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A General Framework for Sensor Placement
in Source Localization
Brunella Spinelli, L. Elisa Celis, Patrick Thiran

Abstract—When an epidemic spreads in a given network of individuals or communities, can we detect its source using only the
information provided by a small set of nodes? We propose a general framework that incorporates two dimensions. First, we can either
rely exclusively on a set of selected nodes (i.e., sensors) which always reveal their state independently of any particular epidemic
(these are called static), or we can add some sensors (called dynamic) as an epidemic spreads, depending on which additional
information is required. Second, the method can either localizes the source after an epidemic has spread through the entire network
(offline), or while the epidemic is ongoing (online).
We empirically study the performance of offline and online localization both with and without dynamic sensors. Our analysis shows
that, by using dynamic sensors, the number of sensors necessary to localize the source is reduced by up to a factor of 10 and that,
even with high-variance transmission delays, the source can be localized by using fewer than 5% of the nodes as sensors.

Index Terms—Epidemics; Source Localization; Sensor Placement.
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1 INTRODUCTION

COMPUTER worms, or rumors spreading on social net-
works, often trigger the question of how to identify the

source of an epidemic. This question also arises in epidemi-
ology, when the origin of a disease outbreak is investigated.
For these reasons source localization has received consider-
able attention in the past few years. Because of its combi-
natorial nature, it is inherently difficult: the infection of a
few nodes can be explained by multiple and possibly very
different propagations. Researchers have considered various
models and algorithms that differ in the epidemic model
and in the information used for source localization. Such
models are often not realistic, either because they rely on
strong assumptions about the features of the epidemic (tree
networks, deterministic transmission delays, etc.) or because
they require an overwhelming amount of information. At
the end of this section we position our work with respect to
the assumptions that are most commonly made. In Section 8
we give a more general discussion of the state-of-the-art.

When studying source localization, the cost of collecting
information cannot be disregarded. In fact, data collection is
never inexpensive; moreover, due to privacy concerns, indi-
viduals are becoming aware of the value of their data, hence
are resistant to share it for free [14]. In the case of infectious
diseases, performing the necessary clinical tests and data
analysis on many suspected households or communities
can be very expensive, whereas the efficient allocation of
resources can lead to enormous savings [47].

Another important concern is the timeliness of source
localization: if an epidemic is detected while it is spreading,
being able to promptly identify the source based on the
incomplete information available can be essential for the
activation of containment measures [1].

Driven by the demand for general models and by
practical resource-allocation constraints, we make minimal
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assumptions on the epidemic spread and we design a
flexible framework for information collection and source
localization where the information can be either collected
adaptively or at a fixed set of locations, and the source of an
epidemic can be promptly localized.1

Model. We localize the source by using the information
provided by a subset of nodes called sensors. When a node
is chosen as a sensor, it can reveal its infection state and, if it
is infected, its infection time. We have two possible types of
sensors: static sensors and dynamic sensors. Static sensors
are placed a priori in the network, independently of any
particular epidemic instance. Dynamic sensors are placed
adaptively while we perform source localization. Figure 1
depicts our approach to source localization.

Contributions. We propose a general framework for source
localization that encompasses both static and dynamic sensor
placement and that allows to localize the source both while
the epidemic is still spreading (online localization) and after
the epidemic has spread throughout the entire network
(offline localization); see Table 1. This opens new possibil-
ities, as to date most approaches assume that all sensors
are static and that the source can be localized only after
the epidemic spreads throughout the network. We show
that when we can sequentially deploy dynamic sensors, the
source is always correctly identified with only a few sensors
even when the transmission delays are highly noisy. This
result is very practical because it applies to general graphs.

We also propose several methods for choosing where to
deploy the dynamic sensors and we compare them.

Because of its flexibility, the proposed framework can be
used in a number of different applications, ranging from
localizing the source of a belief that spread in the past to
tracking the source of a disease outbreak in real time, and

1. A preliminary version of this work, focusing on online source
localization using dynamic sensors (Section 6), was presented at the
World Wide Web Conference in 2017 [49].
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Offline Localization Online Localization

S-OFF – Section 3 S-ON – Section 4
Static Sensor Placement only static sensors, only static sensors,

the source is localized after the epidemic, the source is localized during the epidemic,
observations are always positive. observations can be positive or negative.

D-OFF – Section 5 D-ON – Section 6
Dynamic Sensor Placement static and dynamic sensors, static and dynamic sensors,

the source is localized after the epidemic, the source is localized during the epidemic,
observations are always positive. observations can be positive or negative.

TABLE 1: The source-localization methods and settings considered in this paper.

Static Sensors Dynamic Sensors

observations

Update candidate 
sources B 

Select a new 
dynamic sensor d

if we have 
budget for 

dynamic sensors

gets infected

O
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d

when a new sensor d 
is deployed and/or 
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d

Fig. 1: Illustration of our approach to source localization.
An epidemic is observed through the sensors (static S and
dynamic D). Based on the observations O, we iteratively
update a set B of candidate sources (step A) which is
used, if the budget allows it, to guide the choice of an
additional dynamic sensor (step B). The subroutines (A) and
(B) depend on the setting used (among the four listed in
Table 1).

from finding the source of a rumor in a network in which
we constantly monitor a set of individuals, to detecting the
patient-zero of an infection through ad-hoc interviews or
clinical tests.

Experimental evaluation. Through extensive experiments
on synthetic and real-world networks we evaluate our
approach along two different axes: (1) Under budget-
constraints for the number of sensors, we measure the
uncertainty on the identity of the source (i.e., the number
of nodes that have a positive probability of being the source
given the available observations); and (2) when the budget
for sensors is not limited, we assess the number of sensors
needed to exactly identify the source.

Our analysis highlights that a strategy that uses dynamic
sensors dramatically outperforms a static strategy with the
same budget: By choosing fewer than 5% of the nodes as
sensors we improve the success rate of finding the source
from approximately 30% to approximately 92% (see Fig-
ure 9(a)). Moreover, when we do not have a limited budget
on the number of dynamic sensors, we can localize the

source with a small number of sensors: between 3% and 6%
of the network nodes depending on the network topology
(see Figures 7(a) and 7(b)). The reason for these improve-
ments is that, using dynamic sensors, we can progressively
reduce the network to a small sub-network whose nodes
always include the source.

We also show that, given a set of constraints (how many
sensors can be deployed, whether they can be deployed
adaptively, ...), the choice of the sensors strongly affects
the performance of source localization. In particular, we
evaluate different choices of the static sensors (in Section 7.3)
and different methods for choosing the dynamic sensors
(in Section 7.6). We also study the effect of varying the
proportion of static versus dynamic sensors, showing that
we can save some resources by choosing a small budget for
static sensors, but not too small as we might pay with a
longer time for localizing the source (see Figure 9(b)).

Finally we demonstrate that, by using all the information
available as soon as it becomes available, we can greatly
enhance the timeliness of source localization and restrict the
search to a small set of candidate sources when the number
of infected nodes is still small (see Figures 6(a) and 6(b)).

