulation of noise from node to node as the epidemic spreads might no longer enable us
to distinguish between two potential sources, especially when they are both far from all
observers. Hence, we must strengthen the requirements for observer placement in order
to ensure that the nodes can be distinguished by observers that are near to them; this
nearness is a function of the noise, of the budget k, and of the network topology. We
define a novel objective function that bothmaximizes the success probability and imposes
a uniform spread of observers in the network. Taking inspiration from the low-variance
regime, we design an algorithm that greedily maximizes this new objective (see “The
high-variance regime” section).
Empirical results. In “Empirical results” section, we evaluate our algorithms on three

different real-world datasets that represent different application areas for source local-
ization and different network topologies. First, we take a community of people living in
the proximity of a university campus (Aharony et al. 2011), a typical network for the
transmission of airborne diseases. Second, we take a community of students exchang-
ing messages over a Facebook-like social network (Opsahl and Panzarasa 2009) through
which ideas and trends can propagate. Finally, we consider the road network of the state
of California (California Road Network): this captures geographical networks that can
model the transmission of a disease between connected communities or the diffusion of
contaminants, e.g., through a hydrological network. We show that our methods perform
favourably against state-of-the-art approaches in both the low- and the high-variance
regimes (see “Comparison against benchmarks” section). For the low-variance regime,
we further compare our method against two other natural greedy heuristics for observer
placement (see “Comparison with benchmarks” section); we show that our approach out-
performs the rest. Moreover, in the empirical results, the dichotomy between the low-
and high-variance regimes becomes apparent.
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Preliminaries
Model

Let G = (V ,E,w) be a weighted network. For ease of presentation we assume the graph
is undirected and wuv = wvu; however our definitions and approach extend straight-
forwardly to the directed case. Assuming u is infected, the weight wuv ∈ R+ of edge
uv ∈ E represents the expected time it takes for u to infect v. The edge weights induce a
weighted-distancemetric d on G: d(u, v) is the length of the shortest path from u to v. We
also sometimes consider the minimum number of edges on a path connecting two nodes,
which we call the hops-distance.
We assume that the epidemic is initiated by a single unknown source s� at an unknown

time t�. The fact that the time t� at which an epidemic starts is unknown adds a significant
difficulty to the problem because a single observation is not per se informative. Instead, in
order to localize the source, we must use the differences between the observed infection
times.
If a node u gets infected at time tu, a non-infected neighbor v of u will become infected

at time tv = tu + Xuv where Xuv is a random variable. A large part of the epidemic liter-
ature models transmission delays with exponential random variables. However we make
a different modeling choice for two reasons. First, we are interested in decoupling the
transmission variance and the average transmission time (for exponential random vari-
ables, mean and variance cannot be tuned independently). Second, in many applications
it has been suggested that the transmission delays can be less-skewed than exponential
random variables (Cha et al. 2009; Lessler et al. 2009; Vergu et al. 2010). For every edge uv
we assume Xuv to be a symmetric and non-negative2 random variable. We do not make
any strong assumption on the distribution of the transmission delays Xuv: we only assume
that their mean is equal to the edge weights, i.e., E[Xuv]= wuv for every uv ∈ E, and that
their variance is an increasing function of both the edge weight and of a variance parame-
ter σ , that is, Var(Xuv) = g(wuv, σ), where g depends on the particular distribution of Xuv
and g(x, 0) = 0 for all x ∈ R

+.
If the variance is zero, or if it is low compared to edge weights, network distances are

a good proxy for time delays (see “Identification of the source class” section). We refer to
this setting as a low-variance regime, as opposed to the high-variance regime in which
time delays are very noisy and network distances no longer work as a proxy for time delays.

Distance vectors and node equivalence

We start with a few definitions. Our setting is similar to that of Celis et al. (2015).

Definition 1 (Equivalence) Let G = (V ,E) and O ⊆ V with |O| = k ≥ 2 be a set of
observers on G. A node u is said to be equivalent to a node v (which we write u ∼ v) if and
only if, for every oi, oj ∈ O

d(u, oi) − d(u, oj) = d(v, oi) − d(v, oj). (1)

The relation ∼ is reflexive, symmetric, and transitive, hence it defines an equivalence
relation. Therefore, a set of observers O partitions V in equivalence classes (an example
is given in Fig. 3). We denote by q the number of equivalence classes and we let [u]O be
the class of u, i.e., the set of all nodes that are equivalent to u.
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Fig. 3 An unweighted network with two observer nodes o1 and o2. Different shapes represent different
equivalence classes, i.e., groups of nodes which are not distinguishable from the point of view of the
observers. In this example there are q = 5 equivalence classes

When the variance is zero, given an observer set, we can distinguish u from v if there
exist two observers oi, oj such that Eq. (1) does not hold for u, v and oi, oj, i.e.,

d(u, oi) − d(u, oj) �= d(v, oi) − d(v, oj),

which means that [u]O �=[v]O .
The problem of finding the minimum-size set of nodes S, such that for every u, v in a

network there exist si, sj ∈ S for which d(u, si) − d(u, sj) �= d(v, si) − d(v, sj) is known as
the Double Resolving Set (DRS) Problem (Cáceres et al. 2007), while the minimum size of
a DRS is known as the Double Metric Dimension (DMD) of the network. Our problem
differs from DRS because we focus on the more realistic context in which, due to limited
resources, we want to allocate a finite budget in order to optimize source localization3

(as opposed to minimizing the number of observers for perfect localization, which is, in
many cases, still prohibitively large). However, the connection between our problem and
DRS paves the way for a principled approach to observer placement.
We now define, for every v ∈ V , a distance vector, which, as we will see in Lemma 1,

mathematically captures equivalence in a manner that is easy to work with.

Definition 2 (Distance Vector) Let G = (V ,E), O ⊆ V with |O| = k ≥ 2 and o1 ∈ O.
For each node v ∈ V the distance vector of v with respect to o1 is ds,o1 ∈ R

k−1 with entries
d(v, oi+1) − d(v, o1) for 1 ≤ i ≤ k − 1.

The following lemma, similar in spirit to Lemma 3.1 in (Chen et al. 2014), shows that
the equality between distance vectors of different nodes does not depend on the choice of
the reference observer o1.

Lemma 1 Let G = (V ,E) and O ⊆ V with |O| = k ≥ 2 and let u, v ∈ V. Then,
[u]O=[ v]O if and only if du,o1 = dv,o1 , independently of the choice of the reference observer
o1.