What we assume.
(A.1) We assume that the contact network is known. This is a

common assumption when studying source localization
(see, e.g., [2], [36], [40], [41], [46]). In the contexts where
the network topology is not known, or only partially
known we should first estimate the network topology.
This difficult and interesting task is out of the scope
of this paper; recently, solutions were proposed, for
example, by Farajtabar et al. [18], Fu et al. [19], [20]
and Gomez-Rodriguez et al. [22].

(A.2) We assume that, when a node is a sensor, it reveals its
state (healthy or infected). If it is infected, it also reveals
the time at which it became infected. This is not a strong
assumption because, by interviewing users of a social
network or patients affected by a disease, a (possibly
noisy) observation of the infection time might become
available [55].

What we do not assume. Estimating the source of an
epidemic is intrinsically difficult. For the sake of tractability,
prior work often makes assumptions which are not always
feasible in practice. We list some assumptions which are not
needed for our work.
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Notation

N / N+ positive integers including / excluding 0
G(E, V ) contact network
N = |V | network size
wuv weight of edge (u, v) (∈ R+)
Xuv infection delay on edge (u, v)
d(x, y) weighted distance between x and y (∈ R+)
v? source
t? starting time of the epidemic
tu infection time of node u
T (v, u) tu − t?, infection delay of node u when v? = v
S set of static sensors
D set of dynamic sensors
U S ∪ D, set of all sensors
Ks budget for static sensors
Kd budget for dynamic sensors
K Ks +Kd, total budget for sensors
τ? time at which source localization begins
θ deployment delay
O set of observations
ω = (u, tu) observation of node u:

if u is not infected, tu = ∅
B set of candidate sources

(B.1) Knowledge of the state of every node at a given point in
time. It might be prohibitively expensive to maintain a
very large number of monitoring systems [58]. Instead,
we detect the source based on the infection time of a
very small set of nodes.

(B.2) Knowledge of the time at which the epidemic starts.
This information is, in most practical cases, not avail-
able [26], [40]. Hence we do not make assumptions
about the starting time of the epidemic.

(B.3) Observation of multiple epidemics. Observing multiple
epidemics started by the same source certainly helps in
its localization [17], [40]. In this work, we consider a
single epidemic, because we are interested in localizing
the source while the epidemic spreads.

(B.4) A specific class of network topologies. Having a unique
path between any two nodes makes source localization
much easier [26], hence tree topologies are often as-
sumed. Instead, our methods work on arbitrary graphs.

(B.5) Deterministic or discretized transmission delays. When the
transmission delays are deterministic, the epidemic it-
self is deterministic given the position of the source.
Therefore, if the source is unknown, tracking back its
position becomes much easier [48]. Also, assuming
that infection times are discrete-valued is limiting and
can result in a loss of important information [7]. We
derive our algorithm assuming transmission delays to
be randomly drawn from bounded-support continu-
ous distributions, which include deterministic delays
as a particular case and can, in practice, approximate
unimodal distributions with unbounded support (see
Figures 10(c) and 10(d)).

2 PRELIMINARIES

2.1 Network Model
We model a set of contacts with a weighted graph G(V,E).
For every (u, v) ∈ E, the weight wuv ∈ R+ is equal to the
average time it takes for an infection to spread from u to v.
G is undirected, i.e., wuv = wvu for every (u, v) ∈ E. The
distance d(u, v) between two nodes u and v is the minimal
sum of edge weights along a path connecting u and v.

2.2 Epidemic Model
An epidemic starts from a single source at an unknown
time t?. The identity of the source is an unobserved random
variable v? which takes values in the node set V .

At any time, every node is in one of two possible states:
S (Susceptible) or I (Infected). For every edge (u, v) ∈ E, let
Xuv be the time it takes for an infection to spread from
u to v. Xuv is called the infection delay on edge (u, v) and
is a positive random variable with mean E[Xuv] = wuv .
Denote by tu the infection time of a node u. Then a non-
infected neighbor v of u gets infected at time tv = tu +
Xuv . The variables {Xuv}(u,v)∈E are mutually independent.
When v? = v we denote by T (v, u) the total time it takes for
the infection to spread from v to a node u ∈ V . This model
implies that all nodes eventually become infected.

We do not assume a precise distribution for the infection
delays. Instead, we assume that there exists ε ∈ [0, 1) such
that for every (u, v) ∈ E, the support of Xuv is contained
in [(1 − ε)wuv, (1 + ε)wuv]. We call ε the variance parameter
because it encodes how much the infection delays can
deviate from their mean.

For ε = 0, Xuv = wuv for every (u, v) ∈ E, and we say
that the epidemic is deterministic; for ε > 0, wuv · ε gives
an upper bound on the deviation of Xuv from its mean.
By letting the maximum deviation be proportional to the
edge weights we make sure that our transmission model
is not trivial: If the maximum deviation was constant, the
impact of the variance would depend on the scale of the
edge weights and, for large wuv , Xuv would be effectively
deterministic.

In our experiments, we consider mostly the case in which
Xuv is uniformly distributed on [wuv(1− ε), wuv(1 + ε)]. In
this case, the variance of Xuv is Var(Xuv) = w2

uvε
2/3 (which

is the maximum variance of unimodal distributions with
support [(1− ε)wuv, (1 + ε)wuv] [43]). However we also test
the performance of our methods when Xuv has unbounded
support (see Section 7.8).

2.3 Online & Offline Source Localization
Depending on the application of interest, it can be desirable
to localize the source while the epidemic is still spreading
(e.g., for a disease spreading now) or only after it has prop-
agated throughout the network (e.g., for an epidemic that
happened in the past or when a timely investigation is not
needed). In the former case, we speak about online source
localization, and in the latter case about offline source local-
ization. In contexts where the data becomes available while
the epidemic spreads, online localization has the potential to
identify the source (or a small set of candidate sources) be-
fore the epidemic propagates throughout the entire network.
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Offline localization, instead, is the only possible approach to
source localization when we study epidemics that occurred
in the past. Moreover, it is the setting that is commonly used
in the literature (see Section 8).

Source localization might not be instantaneous. Let τ? be
the time at which we start investigating the identity of the
source and, for every v ∈ V , let tv denote the infection time
of v. We can give the following definition.

Definition 1 (Online/offline method). A method for source
localization is said to be an online (respectively, offline) method if
τ? < maxv∈V tv (resp., τ? ≥ maxv∈V tv).

The main difference between online and offline source
localization is that, when performing offline localization, the
full picture of the process is already available at time τ?.

We present a framework that naturally encompasses
both the offline and the online regimes. We study offline
source localization in Section 3 and 5, online source local-
ization in Section 4 and 6.

2.4 Sensors
We use the information provided by a subset of nodes which
we call sensors.

Definition 2 (Sensor). A node is a sensor if it can reveal its
infection state (S or I) and, if it is infected, its infection time.

Note that if v? = v and v is a sensor, v provides
information in the same way as any other sensor i.e., it only
reveals, if infected, its infection time (which would be equal
to t?), but it does not reveal itself to be the source.

Definition 3 (Static/dynamic sensor). A sensor is said to be
static if it is chosen independently of any epidemic. In contrast,
we say that a sensor is dynamic if it is chosen in order to localize
the source of a particular epidemic.

We assume that we have a budget K for the total
number of sensors and we consider two regimes for sensor
placement: static sensor placement (all K sensors are static)
and dynamic sensor placement (Ks > 0 static sensors and
Kd = K − Ks dynamic sensors). Note that we never set
Ks = 0 because otherwise no sensor would be deployed
in the network when the epidemic starts spreading and the
detection of the source would be trivially impossible.

The set of static (respectively, dynamic) sensors is de-
noted by S (resp., D) and the set of all sensors is U = S ∪D.

In online localization, the dynamic sensors are chosen
while the epidemic spreads; in the offline regime, they
are chosen while we perform source localization, i.e., by
the time they are chosen the epidemic has already spread
throughout the network.

As mentioned in Section 2.3, the localization process
is generally not instantaneous because it can require a
sequence of steps (e.g., updates of the estimated identity
of the source when more information is available or when
additional dynamic sensors are deployed). Let τ denote the
time at which a step in the localization process is taken: At
time τ a sensor u gives information in two possible ways:
If it became infected at tu ≤ τ , it reveals its infection time
tu; otherwise it informs about its susceptible state. In the
first (respectively, second) case we say that the sensor gives
a positive (resp., negative) observation.

u1 u2

Fig. 2: An unweighted network with two sensors u1 and u2.
Different shapes represent different equivalence classes, i.e.,
groups of nodes which are equivalent with respect to the
sensors (red). In this example there are 5 classes.

In offline source localization, all observations are posi-
tive. Instead, in online source localization both static and
dynamic sensors can give positive or negative observations
and, as we will see in Section 4, both positive and negative
observations contribute to the localization.

We represent each observation ω as a tuple ω , (u, tu)
where u ∈ V denotes the sensor and tu ∈ R is the infection
time of u if the observation is positive, tu = ∅ if the
observation is negative.

Table 1 summarizes the source-localization settings that
we consider and the relationships between the definitions of
static/dynamic sensors, online/offline source-localization
and positive/negative observations. Figure 1 illustrates our
high-level approach to source localization, highlighting the
different roles of static and dynamic sensors.

2.5 Localization Based on Relative Distances
Let v? = v. If ε = 0, T (v, u) = tu − t? = d(v, u); if
ε > 0 and if the path connecting v and u is unique, then
E[T (v, u)] = d(v, u).2 Hence if t? were known, T (v, u)
could be interpreted as a proxy for d(v, u), hence the in-
fection time tu could be directly used to localize the source.

However, as we assume that t? is unknown, we cannot
use the infection time of a single sensor to infer the identity
of the source. Instead, we use the differences between the in-
fection times of pairs of sensors. If the sensor set is U , we use
the differences {tu − tz}u,z∈U . Borrowing the terminology
used for the localization of transmitting devices, our work
is a TDOA (Time Difference Of Arrivals) approach to source
localization (in contrast with a TOA approach where the
Time Of Arrivals - and the starting time t? - are used) [31].

Consider now the case of a deterministic epidemic (ε =
0) and two possible sources v1 and v2. We can distinguish
which of the nodes is the source based on the set {tu −
tv}u,v∈U if and only if there exist u1, u2 ∈ U such that

d(u1, v1)− d(u1, v2) 6= d(u2, v1)− d(u2, v2).

Definition 4 (Distinguished nodes). Let U ⊆ V with |U| ≥ 2.
A node v1 is distinguished from a node v2 by U if and only if there
exist u1, u2 ∈ U such that

d(u1, v1)− d(u1, v2) 6= d(u2, v1)− d(u2, v2). (1)

2. If the path connecting v and u is not unique, then E[T (v, u)] ≤
d(v, u) and this bound becomes looser when there are many alternative
paths connecting u and v whose length is similar to d(u, v). In our
setting, it does not hold, in general, that E[T (v, u)] = d(v, u) and none
of our results relies on this identity. Instead, our results are based on
bounds for the infection times that hold for general networks (see, e.g.,
Proposition 2).
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Fig. 3: Approximate DMD as a fraction of the network size.
The approximation is computed with the (1 + o(1)) log(N)-
approximation algorithm of Chen et al. [9]. The networks
considered are presented in Section 7.2.

In this case we say that v1, v2 are distinguished by the pair u1, u2.

Definition 5 (Equivalent nodes). Let U ⊆ V with |U| ≥ 2. A
node v1 is said to be equivalent to a node v2 with respect to U ,
(which we write v1 ∼ v2) if and only if, for every u1, u2 ∈ U

d(u1, v1)− d(u1, v2) = d(u2, v1)− d(u2, v2). (2)

The relation ∼ of Definition 5 is reflexive, symmetric, and
transitive, hence it defines an equivalence relation. Therefore,
a set of sensors U partitions V in equivalence classes (an
example is given in Figure 2). We denote by [v]U the class of
v, i.e., the set of all nodes that are equivalent to v.

A set Z such that for every v1, v2 ∈ V , v1 and v2 are
distinguished by Z is called a Double Resolving Set (DRS)
of G. The problem of finding the minimum-size DRS of
a network is known as the Minimum Double Resolving Set
Problem [6]. Finding a minimum-size DRS is NP-hard and
a (1 + o(1)) log(N)-approximation algorithm was proposed
by Chen et al. [9].

In a setting where the starting time of the epidemic
is unknown, yet some of the node infection-times can be
used to localize the source, sensor placement is naturally
related to the DRS problem. In fact, if the transmission
delays are deterministic, choosing all nodes in a DRS as
sensors guarantees that the source can always be localized.
However, in addition to the hardness of finding a minimum-
size DRS, there are two other drawbacks of this choice. First,
choosing all the nodes in a minimum-size DRS as sensors is
often not a feasible solution because the number of sensors
required can be prohibitively large (see Figure 3). Second,
even if we could choose all the nodes in a minimum-size
DRS as sensors, we could guarantee that the source is
correctly localized only when the transmission delays are
deterministic.

For this reason, studying how to allocate a limited num-
ber of sensors in order to guarantee a good performance of
source localization is a crucial aspect of the source localiza-
tion problem [48].

The connection between source localization and the DRS
problem is at the basis of the approach to static sensor
placement proposed by Spinelli et al. [48]. In Section 7 we
choose the static sensors based on the latter work.

We now define the distance vector of a candidate source.

Definition 6 (Distance vector). Let U ⊆ V with |U| = K ≥ 2
be a set of sensors and let u1 ∈ U . For each candidate source v ∈
V the distance vector of v (with respect to u1) is dv,u1

∈ RK−1

with entries d(v, ui)− d(v, u1) for 2 ≤ i ≤ K .

The following lemma, equivalent to Lemma 3.1 in [9],
shows that the equality between distance vectors of different
candidate sources does not depend on the choice of the
reference sensor u1 of Definition 6.

Lemma 1. Let U ⊆ V with |U| = K ≥ 2, u1 ∈ U and let
v1, v2 ∈ V . Then, [v1]U = [v2]U if and only if dv1,u1 = dv2,u1 ,
for any choice of the reference observer u1.