Metrics for source localization

In this section we define some possible metrics of interest for the source-localization
problem and we show that optimizing these metrics can effectively require different sets
of observers.
For ease of exposition, we restrict ourselves to the zero-variance regime and we assume

that the prior distribution on the position of the source is uniform.
In the zero-variance regime, the partition in equivalence classes is effectively the only

factor for the localization of the source: if [ s�] is a singleton, it is always possible to localize
the source exactly based on the observed infection time; if it is not a singleton, we can
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only correctly identify the class to which s� belongs and we produce an estimated source
ŝ ∈[ s�] sampling from [ s�] uniformly.
We adopt two metrics to evaluate the performance of our algorithms: the success

probability Ps and the expected error distanceD.
The success probability Ps is defined as P(ŝ = s�). In the low-variance case it can be

easily computed. Let q be the number of equivalence classes identified by an observer set
O, then

Ps = ∑

[u]⊆V
P(ŝ = s�|s� ∈ [u] )P(s� ∈ [u] )

= ∑

[u]⊆V

1
|[u]| · |[u]|

n = 1
n

∑

[u]⊆V
1 = q

n .
(2)

Note that Ps = 1 if and only if all equivalence classes are singletons.
The expected error distanceD def= E[d(ŝ, s�)] can also be computed, in the low-variance

case, from the partition in equivalence classes:

D = E[d(s�, ŝ)]
= ∑

s∈V
P(s� = s)

∑

u∈[s]
P(ŝ = u|s� = s)d(s,u)

= 1
n

∑

s∈V
1

|[s]|
∑

u∈[s]
d(s,u),

(3)

where again D = 0 if and only if all equivalence classes are singletons. An analo-
gous expression for the hops-distance (instead of the weighted distance as in (3)) is also
considered in the experimental evaluation in “Empirical results” section.
Maximizing Ps (respectively, minimizing E[d(s�, ŝ)]) we minimize the probability of

ŝ �= s� (respectively, the average distance between s� and ŝ). Other natural metrics of inter-
est are the worst-case versions of these metrics over the vertex set V, i.e., the minimum
probability of success P̂s

def= min[s]⊆V Ps|s�∈[s] and the maximum distance between ŝ and
s�, denoted by D̂. P̂s can be computed as

P̂s = min
[u]⊆V

1
|[u] | ,

and D̂ as

D̂ = max
[s]⊆V

max
t,v∈[s]

d(t, s).

These last two metrics are relevant, for example, in an adversarial setting (e.g., in the case
of bio-warfare), where if the observers are known, the adversary would select the worst
location for the source.
A last natural metric, which is intermediate between average and worst-case metrics, is

the expectedmaximum distance between the true and the estimated source that we define
asD def= Es� [max(d(s�, ŝ))]. We have

D = Es� [max d(s�, ŝ)]=
∑

s∈V

1
n

(

max
t∈[s]

d(s, t)
)

.

We demonstrate an example which shows that optimizing these five metrics can require
different set of observers. Consider the tree in Fig. 4 together with the four sets of k = 4
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Fig. 4 A tree with different sets of k = 4 observers (blue). The table displays the values of different metrics for
the observer sets. The best values for each metric are in bold type. The remaining possible choices of k = 4
observers within the leaves set are omitted either because they are equivalent to one of the placements
considered or because they do not optimize any of the metrics examined

observers represented in the four sub-figures. With an argument similar to that of Celis
et al. (2015), it can be shown that, for all metrics considered and for any budget k smaller
than the number of leaves, the optimal observer set is a subset of the leaves set.4 Hence
we only consider observer sets contained in the leaves set. Figure 4 shows the values ofPs,
P̂s, D, D̂ and D for a subset of the possible observer placements contained in the leaves
set and having cardinality k = 4. These placements include those that optimize Ps, P̂s,D,
D̂ andD.

The low-variance regime
Identification of the source class

We formalize howwe can localize the source in the zero-variance setting, i.e., whenXuv =
wuv for every edge (u, v).
For every observer oi ∈ O, denote by ti the time at which oi gets infected. In the

zero-variance setting, the observed infection times of nodes o2, . . . , oK with respect to
observer o1, i.e., the vector τ

def= t2 − t1, . . . , tk − t1, is exactly the distance vector of the
unknown source s� with respect to o1. Then, if for every u, v ∈ V [u]O �=[ v]O , the source
can be always correctly identified by finding the node whose distance vector matches
the observed infection times. Theorem 1 proves that this is true also in a more general
low-variance framework where we are always able to identify the equivalence class to
which the real source belongs by looking at the distances between the distance vectors
{dv,o1 , v ∈ V } and the vectors of infection times τ .

Theorem 1 Let G = (V ,E) be a network of size n,O ⊆ V and fix o1 ∈ O. Call

δ � min
u,v:du,o1 �=dv,o1

‖du,o1 − dv,o1‖∞

and call D the maximum distance in hops in any shortest path between any node and any
observer.
If the transmission delays are such that for each uv ∈ E, Xuv ∈ [wuv(1 − ε),wuv(1 + ε)]

with ε < ε0 � δ
4D then for every v ∈ [ s�] ‖dv,o1 − τ‖∞ ≤ 2εD and for every v /∈ [ s�]

‖dv,o1 − τ‖∞ > 2εD.
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Proof Let to′ be the infection time of o′ ∈ O. When the source is s� we have

to′ − t� ≤ d(s�, o′)(1 + ε). (4)

Moreover, ifQ is the collection of all paths connecting s� and o′ and, for p ∈ Q, if dp(s�, o′)
is the (weighted) length of path p we have

to′ − t� ≥ min
p∈Q dp(s�, o′)(1 − ε) = d(s�, o′)(1 − ε). (5)

Combining inequalities (4) and (5) for o′ being, respectively, o and o1 and calling t1 (resp.,
to) the infection time of the reference observer o1 (resp., o), we have

|to − t1 − d(s�, o) + d(s�, o1)| ≤
ε(d(s�, o) + d(s�, o1)) ≤ 2εD.

Since for every v ∈[ s�] dv,o1 = ds�,o1 , we conclude that for every v ∈ [ s�], ‖dv,o1 − τ‖∞ ≤
2εD.
Take now v /∈[ s�] and assume by contradiction that ‖dv,o1 − τ‖ ≤ 2εD. Using the

triangular inequality and the hypothesis ε < δ/4D we have

‖ds�,o1 − dv,o1‖∞ ≤ ‖ds�,o1 − τ‖∞ + ‖dv,o1 − τ‖∞
≤ 4εD < δ,

which contradicts the definition of δ. Hence for every v /∈ [ s�], ‖dv,o1 − τ‖∞ > 2εD.

Note that here ε0 plays the role of σ0 in Fig. 1 in the sense that it is an upper-bound
on a regime in which the delays are effectively deterministic and the variance of the
transmission delays does not affect the accuracy of source localization.
If additional conditions on the weights or on the network topology are made, more

refined versions of Theorem 1 can be proven. For example, in a tree with integer weights,
due to the uniqueness of the path between two any vertices, it can be shown that δ ≥ 2
and Theorem 1 holds for ε < ε0 � 1

2D .
For the remainder of this section, we will assume ε < δ/4D, which we call the low-

variance regime.