3 S-OFF: OFFLINE LOCALIZATION WITH STATIC
SENSORS

In this section and in the following ones (Sections 4-6), we
present the four settings listed in Table 1. For the sake of
readability, the technical details are presented in Appen-
dices C-E.

We first describe the S-OFF algorithm with which we
perform offline source localization using only static sensors.
This is the setting most of the literature works with (see
Section 8). In contrast to other approaches we are more
interested in determining all nodes that are possible sources,
to make sure that we did not miss the actual source, rather
than in isolating only one node that would maximize the
likelihood of being the source. This approach paves the way
for the correctness results of D-OFF and D-ON in Sections 5
and 6.

We do not use any dynamic sensor, hence U = S and
|U| = K = Ks. As we localize the source offline, a set of
positive observations of the form O = {(u, tu) : u ∈ U} is
available at the beginning of the localization process.

Using O, we want to determine the possible sources, i.e.,
the set of candidate sources

B , {v ∈ V : P(O|v? = v) > 0}. (3)

B depends not only on v? but also on the particular realiza-
tion of the infection times and on the variance parameter ε.
In fact, when the variance parameter ε is larger, given a set
of observations, the uncertainty on the identity of the source
is higher because a larger set of nodes can initiate epidemics
that result in the observed infection times.
In Figure 4, we display the set B for a few simple examples.
Figure 4(a) illustrates that when the infection times are not
deterministic, it is in general more difficult to localize the
source, as we can expect, because the infection times can
substantially deviate from their mean value. More surpris-
ingly, the reverse can also occur, as shown in the example of
Figure 4(b): For specific network topologies and moderate
values of ε, non-deterministic infection delays can make
source-localization easier than in the deterministic case. This
is due to the maximum deviation of the infection delay Xuv

from wuv being proportional to wuv itself (see Section 2.2):
Observing a very extreme value of the difference tu − tv
between the infection time of two sensors u and v can
give information about the path along which the epidemic
spread, hence about the identity of v?.

Sections 3.1 and 3.2 explain how B can be computed in
practice.
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Fig. 4: Examples of sets of candidate sources B: The set B depends on the (unknown) source v?, on the variance parameter
ε, and on the realization of the random infection times. For each of the two setups (a) and (b), the first graph shows the
actual source and the network topology, and the following graphs show different realizations of the observations O for
different noise parameters ε. (a): For the weighted graph at the top, when ε is large (bottom), B can be larger than for ε = 0
(middle). (b): For the weighted graph at the top-left, when ε is positive but small (bottom-left), B can be smaller than when
ε = 0 (top-right); when ε is large (bottom-right) B can be larger than in the two previous cases.

3.1 Deterministic Epidemics
We explained in Section 2.5 that, when the starting time t?

of the epidemic is unknown, no single observation taken in
isolation is informative about the identity of the source. In-
stead, a set of two (or more) observations gives information
on the identity of the source. Therefore we start defining, for
two observations ω1, ω2, the event of observing ω1 and ω2

jointly.

Definition 7 (Event Aω1,ω2
). Let ω1 , (u1, tu1

), and ω2 ,
(u2, tu2

), ω1 6= ω2, be two observations. We define the event
Aω1,ω2

as Aω1,ω2
, {T (v?, u1)− T (v?, u2) = tu1

− tu2
}.

For every pair of observations ω1, ω2, ω1 6= ω2, we define

Bω1,ω2
, {v ∈ V : P(Aω1,ω2

|v? = v) > 0}. (4)

When epidemics are deterministic (ε = 0), B can be eas-
ily computed using the result of the following proposition
(see Appendix C for proof and complementary lemmas).

Proposition 1. Let O be a set of observations and let ε = 0.
Let ω1 , (u1, tu1

) ∈ O be a fixed observation, which we call the
reference observation. Then, the set of candidate sources B is

B =
⋂

ω∈O\{ω1}

Bω1,ω.

From Proposition 1, we can compute the candidate set B
with Algorithm 1.

Algorithm 1 S-OFF - deterministic epidemic

Require: O set of observations
B ← V
ω1 , (u1, tu1

)← Sample(O)
for (u, tu) ∈ O\{ω1} do

for v ∈ B do
if d(v, u)− d(v, u1) 6= tu − tu1

then
remove v from B

return B

The running time of Algorithm 1 isO(KsN). When v? =
v, since T (v, ui) − T (v, u1) = ti − t1 is deterministic and

equal to d(v, ui) − d(v, u1) for any u1, ui ∈ U , the set B of
candidate sources returned by Algorithm 1 is equal, because
of Lemma 1, to [v]U . Hence, in the inner for of Algorithm 1
it would be enough to loop over a set of representatives v of
the equivalence classes in B. However, for consistency with
the algorithms presented in the following sections, we keep
the version of the algorithm given in Algorithm 1, where the
loop is over all v ∈ B.

3.2 Non-deterministic Epidemics

When the infection delays are not deterministic (0 < ε < 1),
verifying analytically if P(O|v? = v) > 0 is computa-
tionally intense for two reasons: the interdependence of
the events {Aωi,ωj}ωi 6=ωj and, in meshed networks, the
multiplicity of possible propagation paths. To overcome
these difficulties, we compute a superset B̃ ⊇ B of the
set of candidate sources using the result of the following
proposition.

Proposition 2. Let 0 < ε < 1, let ω1 , (u1, tu1
), ω2 ,

(u2, tu2
) ∈ O, ω1 6= ω2, and let v ∈ B. Then

|d(v, u1)−d(v, u2)− tu1 + tu2 | ≤ ε(d(v, u1)+d(v, u2)). (5)

Based on Proposition 2, we define

B̃ ,
{
v ∈ V : |d(v, u1)− d(v, u2)− tu1

+ tu2
|

≤ ε(d(v, u1) + d(v, u2))

∀(u1, tu1
), (u2, tu2

) ∈ O
}
. (6)

Combining (6) and Proposition 2 we have that v? ∈ B.

Remark 1. The running time of computing B̃ is O(K2
sN). In

fact, in contrast to Algorithm 1, we need to loop over all pairs
(ω1, ω2) ∈ O×O with ω1 6= ω2. If we fix a reference observation
ω1 as in Proposition 1 and, for a candidate source v, we verify (5)
only for the pairs (ω1, ωi), ωi ∈ O, we would obtain a larger set
of candidate sources that might also includes some nodes v such
that P(O|v? = v) = 0.
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In fact, given v ∈ V and ω1 , (u1, t1), ωi , (ui, ti), ωj ,
(uj , tj) ∈ O\{ω1}, ωi 6= ωj , it is possible that{
|d(u1, v)− d(ui, v)− t1 + ti| ≤ ε(d(u1, v) + d(ui, v))

|d(u1, v)− d(uj , v)− t1 + tj | ≤ ε(d(u1, v) + d(uj , v))

and yet |d(ui, v)− d(uj , v)− ti + tj | > ε(d(u1, v) + d(uj , v)),
whence v /∈ B (see Appendix F for an example).