Estimation of the source

Assume that a prior probability distribution on the identity of the source is given, i.e.,
that we know π(v) def= P(s� = v). After the source class [ s�]O is identified based on τ

as described in “Identification of the source class” section, we let our estimated source ŝ
be chosen at random from the conditional probability π |[s�](u)

def= P(s� = v|v ∈[ s�] ). If
a prior π is not known, we select the estimated source uniformly at random from [ s�],
which is equivalent to having a uniform prior π .
For ease of exposition, we focus on the case in which the prior distribution on the

position of the source is uniform, hence π(v) = 1/n for all v ∈ V . Our algorithms and
observations can be easily extended to general priors.

Observer placement

Independently of the topology of the network G, the success probability Ps, as well as
other possible metrics of interest, can be computed exactly in polynomial time (see, e.g.,
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Eqs. (2) and (3)). In fact, due to Lemma 1 and Theorem 1, it is enough to compute the
distance vector of Definition 1 for all the nodes. Nonetheless, if we have a budget k ≥ 2
of nodes that we can choose as observers, finding the configuration that maximizes Ps is
an NP-hard problem. This is a direct consequence of the hardness result of Chen et al.
(2014).

Theorem 2 Let k ≥ 2 be the budget on the number of nodes we can select as observers.
FindingO ⊆ V such thatO ∈ argmax|O|=kPs(O) is NP-hard.

The proof follows straightforwardly with a reduction from the DRS problem (see
Appendix B).
Our first main contribution in this paper is a solution to the budgeted observer-

placement problem for general graphs.
For trees, the optimal observer placement can be find in polynomial time using dynamic

programming techniques (Celis et al. 2015). In a general graph (with loops) the problem of
source localization is made more challenging by the multiplicity of paths through which
the epidemic can spread and for the same reason also finding an optimal observer set
becomes much harder.
A first idea to solve observer placement on a general graph could be to use the lat-

ter result on a BFS-approximation of the graph. However, as mentioned in “Metrics for
source localization” section, on a tree the optimal observer placement is contained in the
leaves set. If we consider a non-tree graph and take a BFS-approximation, the leaves of
the BFS tree depend on where the BFS-tree is rooted. Hence using the result of (Celis et
al. 2015) on a tree approximation it is not possible to guarantee high probability of success
independently of the position of the source.
Our approach, presented in Algorithm 1, does not rely on a graph approximation.More-

over, it is specifically designed for the source localization problem and has a simple greedy
structure: for every node v ∈ V , initialize O ← {v} and iteratively add to O the node u
that maximizes the gain with respect to the success probability until we either run out
of budget or Ps = 1. Eq. 2 ensures that greedily maximizing the success probability is
equivalent to greedily maximizing the number q of equivalence classes. When adding an
element to the observer set, the partition in equivalence classes can be updated in linear
time, total running time of our algorithm is O(kn3). Despite bypassing the NP-hardness
of the problem, this might not be sufficiently fast for very large networks. However, the
procedure is extremely parallelizable (see, for example, the main for loop and the argmax
in the while loop).

Algorithm 1 (LV-OBS): Observer placement for the low-variance setting
Require: Network G, budget k

for v ∈ V do
Ov ← v
while Ps(Ov) �= 1 andOv < k do

u ← argmaxz∈V\Ov [Ps(Ov ∪ {z}) − Ps(Ov)]
Ov ← Ov ∪ {u}.

return argmaxv∈VPs(Ov)



Spinelli et al. Applied Network Science  (2017) 2:20 Page 11 of 26

The osbserver placement obtained through Algorithm 1 will be denoted LV-OBS to
emphasize the fact that it is designed for the case in which the variance is absent or very
small (LV stands for low-variance regime).
Unfortunately we cannot use a submodularity argument to give guarantees on the per-

formance of Algorithm 1 because the number of equivalent classes, and hence the func-
tionPs, are not submodular. Consider as a simple example a cycle of length 6 as in Fig. 6a.
If the observer set isO1 = {1} the number of equivalence classes is q = 1. If we add node
2 to O1 the classes become {1, 5, 6} and {2, 3, 4} (q = 2). Hence by adding node 2 to the
set {1} the gain in terms of equivalence classes is just 1. Consider nowO2 = {1, 4} ⊇ O1,
which identifies as classes {1}, {4}, {2, 6} and {3, 5}. If again we add node 2 toO2 we reach
a DRS of C, i.e., all classes are singletons. This means that the gain in terms of equivalence
classes is 6 − 4 = 2 > 1 and we conclude that the number of equivalence classes is not
submodular.

Comparison with benchmarks

As budgeted observer placement (even in the zero-variance setting) is NP-hard, there is
no optimal algorithm to compare against. Instead, we evaluate the performance of our
algorithm against a set of natural benchmarks that have shown to have good performance
in other works (Seo et al. 2012; Berry et al. 2006; Zhang et al. 2016) (see “Comparison
against benchmarks” section for a discussion of these benchmarks, Figs. 10-12 for the
results).
Alternative objective functions. We further compare LV-OBS against two other

natural heuristics that also optimize an objective function greedily.
The first is an adapted version of the approximation algorithm for the DRS problem

proposed by Chen et al. (2014) and described in Appendix A.
By stopping the greedy process after it selects k nodes, we can adapt in a natural way this

approximation algorithm and create a heuristic for the budgeted version that we denote
by �ent . We want to check if LV-OBS actually reaches smaller values of Ps compared
to �ent .
The second is a direct minimization of the expected error distance D = E [d(s�, ŝ)] of

Eq. (3) that we denote by �dist . Even if LV-OBS is not directly minimizing D, we want to
compare the results we obtain in terms of D with those obtain to �dist in order to check
if, at least in some budget regimes, we can use the maximization of Ps as a proxy for the
minimization ofD.
The results of our empirical evaluation are presented in Table 2 in Appendix C.
The results achieved by �ent and �dist are, on average, worse than those of Algorithm 1

both in terms ofPs and ofD, independently of the graph topology.We observe two excep-
tions. First, when k is very small: �dist reaches smaller values of D compared to LV-OBS,
which can explained by the fact that �dist directly minimizes D and that, when fewer
observers are available the difference between the observer placements that maximize
Ps and minimize D is greater. Second, for large k, on the Barabàsi Albert networks �ent
gives, in average, largerPs than LV-OBS. This is probably due to the fact that, for this class
of graphs, the DMD is small, hence with a large value of k we approach the regime in
which the objective function of �ent , designed to minimize the DMD of the network, is
optimal.
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The high-variance regime
When the variance is not guaranteed to be low, as defined in “The low-variance
regime” section, computing analytically the success probability - or other metrics of inter-
est - is unfortunately not possible (except for very simple graphs, like the path network of
Fig. 2, and for particular transmission delays, e.g., Gaussian-distributed).
When the variance is high, also the localization of the source is more challenging

because the observed infection delays ti − tj can be misleading, especially if the corre-
sponding observers oi and oj are far from the source. Take, for example, a path of length
L where the two leaves are the only two observers and all edges have weight equal to 1.
Figure 5a shows how the success probability Ps decays faster for increasing values of L.
Building on this observation, we propose a strategy for observer placement that enforces
a controlled distance from a general source node to the observer set.
Source localization. For the high-variance case we localize the source using an adapted

version of the algorithm proposed by Pinto et al. (2012) (see Appendix D for details).
This adapted algorithm can be seen as a generalization to the high-variance regime of the
source localization method presented in “Identification of the source class” section for
the low-variance regime.

Observer placement

First, we formalize why distances between observers are important. Recall that for every
transmission delay Xuv we assume Var(Xuv) = g(wuv, σ), with g being an increasing func-
tion of both its arguments. If oi, oj are two observers connected by a unique path P(oi, oj)
and the source is v� ∈ P(oi, oj), then

var(ti − tj) =
⎡

⎣
∑

uv∈P(oi,oj)
g(wuv, σ).

⎤

⎦ . (6)

For example, if Xuv ∼ N
(
wuv, σ 2w2

uv
)
we have

var(ti − tj) = σ 2

⎡

⎣
∑

uv∈P(oi,oj)
w2
uv

⎤

⎦ . (7)

Although we cannot control σ , we can control the path length between observers.

a b

Fig. 5 a Success probabilityPs on a path of length L for increasing variance σ . b Counterexample for the
converse of Lemma 2; for each pair of observers inO, u is not contained in the shortest path between them,
yetO is a DRS
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We make use of the following sufficient condition for a set to be a DRS, i.e., for an
observer set to guarantee correct source localization.

Lemma 2 Let G = (V ,E) be a network,O ⊆ V. If for every u ∈ V there exist o1, o2 ∈ O
such that there is a unique shortest path P(o1, o2) between o1 and o2 and u ∈ P(o1, o2),
thenO is a DRS for G.

Proof Let u, v ∈ V\O. We will prove that there exist o1, o2 ∈ O such that the pair (u, v)
is resolved by (o1, o2), i.e., d(v, o1) − d(u, o1) �= d(v, o2) − d(u, o2). Let o1, o2 ∈ O such
that u appears in the unique shortest path P(o1, o2) and o3, o4 ∈ S such that v appears
in the unique shortest path P(o3, o4). If v ∈ P(o1, o2) or u ∈ P(o3, o4) than u and v are
resolved by, respectively, (o1, o2) or (o3, o4). Take v /∈ P(o1, o2) and u /∈ P(o3, o4). In
this case, {o1, o2} �= {o3, o4}. Let us suppose without loss of generality that o1 /∈ {o3, o4}.
We look only at the case where (o1, o2) does not resolve (u, v) and prove that the pair is
indeed resolved by two vertices in O. Since (o1, o2) does not resolve (u, v), there exists
c ∈ R such that d(v, o1) − d(u, o1) = c = d(v, o2) − d(u, o2). Since the unique short-
est path between o1 and o2 goes through u we have that c > 0. We prove that either
(o1, o3) or (o1, o4) resolves (u, v). If this was not the case, we would have the following
equalities:

c = d(v, o1) − d(u, o1) = d(v, o3) − d(u, o3)

c = d(v, o1) − d(u, o1) = d(v, o4) − d(u, o4).

Since c > 0, d(v, o3) > d(u, o3) and d(v, o4) > d(u, o4) giving a contradiction with v (and
not u) being on the shortest path P(o3, o4). We conclude that (u, v) are resolved by either
(o1, o3) or (o1, o4).

The converse of this lemma is not true: If O double resolves G, it is not even true that
for every node u there must exist o1, o2 ∈ O such that u is contained in some shortest path
between o1 and o2 of (see Fig. 5b).
Path covering strategy.We take Lemma 2 as a basis for deriving a path covering strat-

egy for observer placement. In practice, the condition about the uniqueness of the shortest
path is too strong and excludes many potentially useful observer nodes. Experimentally
we see that in many practical situations two shortest paths differ only by a few nodes and
the majority of nodes on the path are resolved by the two extreme nodes. This is why we
relax the condition of Lemma 2 and we prefer, when the shortest path is not unique, to
select one arbitrarily. Let S ⊆ V be a set of observers and L a positive integer: We call
PL(S) the set of nodes that lie on a shortest path of length at most L between any two
observers in the set S. Given a budget k, and a positive integer L, we denote by S�

k,L the set
of k vertices that maximize the cardinality of PL(S). We call L the length constraint for the
observer placement because we consider an observer to be useful for source localization
only if it is within distance L from another observer. S�

k,L can be approximated greedily
as in Algorithm 2. The running time of Algorithm 2 is O(n2k2), however, as Algorithm 1,
this algorithm is highly parallelizable and hence tractable even for large networks.
We will refer to the observer placement produced by Algorithm 2 as HV-OBS(L) to

emphasize that it is designed for the high-variance case.
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Algorithm 2 (HV-OBS): Observer placement for the high-variance setting
Require: Network G(V ,E), budget k, length constraint L

n ← |G|
for v ∈ V do

Ov ← v
while |PL(Ov)| �= n andOv < k do

u ← argmaxz∈V\Ov [ |PL(Ov ∪ {z})| − |PL(Ov)|]
Ov ← Ov ∪ {u}.

return argmaxv∈V |PL(Ov)|

Unfortunately also for Algorithm 2 we cannot use a submodularity argument to derive
approximation guarantees. In fact, the function PL is not submodular. Consider the path
P of 7 nodes in Fig. 6b, fix L = 3 and set O1 = {1}. If we add node 7 to O1 no node lies
on a path of length smaller than L = 3 among the two observers 1 and 7, hence the gain
is 0. Consider now O2 = {1, 4} ⊇ O1. If we add node 7 to O2, the gain is 3 because node
5, 6 and 7, that did not lie on any path of length smaller than L connecting two observers
before, now lie on the path connecting 4 and 7, hence PL is not submodular.
Comparison with Algorithm 1. Note that taking L equal to the maximum weighted