Remark 2. The set B̃ defined in (6) is, in general, strictly
larger than B. When computing B̃ we consider only two obser-
vations at a time; however, if ω1, ω2 and ω3 are three distinct
observations, it is possible that P(v? = v|ωi, ωj) > 0 for
every i, j ∈ {1, 2, 3} but P(v? = v|ω1, ω2, ω3) = 0 (similar
situations can arise for larger sets of observations). When epi-
demics are non-deterministic, verifying if P(v? = v|O) > 0
for a set O of arbitrary cardinality would be computationally
intractable, roughly exponential in the cardinality of the set. Thus,
we approximate B with B̃. Section 7 demonstrates empirically that
the size of B̃ decreases very fast over the iterations of the algorithm,
indicating that our approximation is not too loose.

We conclude this section with a proposition stating that,
for low ε and v? = v, B̃ ⊆ [v]U . This guarantees that when ε
is sufficiently small, identifying the source is at least as easy
as in the deterministic case.

Proposition 3. Let U be the sensor set. Let

∆(U) , max
u∈U,v∈V

d(v, u)

and

δ(U) , min
[v1]U 6=[v2]U

max
u1,u2∈U

|d(v1, u1)− d(v1, u2)−

d(v2, u1) + d(v2, u2)|. (7)

If ε < ε0 , δ(U)/4∆(U) and v? = v, then B̃ ⊆ [v]U .

If additional conditions on the edge weights or on the
network topology are given, more refined bounds ε0 in
Proposition 3 can be derived. For example, in a tree with
weights wuv > C ∈ R+, the uniqueness of the path between
two any nodes yields that δ(U) ≥ 2C for every U . Hence, in
this case, the statement holds for ε < C/2∆(U).

4 S-ON: ONLINE LOCALIZATION WITH STATIC
SENSORS

In online localization with static sensors (S-ON), the local-
ization of the source can be seen as a process in which we
iteratively refine the set B of candidate sources while we
gather more and more information about the epidemic.

Given a static sensor set U , the final outcome of S-
ON and S-OFF is identical in terms of the nodes that are
identified as candidate sources. The difference is the ability
of S-ON to restrict the search for the source to a very small
subset of nodes when the epidemic has not yet propagated
throughout the network.

In contrast to Section 3, where the observation set O
contained all the observations available at the end of the
epidemic, which could therefore only be positive, here O
changes while the epidemic progresses. From a technical
point of view, the difference between S-ON and S-OFF is

that in S-ON some observations are negative. Hence the
results of Proposition 1 (respectively, 2) must be refined to
include in the computation of B (resp., B̃) the information
given by negative observations. We start the localization
process as soon as a sensor gets infected, i.e., at time
τ? , minu∈U tu. We denote by Ot the observation set at
time t. At every time t ≥ τ?, Ot is the union of a set of
positive observations and of a set of negative observations
(see Section 2.4). We denote by O+

t (respectively, O−t ) the
set of positive (respectively, negative) observations at time
t. This means that, for every t ≥ τ? we have

O+
t = {(u, tu) : u ∈ U , tu ≤ t},

O−t = {(u, ∅) : u ∈ U , tu > t},
and

Ot = O+
t ∪ O−t .

Definition 8 (Event Atω1,ω2
). Let t ∈ R and let ω1 , (u, tu) ∈

O+
t , ω2 , (w, ∅) ∈ O−t be two observations, one positive and one

negative. We define the event Atω1,ω2
as Atω1,ω2

, {T (v?, u) −
T (v?, w) < tu − t}.

Note that, if ω1 6= ω2 are two negative observations in
O−t , for every possible source there exists a starting time
t? ∈ R such that both ω1 and ω2 hold at time t (and this
remark generalizes to larger sets of negative observations).
For this reason, sets of only negative observations are not
useful to localize the source.

If only negative observations are available, we do not
even know if there is an ongoing epidemic. However, com-
bining negative observations and positive observations we
can design an algorithm, S-ON, which, at any time t during
the localization process, computes the smallest possible set
of candidate sources: Given the information contained in
Ot, the set of candidates Bt computed by S-ON contains all
and only the nodes that have a positive probability of being
the source.

More formally, we define the candidate sources set at
time t as

Bt , {v ∈ V : P(Ot|v? = v) > 0}. (8)

For every pair of positive observations ω1, ω2, ω1 6= ω2, let
Bω1,ω2 be defined as in (4). At time t, for every positive
observation ω1 and negative observation ω2 we also define

Bω1,ω2,t , {v ∈ V : P(Atω1,ω2
|v? = v) > 0}.

Then Proposition 1 can be extended as follows (see Ap-
pendix D for proof and complementary lemmas).

Proposition 4. Let t ∈ R, Ot be the set of observations at time
t and ε = 0. Let ω1 , (u1, tu1

) ∈ O+
τ? be the first positive

observation that we call the reference observation. Then, the set of
candidate sources Bt is

Bt =

( ⋂
ω∈O+

t \{ω1}

Bω1,ω

)⋂( ⋂
ω∈O−t

Bω1,ω,t

)
.

Moreover, if t, t′ ∈ R, t′ > t, Bt′ ⊆ Bt.
Call τ? = t1 < t2 < .. < tF = τF the times at which the

observation set changes. Denoting by tu the infection time
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of sensor u we have τF , maxu∈U tu. Let us also denote
Oi , Oti .

Using the result of Proposition 4 we compute and update
the set of candidate sources with Algorithm S-ON (see
Algorithm 2). S-ON updates the set of candidate sources
B at every time ti, 1 ≤ i ≤ F , producing a set that we call
Bi.

Algorithm 2 S-ON - deterministic epidemic

Require: Observation sets {O+
i }Fi=1, {O−i }Fi=1

B0 ← V
ω1 , (u1, tu1

)← Sample(O+
1 )

O+
0 ← {ω1}

i← 1
while i ≤ F and |Bi−1| > 1 do

i← i+ 1
Bi ← Bi−1

for (u, tu) ∈ O+
i \O+

i−1 do
for v ∈ Bi do

if d(u, v)− d(u1, v) 6= tu − tu1
then

remove v from Bi
for (u, ∅) ∈ O−i do

for v ∈ Bi do
if d(u, v)− d(u1, v) < ti − tu1

then
remove v from Bi

return Bi

At every time step ti S-ON produces the smallest possi-
ble set of candidate sources that always contain the source
v?. More formally, we have the following.

Proposition 5. For every 1 ≤ i ≤ F there is no algorithm A
different from S-ON which, given Oi, produces a set of candidate
sources Bi(A) ( Bi and P(v? ∈ Bi(A)) = 1.

Proof. By Proposition 4, the set Bi produced by S-ON is
equal to Bti for all 1 ≤ i ≤ F . Hence, by (8), for every
v ∈ Bi, P(v? = v|Oi) > 0. If an algorithm A pro-
duces Bi(A) ( Bi there exists v ∈ Bi\Bi(A) such that
P(v? = v|Oi) > 0. Therefore P(v? ∈ Bi(A)) < 1.

Like for Algorithm 1, Algorithm 2 runs in time O(KsN).
The extension of S-ON to ε > 0 follows similarly to

Section 3.2 and is presented in Appendix D.