distance� between two nodes in G does not make Algorithm 2 equivalent to Algorithm 1,
i.e., we do not obtain LV-OBS. To see how the two algorithms could give different results,
take a cycle of odd length d with a leaf node 	 added as a neighbor to an arbitrary node v
and assume to start the algorithm with initial set {v}. At the first step, the two algorithms
will make the same choice, choosing one of the two nodes that is at distance (d − 1)/2
from v. At the second step however, LV-OBS will add 	 (a DRS contains all leaves (Chen
et al. 2014)), whereas Algorithm 2 will add a node on the cycle. This observation is key
to our results because it explains why Algorithm 2 results in a more uniform (and hence
variance-resistant) observer placement with respect to LV-OBS. HV-OBS operates a trade-
off between the average distance to the observers and the maximization of Ps.
Choice of the L parameter. How could one optimally set L? Needless to say, the opti-

mal L depends on the network topology and on the available budget: Clearly, for a larger
budget a smaller L is preferred.
The cardinality of PL(O) is a good proxy for the performance of O. The value |PL| is

increasing in L and reaches its maximum for L equal to the maximum weighted distance
�. For small L, |PL(HV-OBS)| < |P�(LV-OBS)| but for L large enough this is no longer the
case. See Fig. 7a for an example. Our empirical results suggest that L should be chosen
as the maximum for which |PL(HV-OBS)| ≤ |P�(LV-OBS)|. The key property of HV-OBS

a b

Fig. 6 Counterexamples for the submodularity property of Algorithms 1 and 2. For the graph in (a)
(respectively, (b)) the gain of adding the node with red border toO2 is larger in terms ofPs (respectively, PL)
than the gain of adding it toO1 ⊆ O2
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Fig. 7 Fraction of nodes in PL(·) for the California dataset with 2% of observers

with respect to LV-OBS is that observers are spread more uniformly without losing too
much in terms of success probability Ps: Fig. 8a shows |PL(HV-OBS)| and Ps as a function
of L. An a-priori evaluation of the variance threshold above which one should use the
HV-OBS placement (and of the appropriate value of the L parameter) can be based on the
comparison of Ps on a path graph for different values of L and σ as in Fig. 5a. In fact,
looking at Fig. 5 we see that, for small values of σ Ps is very close to 1 independently of L,
hence LV-OBS is the best solution. When σ grows, we see that, in order to guarantee an

a b

c d

Fig. 8 Fraction of nodes in PL(HV-OBS) and success probability in the zero-variance regime (Ps(σ = 0)) as a
function of L/�. a CR. b CR. c F & F, FB. d F & F, FB
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high Ps one must choose smaller and smaller values of L. LV-OBS and HV-OBS can give
drastically different observers (see Fig. 9a for an example).

Empirical results
Datasets

We purposely run our experiments on three very different real-world networks that, in
addition to being relevant examples of networks for epidemic spread, display different
characteristics in terms of size, diameter, clustering coefficient and average degree (see
Table 1), enabling us to test the performance of our methods on various topologies.
The three networks we consider are:

� Friend & Families (F & F). This is a dataset containing phone calls, SMS exchanges
and bluetooth proximity, among a community living in the proximity of a university
campus (Aharony et al. 2011). We select the largest connected component of
individuals who took part in the experiment during its whole duration. The edges are
weighted, according to the number of phone calls, SMSs, and bluetooth contacts.

� Facebook-like Message Exchange (FB) (Opsahl and Panzarasa 2009). As the
individuals included in this dataset were living on the same university-campus, the
number of messages exchanged is likely to be a good measure of in-person
interaction. We selected links on which at least one message was sent in both
directions and individuals that had a contact with at least one other individual.

� California Road Network (CR) (California Road Network). In order to obtain a single
connected component and remove points that effectively represent the same
location, we collapsed the points falling within a distance of 2 km. Moreover we
iteratively deleted all leaves. In fact, the roads that cross the state border are not
completely tracked in this dataset and terminate with a leaf. Some other leaves might
represent remote locations, not necessarily close to the borders, but their influence
on the epidemic should anyway be very low.
The diameter of the CR network is very large compared with that of the other two
networks.
The edges are weighted according to a rescaled version of the real distance
(measured in km).

In all three networks, edges are given (non-unit) integer weights, which is realistic in
many applications as the expected transmission delays are known only up to some level
of precision. Integer weights do not simplify the localization of the source; in fact, this
makes itmore difficult to distinguish between vertices. For example, if the edges of the CR

cba

Fig. 9 Comparison of the oberver placements LV-OBS, HV-OBS (L/�̃ = 0.5) and K-MEDIANS with k = 5% on
the F & F network. Note the difference between LV-OBS and HV-OBS: LV-OBS contains leafs while HV-OBS has
shorter spacing. a LV-OBS. b HV-OBS (L/�̃ = 0.5). c K-MEDIANS
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Table 1 Displays statistics for the networks examined

|V| |E| min(wuv) avg(wuv) max(wuv) Avg
Degree

Diameter Avg Dist Avg
Clust.

Friends & Families 120 563 4 5.58 7 9.38 6 17.5 0.67

Facebook Messages 1020 6205 1 2.97 5 12.16 5 6.69 0.09

California Roads 1259 1801 1 1.71 9 2.86 66 55.3 0.2

network were weighted according to the Euclidean distance between the two endpoints,
LV-OBS would use only a very small portion of the budget and the comparison with other
observer placements would not be meaningful.

Comparison against benchmarks

We compare LV-OBS and HV-OBS against the following benchmarks:

� ABC (Adaptive Betweenness Centrality): Betweenness Centrality (BC) is a popular
method for placing observers for source-localization (see, e.g., (Louni and
Subbalakshmi 2014) and (Seo et al. 2012), where it emerges as the best heuristic for
observer placement among those tested). It consists of the k nodes having the largest
BC, which is defined, for all u ∈ V as

BC(u) =
∑

x,y∈V ,x�=y

σx,y(u)

σx,y

where σx,y is the number of shortest paths between x and y and σx,y(u) is the number
of those paths that passes through u. Here we consider an adaptive version of BC
(ABC) which iteratively chooses the node that maximizes the betweenness centrality
without considering the shortest paths that pass by already-chosen vertices (Yoshida
2014). ABC, with respect to the basic BC, gives less clustered, and hence more
efficient, observer sets.

� Coverage-rate (COVERAGE) (Zhang et al. 2016): This approach maximizes the
number of nodes that have an observer as a neighbor, i.e.,

C(O) = | ∪o∈O No|/n

where No denotes the set of neighbors of o. It has been shown to outperform several
heuristics with a diffusion model and a source-localization setting that are very
similar to ours (Zhang et al. 2016).

� K-MEDIAN: this is the optimal placement for the closely-related problem of
maximizing the detectability of a flow (Berry et al. 2006). The K-MEDIAN placement
is the set of k nodesO such that

O = argmin|O|=k
∑

s∈V
(min
o∈O d(s, o)).

Determining the K-MEDIANS of a network is NP-hard (Kariv and Hakimi 1979),
hence we approximate K-MEDIANS with a greedy heuristic.
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Transmission delays

Unless otherwise specified, we sample the transmission delays Xuv from truncated Gaus-
sian random variables with parameters (wuv, σwuv, [w uv/2,3w uv/2] ). More precisely, if
Yuv ∼ N (wuv, σwuv) is a Gaussian random variable, Xuv is obtained by conditioning Yuv
with Yuv ∈[w uv/2,3w uv/2]. With respect to the delay distribution assumed by Pinto et al.
(Pinto et al. 2012) i.e., Xuv ∼ N (wuv, σwuv), the distribution we assume has the advan-
tage of admitting only strictly positive infection delays. Furthermore, different values of
the parameter σ result in different regimes for the transmission delays, making our model
very versatile.When σ = 0, we are in the zero-variance regime; when σ is large, the distri-
bution of Xuv becomes closer to a uniform random variable U([w uv/2,3w uv/2] ). Finally,
when σ is strictly positive but small, Xuv ≈ N (wuv, (σwuv)2).
To assess the robustness of our approach for source localization and observer place-

ment, we also experiment with uniformly distributed transmission delays, i.e., for every
edge uv ∈ E, we take Xuv ∼ Unif([ (1 − ε)wuv, (1 + ε)wuv] ). The uniform distribution
is, among the unimodal distributions on a bounded support, the one that maximizes the
variance (Gray and Odell 1967). Hence, uniform delays are a very challenging setting for
source localization.

Experimental results

We estimate the probability of successPs and the expected distanceD for different values
of the variance parameter σ . Our estimations are computed averaging the results obtained
choosing each node in turn as the source and generating synthetic epidemics. For the FB
and CR datasets, we run 5 simulations per node and value of σ ; for the F & F dataset, as
the network is smaller, we run 20 simulations per node and value of σ . For the FB and CR
datasets, we localize the source based on the first 20 observations only: Given the large
size of these networks, it would be unrealistic to wait for all the nodes to get infected
before running the algorithm.
The results for Ps are displayed in Fig. 10. An approximation of the value σ1, above

which HV-OBS outperforms LV-OBS, is marked with a vertical line. For the expected
distance (weighted and in hops), see Fig. 11.
We first take as budget for the observers the minimum budget for which Ps(LV-OBS) =

1. This corresponds to k ∼ 10% for the F & F dataset, k ∼ 9% for the CR network
and k ∼ 5% for the FB dataset. This is the setting in which we expect the improve-
ment of HV-OBS over LV-OBS to be especially strong: For smaller values of k we expect
LV-OBS to be nearly optimal even in the high-variance regime because we do not have
enough budget to contrast both the topological undistinguishability among nodes (what
LV-OBS is designed for) and the accumulation of variance (what HV-OBS is designed
for).
For the F & F and the CR networks, we also experiment with smaller percentages of

observers and consistently find an improvement of HV-OBS over LV-OBS in the high-
variance regime: Below a certain amount of variance σ1 LV-OBS performs better than
HV-OBS for any choice of the parameter L, whereas above σ1 a calibrated choice of L leads
to a significant improvement. Such L stays constant for all σ > σ1, i.e., with the notation
of Fig. 1 we have σ1 = σF .
For the FB dataset instead, probably due to the low diameter with respect to the number

of nodes, we observe that HV-OBS does not improve on LV-OBS for any value of L.
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cba

fed

Fig. 10 Success probabilityPs as the variance parameter σ increases. a CR, 2% observers. b CR, 5%
observers. c CR, 9% observers. d FB, 5% observers. e F & F, 5% observers. f F & F, 10% observers

Both LV-OBS and HV-OBS systematically outperform the baseline heuristics for
observer placement that we described in “Comparison against benchmarks” section. For
the CR dataset the performance of Adaptive Betweenness Centrality is particularly poor.
The Coverage Rate heuristic outperforms Adaptive Betweenness Centrality on all three
networks (confirming what found by by Zhang et al. (2016)) but is consistently less
effective than K-Medians and than our methods.
Finally in Fig. 12, we consider uniform transmission delays, and we measure whether,

without making any changes, our observer placement still performs well. We find com-
parable results which suggest that our observer placement is not dependant on the exact
transmission model and that the variance of the transmission delays is really a key factor
for a good observer placement.

cba

fed

Fig. 11 Expected distanceD = E[ d(s� , ŝ)] in number of edges (first row) and in weighted path length
(second row) as the variance parameter σ increases. a CR, 5% observers. b F & F, 5% observers. c FB, 5%
observers. d CR, 5% observers. e F & F, 5% observers. f FB, 5% observers
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cba

Fig. 12 Success probabilityPs for uniform transmission delays Xuv ∼ Unif([ (1 − ε)wuv , (1 + ε)wuv ] ). a CR,
5% observers. b F & F, observers. c FB, 5% observers

Related work
The problem of source localization has been widely studied in recent years, we survey
the works that are more relevant to ours and refer the reader to the survey by Jiang et al.
(2014) for a more complete review of the different approaches.
Transmission delays. Many transmission models for epidemics have been studied

(Lelarge 2009) and considered for source localization. Although discrete-time transmis-
sion delays are common (Luo et al. 2014; Prakash et al. 2012; Altarelli et al. 2014), in order
to better approximate realistic settings, much work (including ours) adopt continuous-
timemodels with varying distributions for the transmission delays; e.g., exponential (Shah
and Zaman 2011; Luo and Tay 2012) or Gaussian (Pinto et al. 2012; Louni and Subbal-
akshmi 2014; Louni et al. 2015; Zhang et al. 2016). In the same line of the latter class of
works, we use truncatedGaussian variables, which gives us the advantage of ensuring that
infection delays are strictly positive.
Source localization. Many approaches (Zheng and Tan 2015; Prakash et al. 2012;