5 D-OFF: OFFLINE LOCALIZATION WITH STATIC
AND DYNAMIC SENSORS

We now study D-OFF: offline source localization with static
and dynamic sensors. After computing the set of candi-
date sources B by using the observations gathered by the
static sensors, we use dynamic sensors to refine B, i.e., to
remove as many nodes as possible from B. Hence our D-
OFF algorithm is, in its first part, identical to Algorithm 1
for S-OFF whereas, in its second part, it consists of an
iterative refinement of B based on the observations obtained
through the newly-deployed dynamic sensors. If we obtain
a candidate sources set B such that |B| = 1 before deploying
the entire budget Kd, we stop deploying dynamic sensors.

Clearly, not all possible dynamic sensors are equally
informative about the identity of the source. Our strategy
is to iteratively choose where to place the dynamic sensors

in order to maximize the progress in the localization of
the source, which we refer to as GAIN. In Section 5.2 we
compare three possible notions of GAIN.

In Algorithm 3 we present the pseudo-code for de-
terministic epidemics. The extension to non-deterministic
epidemics follows directly from the results of Section 3.2.

Algorithm 3 D-OFF - deterministic epidemic

Require: O set of observations, Kd budget for dynamic
sensors
B ← V
ω1 , (u1, t1)← Sample(O)
for (u, t) ∈ O\ω1 do

for v ∈ B do
if d(u, v)− d(u1, v) 6= t− t1 then

remove v from B
B0 ← B
i← 0
while |Bi| > 1 and i < Kd do

i← i+ 1
di ← argmaxd∈V \UGAINU (d)
U ← U ∪ {di}
tdi ← infection time of di
Bi ← Bi−1

for v ∈ Bi do
if d(di, v)− d(u1, v) 6= tdi − t1 then

remove v from Bi
return Bi

Let χGAIN denote the time required to compute GAIN.
The running time of Algorithm 3 is O(N(Ks + χGAINKd)).

5.1 Correctness
If we could observe the infection time of all nodes in V ,
we could identify the source trivially by looking at the
node with the smallest infection time. We now prove that
when the budget for dynamic sensors is unrestricted, Algo-
rithm 3 converges to the set containing only the source v?

independently of the variance parameter ε. In other words,
Algorithm 3 never misses the source.

This result is tight in the budget Ks + Kd of dynamic
sensors (for some network topologies the number of sensors
needed to localize the source can go up toN−1 [9].) Proving
tighter results for particular classes of network topologies is
an interesting direction for future work.

The correctness of Algorithm 3 does not depend on the
definition of GAIN: As we will see in Section 7, GAIN has an
effect on the number of sensors required in Algorithm 3 but
not on its correctness.

Theorem 1. Let ε ∈ [0, 1) and Xuv be a random variable with
support [(1−ε)wuv, (1+ε)wuv] for every uv ∈ E. Moreover let
the budget for dynamic sensors be unrestricted (Ks +Kd = N ).
Algorithm 3 always returns {v?}.
Proof. We prove the statement for ε > 0, the proof for ε = 0
can be derived in a similar way. First, note that nodes are
removed from the set of candidate sources if and only if
they do not satisfy, for some u1, u2, the necessary conditions
expressed by (5). Hence, due to Proposition 2, the source v?

is never removed from the set of candidates. Next, we want
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to prove that, for every node w 6= v?, there exist z, y ∈ V
such that, when the infection times of z, y are observed,
w is removed from the set of candidate sources. Suppose
that v? = v and that its infection time tv is observed. Let
w 6= v be another node for which the infection time tw is
also observed. As v? = v, we have tw > tv . Note that (5)
cannot hold for w with u1 = w and u2 = v: Indeed, we
would have 0 < tw − tv ≤ (ε − 1)d(v, w) < 0, which
gives a contradiction. Let i′ ∈ N+ such that, when i = i′

in Algorithm 3, both v ∈ U and w ∈ U . Then, w /∈ Bi′ .

5.2 Gain Functions
We consider three possible GAIN functions to be used for
the selection of the dynamic sensors.
SIZE-GAINSIZE-GAINSIZE-GAINSIZE-GAINSIZE-GAINSIZE-GAINSIZE-GAINSIZE-GAINSIZE-GAINSIZE-GAINSIZE-GAINSIZE-GAINSIZE-GAINSIZE-GAINSIZE-GAINSIZE-GAINSIZE-GAIN. Perhaps the most natural GAIN function is the
one that computes the expected reduction in the number
of candidate sources. Let BU denote the set of candidate
sources computed based on the information given by the
sensors in U and BcU ⊆ BU the set of candidate sources
after adding c ∈ V \U as a dynamic sensor. We define the
SIZE-GAIN of choosing c as a dynamic sensor as gSIZE

U (c) ,
E[|BU | − |BcU |]. Hence, maximizing gSIZE

U is equivalent to
minimizing the size of B(c)

U and maximizing gSIZE
U gives, at

any step, a sensor choice that is locally optimal.
For deterministic epidemics, gSIZE

U (c) can be easily com-
puted by summing over the set T cU of the possible infection
times for c (see Definition 9 below). For ε ∈ (0, 1) we
propose an approximation of gSIZE

U (c) in Appendix G.

Definition 9 (Possible infection times). Let U be a set of sen-
sors, c ∈ V \U , OU , {(u, tu), u ∈ U} and fix (u1, t1) ∈ OU
arbitrarily. Let BU be the set of candidate sources after observing
the infection times of the nodes in U , i.e., BU = {v ∈ V : P(v =
v?|OU ) > 0}. Then

T cU , {h ∈ R : h = d(v, c)− d(v, u1)− t1
for some v ∈ BU} (9)

is the set of possible infection times of c.

Note that when ε = 0, the cardinality of T cU is always
finite and equal to the number of equivalence classes in
which U ∪ {c} partitions U (see Definition 5). With tech-
niques similar to those of the proof of Proposition 1, it is easy
to prove that Definition 9 does not depend on the choice of
(u1, t1) ∈ OU . The next proposition shows how gSIZE

U can
be computed in practice.

Proposition 6. Let U be a set of sensors, c ∈ V \U , OU ,BU
as in Definition 9 and fix (u1, t1) ∈ OU arbitrarily. Call tc the
infection time of c and define

bU (c, h) , {v ∈ BU : P(v = v?|tc = h) > 0}
= {v ∈ BU : h = d(v, c)− d(v, u1) + t1}.

Then,

gSIZE
U (c) =

∑
h∈Tc

P(v? ∈ bU (c, h)) · (|BU | − |bU (c, h)|). (10)

Proof. Follows from the definition of gSIZE
U , Tc and bU (·, ·).

DRS-GAINDRS-GAINDRS-GAINDRS-GAINDRS-GAINDRS-GAINDRS-GAINDRS-GAINDRS-GAINDRS-GAINDRS-GAINDRS-GAINDRS-GAINDRS-GAINDRS-GAINDRS-GAINDRS-GAIN. The definition of this second GAIN function
is inspired by the notion of DRS (see Section 2.5). When

epidemics spread deterministically, observing the infection
times of a DRS of the candidate sources set B removes
all ambiguities about the source identity. With DRS-GAIN,
we iteratively choose the sensor that, added to the current
sensor set U , gives the most progress in forming a DRS of B.

Let c ∈ V \U and T cU as in Definition 9. Then, the DRS-
GAIN of adding c to U is

gDRS
U (c) , |T cU |. (11)

Since there is no direct extension of gDRS
U to the non-

deterministic case, we use the above definition of gDRS
U

independently of the variance parameter ε.
RC-GAINRC-GAINRC-GAINRC-GAINRC-GAINRC-GAINRC-GAINRC-GAINRC-GAINRC-GAINRC-GAINRC-GAINRC-GAINRC-GAINRC-GAINRC-GAINRC-GAIN. RC-GAIN (random candidate GAIN) assigns gain
1 to all candidates sources and gain 0 to all nodes that are
not candidate sources, i.e., when the sensor set is U and BU
is the set of candidate sources, for c ∈ V \U we set gRC

U (c) =
1 if c ∈ BU , gRC

U (c) = 0 otherwise. In other words, we
randomly choose the dynamic sensors among the candidate
sources. Note that if the infection time of at least one node in
BU is already observed, adding a sensor in any other node in
BU implies |BU∪{c}| < |BU |, independently of the variance
parameter ε.3 Hence, this very simple GAIN ensures that the
localization of the source makes progress whenever a new
dynamic sensor is chosen.

For any of the proposed GAIN functions, the computa-
tion time χGAIN is O(|B|) ⊆ O(N).

As it is not a priori clear which version of GAIN leads
to a better performance of Algorithm 3, in Section 7 we
experiment with all of them.

6 D-ON: ONLINE LOCALIZATION WITH STATIC
AND DYNAMIC SENSORS

We now turn to the online version of D-OFF: D-ON.
As in Section 4, we set the time τ? at which the localiza-

tion starts to the earliest time at which a static sensor gets in-
fected, i.e., τ? = mins∈S ts. Starting from τ?, we run online
source localization as per S-ON and, in addition, we deploy
dynamic sensors one after the other to refine the localization
of the source till the budget Kd for dynamic sensors is
exhausted. Specifically, a new dynamic sensor is deployed at
times τ?+jθ, j ∈ {1, ..,Kd}, where θ ∈ R+ is fixed. We call θ
the deployment delay. The choice of θ, which will be discussed
in Section 7, requires the evaluation of the trade-off between
timely localization and resource-savings: With a large θ we
are likely to have less negative observations, hence to reach
the localization with few dynamic sensors, but a long time
after the beginning of the epidemic. Viceversa, with a small
θ, we are likely to reach the localization earlier but by
deploying more dynamic sensors.

At time t, the candidate set B, the sensors set U , and the
observation set O = O+ ∪ O− are updated in two cases:

I) if t = τ?+jθ, j ∈ N, i.e., at time t a new dynamic sensor
is added;

II) if t = tu > τ?, i.e., t is the infection time of a static
sensor or of a node that was chosen as dynamic sensor
before time t but was not infected before time t.

3. This can be proven with an argument analogous to the one used in
the proof of Theorem 1: If the infection time of two nodes is observed,
only one of the two (the one with smaller infection time) can belong to
the set of candidate sources B (or, for ε ∈ (0, 1), to the superset B̃).
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For both cases, technical details are given in Appendix E.
Note that D-ON includes D-OFF as a special case. If we run
D-ON starting at τ? > maxv∈V tv , the initial observations
set is O1 = {(s, ts) : s ∈ S}. Moreover, throughout the
process all observations are positive and we recover D-OFF.

6.1 Correctness

The correctness result of Theorem 1 holds also for D-ON.

Theorem 2. Let ε ∈ [0, 1) and Xuv be a random variable with
support [(1−ε)wuv, (1+ε)wuv] for every uv ∈ E. Moreover let
the budget for dynamic sensors be unrestricted (Ks +Kd = N ).
D-ON always returns {v?}.
Proof. The proof is almost identical to that of Theorem 1, the
only necessary change is in the last step. With the notations
of the proof of Theorem 1, at the minimum time t such that
(v, tv), (w, tw) ∈ O+

t , it is guaranteed that w /∈ B.

Finally, online localization needs, on average, more re-
sources to reach convergence to the source with respect
to offline localization. This is due to the fact that, when
running offline localization, every deployed sensor can di-
rectly reveal its infection time (i.e., there are no negative
observations). As in the choice of the deployment delay θ,
in order to choose between D-ON and D-OFF, the trade-off
between resource-savings and timeliness must be evaluated.

For the extension of the gain functions of Section 5.2 to
the online setting, i.e., to the case in which we can have
negative observations, we refer the reader to Appendix E.1.

7 EXPERIMENTS

7.1 Experimental Setup

Transmission delays. In our experiments, the transmission
delays are uniformly distributed (except in Section 7.8). The
uniform distribution is, among the unimodal distributions
on a bounded support, the one that maximizes the vari-
ance [23], which makes it a very challenging setting for
source localization.

Static sensors. We choose the Ks static sensors with one of
the following two rules:
� KDRS (K-nodes approximation of a Double Resolv-

ing Set): This rule computes the set of Ks sensors
that maximize the number of equivalence classes (see
Section 2.5). KDRS was shown to outperform several
common heuristics for sensor placement in the case of
deterministic or low-variance epidemics [48].
� KMED (K-Medians): This rule computes the optimal

placement ofKs sensors for the closely-related problem
of maximizing the detectability of a flow [4]. The KMED
placement is the set of Ks nodes S such that

S = argmin|S|=Ks

∑
v∈V

(min
s∈S

d(v, s)).

Determining the K-Medians of a network is NP-
hard [28], hence we approximate KMED with a greedy
heuristic. Contrary to KDRS sensors, which are gen-
erally placed in the periphery of the network, KMED
sensors are more uniformly spread [48].

Spinelli et al. [48] recently showed that the optimal place-
ment of static sensors depends on the variance parameter
ε and that, given a value of ε, a suitable sensor placement
can be found interpolating between KDRS and KMED. For
this reason, we limit ourselves to considering these two
alternative static-sensor placements, and we evaluate their
respective benefits for the different localization settings.

Default parameters. If it is not differently specified, we set
the budget for static sensors to K/N = 2%, the gain function
for the choice of the dynamic sensors to SIZEGAIN and the
deployment delay to θ = 0.5. The reasons for these choices
will be clear in the following discussion.

All results are averaged over at least 100 simulations in
which the source is chosen uniformly at random.

For readability, throughout this section the set of candi-
date sources is always denoted by B even when ε > 0 and
we are actually computing the approximate set B̃.

7.2 Network Topologies
We experiment with both synthetic and real-world net-
works; the network properties and statistics are reported in
Table 2.

Synthetic networks. We generated synthetic networks from
the following classes: Erdös-Rényi networks (ER) [15],
Barabási-Albert networks (BA) [3], random geometric net-
works on the sphere (RGG) [39], regular trees of degree
3 (RT) and trees with power-law distributed node degree
(PLT). For each network class, 10 connected instances of size
250 were generated.