Sundareisan et al. 2015), beginning with the seminal work by Shah and Zaman Shah
and Zaman (2011), rely on knowing the state of the entire network at a fixed point in
time t; this is often called a complete observation of the epidemic. These models use
maximum likelihood estimation (MLE) to estimate the source. The results of (Shah and
Zaman 2011) have been extended in many ways, for example in the case of multiple
sources (Luo and Tay 2012) or to obtain a local source estimator (Dong et al. 2013).
An alternate line of work considers a complete observation of the epidemic, except
that the observed states are noisy, i.e., potentially inaccurate (Zhu and Ying 2013; Sun-
dareisan et al. 2015). As assuming the knowledge of the state of all the nodes is often
not realistic, partial observation settings have also been studied. In such a setting, only
a subset of nodes O reveal their state. In this line of work, the observers are mainly
given, either arbitrarily or via a random process, and the problem of selecting observers
is not addressed. For example, when a fraction x of nodes are randomly selected, Lokhov
et al. (2014) propose an approach which relies on the knowledge of the state (S, I or
R) of a fraction of the nodes in the graph at a given moment in time and in which
the starting time of the epidemic, if unknown, can be inferred from the data available.
When the nodes are independently selected to be observers, an approach to source
estimation based on the notion of Jordan center was proposed (Luo et al. 2014) and
has since been used for source estimation, especially with regard to a game theoretic
version of epidemics (Fanti et al. 2015). This line of work does not assume infection
times are known, which we believe is, in many cases, an unnecessary limitation. Indeed
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by using infection times we can achieve exact source localization in the zero-variance
setting with sufficiently many observers (Chen et al. 2014), whereas this is not true
otherwise.
Observer placement. Natural heuristics for observer placement (e.g., using high-

degree vertices or optimizing for distance centrality) were first evaluated under the
additional assumption that infected nodes know which neighbor infected them (Pinto
et al. 2012). Later, Louni and Subbalakshmi (2014) proposed, for a similar model, to place
the observers using a Betweenness-Centrality criterion (which we use as a benchmark, see
“Comparison against benchmarks” section), and extended it to noisy observations (Louni
et al. 2015). These and other heuristic approaches for observer placement are evaluated
empirically by Seo et al. (2012); they reach the conclusion that, among the placements they
evaluate, the Betweenness-Centrality criterion performs the best. In their work the source
is estimated by ranking candidates according to their distance to the set of observers,
without using the time at which the observers became infected. Once again, this approach
is inherently limited by the fact that it does not make use of the time of infection.
The problem of minimizing the number of observers required to detect the precise

source (as opposed tomaximizing the performance given a budget of observers) has been
considered in the zero-variance setting. For trees, given the time at which the epidemic
starts, the minimization problemwas solved by Zejnilovic et al. (2013).Without assuming
a tree topology and a known starting time, approximation algorithms have been devel-
oped towards this end (Chen et al. 2014) (still in a zero-variance setting). However, in
a network of size n, the number of observers required, even if minimized, can be up
to n − 1, hence, a budgeted setting is practically more interesting. For trees, the bud-
geted placement of observers was solved by using techniques different from ours (Celis
et al. 2015). However these techniques heavily rely on the tree structure of the network
and do not seem to be extendible to other topologies. In a recent work, Zhang et al.
(2016) consider selecting a fixed number of observers using several heuristics such as
Betweenness-Centrality, Degree-Centrality and Closeness-Centrality and they show that
none of these methods are satisfactory. They introduce a new heuristic for the choice of
observers, calledCoverage-Rate, which is linked to the total number of nodes neighboring
observers, and show that an approximated optimization of thismetric yields better perfor-
mance. Connecting the budgeted placement problem to the un-budgeted minimization
problem, we provably outperform their approach in low-variance settings. For example,
in the low-variance setting, on cycles of odd-length d with budget k = 2, any two nodes
at distance more than 2 are equivalent with respect to Coverage-Rate, but they maxi-
mize Ps only if they are at distance (d − 1)/2; our approach instead, selects this optimal
placement. Moreover, the effect of the variance in the transmission delays is neglected by
Zhang et al., leaving open the question of whether their approach works in general. We
consider Coverage-Rate as one of our baselines.

Conclusion and future work
In this work, we have taken a principled approach towards budgeted observer placement
for source localization, which shows a dichotomy between the low and high-variance
regimes.We developed complementary approaches to handle both regimes.We evaluated
our approaches against state-of-the-art and alternative heuristics showing a better per-
formance of the algorithms proposed in this paper.
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A direction for future work would be tomeasure the performance withworst case rather
than average case metrics: if we can handle (adversarially chosen) source distributions
where the epidemic starts at the least-observed location, then this gives a bound on the
performance with an arbitrary prior distribution.
A natural extension of our model was recently studied in a work by Spinelli et al. (2017)

which accounts for two stages of observation. In the first stage, as in this work, a small
set of observers are selected to monitor the network. In the next stage, once an epidemic
begins, additional observers are deployed in the relevant region of the network to localize
the source. The latter work does not address interesting questions such as the impact of
the initial budget deployed and of the position of the observers chosen in the first stage.
The techniques and the results of this paper pave the way for answering these questions
which we consider of high practical importance.

Endnotes
1A preliminary version of this work was presented at the 54th Annual Allerton

Conference on Communication, Control, and Computing (Spinelli et al. 2016).
2Note that in Figs. 2 and 5a we compute the value of the success probabilityPs assuming

Gaussian distributed delays (and ignoring that, with low probability, negative delays could
appear) because this is the only distribution that makes the exact computation of this
value feasible. However, in all experiments we only consider non-negative distributions
for Xuv.

3 See “Metrics for source localization” section for a discussion of alternative metrics for
source localization.

4CallOopt the optimal observer placement for any of the metrics considered and L the
leaves set. IfOopt � L there would be observer o ∈ Oopt equivalent to a leaf 	 /∈ Oopt and
by substituting o with 	 we would break [o] in two or more smaller equivalence classes.
In this way the value of the metric considered would get closer to its optimum.

5The standard error of measurement is not reported for the sake of readability but it
was checked to be small.

6 Lyapunov condition with δ = 1 is easily verified for a sequence of independent and
uniformly bounded random variables (see Example 27.4 in (Billingsley 1995) for more
details).

7 https://github.com/bmspinelli/observers_for_source_loc.

Appendix A: Double Resolving Sets
The problem of minimizing the required number of observers in order to perfectly iden-
tify the source in the zero-variance setting has been studied (Chen et al. 2014); an observer
setO such that Ps(O) = 1 is called a Double Resolving Set (DRS). While the original for-
mulation of the DRS problem is slightly different, this version follows straightforwardly
from our observations in “The low-variance regime” section.

Definition 3 (Double Resolving Set) Given a network G, S ⊆ V is said to be a Double
Resolving Set of G if for any x, y ∈ V there exist u, v ∈ S s.t. d(x,u) − d(x, v) �= d(y,u) −
d(y, v).

Finding a Double Resolving Set of minimum size is known to be NP-hard (Kratica
et al. 2009). An approximation algorithm, based on a greedy minimization of an entropy

https://github.com/bmspinelli/observers_for_source_loc
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function, has been studied. Note that this has no connection to true information-theoretic
entropy.

Definition 4 (Entropy (Chen et al. 2014)) Let G a network, O ⊆ V, |O| = k a set of
observers. The entropy ofO is

HO = log2

⎛

⎝
∏

[u]O⊆V
|[u]O |!

⎞

⎠

Note that HO is minimized if and only if each equivalence class consists of only one
node and hence if and only if Ps = 1. However, despite the fact that HO is mini-
mized when Ps is maximized and that both act on the same set of equivalence classes
for a given O, the greedy processes that minimize HO and maximize Ps are not the
same. This can be seen by rewriting both objective functions in the following way.
Let [ c1, . . . , cq] be the sequence of equivalence class sizes. Then HO can be written as
HO([ c1, .., cq] ) = ∑l

i=1
∑ci

j=2 log(j) = ∑max cj
i=2 log(i)#{cj ≥ i}. Analogously we have the

following equality for the success probability Ps([ c1, . . . , cq] ): n(1 − Ps([ c1, . . . , cq] )) =
n − q = ∑max cj

i=2 #{cj ≥ i}
Hence, though similar in spirit, a greedy minimization of HO is not related to a greedy

optimization of Ps (or E[ d(s∗, ŝ)]).

Appendix B: Hardness of Budgeted Observer Placement
Theorem 3 Given a network G = (V ,E) and a budget k, finding an observer setO which

maximizes Ps is NP-hard.

Proof We will prove that the budgeted observer placement is NP-hard with a reduc-
tion from the DRS problem (see Appendix A: Double Resolving Sets section), i.e., given a
polynomial-time algorithm for the budgeted observer placement problem, we will prove
that we can solve the DRS problem in polynomial time.
Assume that we have a polynomial-time algorithm A that takes as input a network

G = (V ,E) and a budget k, and outputs a set O ⊆ V of size k such that Ps is maximized.
Recall from “The low-variance regime” section that given a network G and a set O, the
probability Ps can be calculated in time O(n) where n = |V | (it is enough to compute the
n distances vector with respect to O and any reference observer o1 ∈ O). Hence, we will
construct an algorithm for the DRS problem.

Algorithm 3 Finds the minimum cardinality DRS given an algorithm to compute the
k-nodes set that maximizes Ps
Require: Network G = (V ,E)

for k = 1, . . . , |V | do
O := A(G, k)
P := Ps(O)

if P = 1 then
return k
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Since the full set V always resolves the network, the program is well defined (i.e., it
always returns some k). Moreover, it returns precisely the minimum budget k required in
order to attainPs = 1. Lastly, it is clear that the runtime is at mostO(n(pA(n)+n))where
pA(n) is the running time of algorithm A. Hence, we have a polynomial-time algorithm
for the DRS problem.

Appendix C: Alternative objective functions for Algorithm 1
We present the results of the experiment described in Comparison with benchmarks
section. Let us here denote LV-OBS with � for consistency of notation.
Table 2 compares LV-OBS, �ent and �dist , for different topologies and different budgets

k, in terms of both Ps and D. The results are given in the form of (averaged) relative
differences.5

We denote the relative difference of x and y with respect to f as

ρ(f , x, y) def= f (y) − f (x)
f (x)

.

Since the expected distance can be equal to 0 we add 1 to the denominator when
comparing values ofD, i.e.,

ρ(D, x, y) def= D(y) − D(x)
D(x) + 1

.

Appendix D: Source Localization in the High-Variance Regime
We describe here how we compute the estimated source ŝ in the high-variance regime.
Denote by TO the vector of the observed infection times. If the transmission delays are
Gaussian-distributed, G is a tree, the maximum likelihood (ML) estimator defined as

ŝ ∈ argmax
s∈V P(s|TO),

has a tractable closed form (Pinto et al. 2012). Note that the model of (Pinto et al.
2012) additionally assumed infected observers knew the neighbor that infected them; this
assumption is not essential for the derivation of the ML estimator and it is not required
in our work.
In particular, given a set of observers

O = {o1, o2, . . . , ok} ⊆ V ,

Table 2 Comparison of LV-OBS (�) with the greedy algorithms that minimize the entropy function of
(Chen et al. 2014) (�ent) and the expected distance (�dist)

ρ(Ps ,�,�dist) ρ(D,�dist ,�) ρ(Ps ,�,�ent)

Random Geometric Network, N = 100, r = 0.2

k = 2 -0.205 0.101 -0.033

k = 4 -0.014 -0.003 -0.007

k = 8 -0.003 -0.002 -0.003

Barabàsi Albert Network, N = 100,m = 3

k = 2 -0.168 0.023 -0.037

k = 4 -0.039 0.025 -0.028

k = 8 -0.004 -0.003 0.005
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the vector of the observed infection delays τ =[ t2−t1, . . . , tk−t1]∈ R
k−1 is distributed as

N (ds,o1 ,�O) where ds,o1 is the distance vector of Definition 2 and the covariance matrix
�o1 is

�o1,(k,i) = σ 2
{ ∑

(u,v)∈P(o1,ok+1)
w2
uv k = i

∑
(u,v)∈P(o1,ok+1)∩P(o1,oi+1) w

2
uv k �= i,

(8)

with P(x, y) denoting the set of edges in the unique path between x and y. Hence the ML
estimator is

ŝ ∈ argmaxs∈V
exp

(
− 1

2
(
τ−ds,o1

)�
�o1

−1(τ−ds,o1
))

|�o1 |1/2
= argmaxs∈V

[
d�
s �o1

−1 (
τ − 1

2ds,o1
) ]

.
(9)

On non-tree networks, the multiplicity of paths linking any two nodes makes source
estimation more challenging. As claimed in (Pinto et al. 2012), the same estimator can
be used as an approximation of the ML estimator for a non-tree network by assuming
that the diffusion happens only through a BFS (Breadth-First-Search) tree rooted at the
(unknown) source. In this case the paths which appear in the definition of the covariance
matrix �o1 are computed on the BFS tree rooted at the candidate source considered.
Hence �o1 depends on the candidate source and the ML estimator is

ŝBFS ∈ argmax
s∈V

exp
(

− 1
2 (τ − ds,o1)��s

o1
−1(τ − ds,o1)

)

∣
∣
∣�s

o1

∣
∣
∣
1/2 . (10)

In this work, we adopt (10) as the source estimator in the noisy case. In fact, even if
our edge delays are not Gaussian-distributed, under the hypothesis of sparse observa-
tions, we can apply the Central Limit Theorem (CLT) to approximate the sum of the edge
delays with Gaussian random variables: if all edges have the same weight we can apply
the CLT for i.i.d. random variables; if this is not the case, we can apply Lyapunov’s ver-
sion of CLT.6Using (10) to compute the ML estimator, the likelihood of nodes in the same
equivalence class can result to be different as an artefact of the BFS-tree approximation.
Hence, for consistency with our source-localization method in the low-variance case, we
compute an average likelihood and estimate that the source is in the class with the higher
average likelihood. Then, once an equivalence class for the source is estimated, we select ŝ
by sampling the prior probability on the position of the source (if available) or by uniform
sampling from the estimated equivalence class.
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