Real-world networks. Facebook Egonets (FB). This dataset
is a subset of the Facebook network, consisting of 3732
nodes. It was obtained from the union of 10 Facebook egonet
networks [37], after removing the ego nodes4 and taking the
largest connected component.
World Airline Network (WAN). This network is obtained from
a publicly available dataset [38] that provides the aircraft
type used for every daily connection between over three
thousands airports. Using these data we can derive the
number of seats available on each route daily. We preprocess
the network by removing the connections on which fewer
than 20 seats per day are available and by assigning to
each connection uv the average between the number of seats
available from u to v and from v to u. Also, we iteratively
remove leaf nodes (for which we believe connections are not
well represented in the dataset), and we obtain a network of
2258 nodes.

Edge weights. All our results are valid for arbitrary edge
weights wuv ∈ R+. For our experiments we consider integer
edge weights for several reasons. When ε = 0, integer
weights actually make the problem more challenging be-
cause it is more difficult to distinguish among nodes based
on their distances to the sensors; when ε > 0 instead, taking
integer weights does not affect the difficulty of the problem
because graph distances cannot anyway be precisely recov-
ered from the observations. Moreover, in practice, distances
are always known up to some degree of precision and, up to

4. The ego nodes were removed in order to ensure that the sampling
of contacts across the nodes in the network is uniform.
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ER BA RGG RT PLT FB U-WAN WAN
(p=0.016) (m=2) (R=0.3)

|V | 250 250 250 250 250 3732 2258 2258
|E| 511 496 696 249 249 82305 17695 17695
avg degree 4.09 3.96 5.6 1.99 1.99 44.1 15.67 15.67
avg shortest path 4.09 3.47 9.68 7.45 37.8 5.34 6.94 3.56
avg clustering 0.02 0.06 0.56 0 0 0.54 0.65 0.65

TABLE 2: Statistics for the networks used in the experiments.

a multiplication factor, edge-weights can always be assumed
to be integer.

All synthetic networks and the FB network are given
unit edge weights as there is not a straightforward method
for deriving realistic edge weights for these networks. For
WAN the definition of the edge weights is inspired by a
work by Colizza et al [11]. An edge uv is weighted with an
approximation of the expected time between the infection of
city u and the arrival of an infected individual at city v (see
Appendix H for details). This gives a very skewed weight
distribution. Our experiments show that the variability of
the edge weights brings an additional challenge to source
localization. In order to evaluate the impact of non-uniform
weights, we also run our experiments on an unweighted
version (U-WAN) of this network (in which all weights are
set to 1).

7.3 Choice of the Static Sensors

When we adopt a static approach, the only degree of
freedom we have is the choice of the static sensors. It is
known that this choice has an impact on the performance
of source localization [44], [48], [53] and that the optimal
choice depends on the variance parameter [48]. Figure 5(a)
compares the performance of KDRS and KMED sensors in
terms of the final size of the set of candidate sources B.
As in [48], we observe that for moderate variance, KDRS
sensors are better than KMED sensors; for larger ε we have
the inverse result. In fact, for large ε, the more uniform
placement achieved by KMED can better deal with the
noisy observations. Instead KDRS enforces the possibility of
distinguishing among possible sources in the deterministic
case.

We compare KDRS and KMED also for the case where
we use dynamic sensors, and we do not restrict the budget
for dynamic sensors (Kd = N −Ks). As the final set of can-
didate sources has always cardinality 1, we look instead at
the total number of sensors |U| needed to localize the source.
We could think that when we use dynamic sensors and place
only a few static sensors (Ks = 0.02 · N ), the choice of the
static sensors has a much smaller effect. Instead, we observe
the same result of the static approach. Figures 5(b) and 5(c)
show that for both online and offline localization, KDRS
emerges as the best choice for static sensors when ε is small
but it is outperformed by KMED for larger values of ε.

7.4 Online vs Offline Localization

Static approach. When taking an online approach (S-ON),
the computation of B occurs while the epidemic spreads,
hence we can localize the source when many nodes are
still not infected. Figure 6(a) (respectively, 6(b)) show the

fraction µ of infected nodes when B contains fewer than 5%
of the nodes with KDRS (resp., KMED) sensors. With KDRS
sensors, µ is smaller than 60% for all synthetic topologies
and smaller than 35% for the real-world networks. As we
could expect, with KMED sensors, µ is even smaller (less
than 20%), giving an argument for the choice of KMED
sensors rather than KDRS sensors also for deterministic
epidemics. However, for the tree topologies, the final size
of B can heavily deteriorate when using KMED sensors: For
RT, for example, the probability of obtaining |B| < 5% ·N is
lower than 0.05.

Dynamic approach. Also D-ON dramatically reduces, with
respect to D-OFF, the fraction of infected nodes at the time
when our algorithm terminates. However, in this case, there
is a trade-off between µ and the cost in number of sensors
|U| used for the localization. Figure 5(d) compares the
average |U| for online and offline localization. We see that,
independently of the variance parameter and of the network
topology, |U| is smaller for offline localization than for
online localization. In fact, in D-OFF, every sensor is already
infected by the time it is deployed, hence, when localizing
the source offline, we have access to more information.

7.5 Static vs Dynamic
Cost of source localization. As recalled in Section 2, with a
static sensor-placement (i.e, Kd = 0), the minimum number
of sensors required to localize the source when the transmis-
sion delays are deterministic is the DMD of the network [9].
Hence, DMD is a natural benchmark for the cost in terms of
number of sensors |U| of our dynamic approach.

We focus on the deterministic case (ε = 0) with no con-
straints on the budget for dynamic sensors (Kd = N −Ks).
We run D-ON and we compare |U|/N with the (approximate)
DMD. The results are depicted in Figure 6(c). For all topolo-
gies, |U|/N is much smaller than DMD/N . The improvement
is particularly significant for trees whose DMD is very large
(equal to the number of leaves [9]) but where the topology
makes it easy for our algorithm to rapidly narrow the search
for the source to a small set of candidates. Moreover, we note
that |U|/N is smaller for the real-world topologies than for
the synthetic ones and, across all topologies, never exceeds
an average of 0.03 ·N , whereas DMD goes up to 0.7 ·N .

Performance with limited budget. We compare the success
rate in localizing the source (i.e., the probability P(|B| = 1))
of a purely-static approach with that of a dynamic approach
in both its online and offline variants. We fix a total budget
of K/N = 5% sensors. For the purely-static approach, we
have Ks = K and Kd = 0; for the dynamic approach
we have Ks = 0.02 · N and Kd = K − Ks = 0.03 · N .
For this experiment, we set ε = 0.2 and we choose KMED
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static sensors. Figure 9(a) shows that a dynamic approach
outperforms a static approach on all topologies. Moreover,
in the dynamic case, in line with the results displayed in
Figure 5(d), D-OFF achieves a better success rate than D-ON.
The only exception is represented by the WAN network:
This is probably due to the high variability of the edge
weights, which makes it such that sometimes choosing sen-
sors while the epidemic is still local avoids dealing with very
noisy transmission times. However, even for this network,
D-ON outperforms D-OFF only at an intermediate step in
the localization process (i.e., if we stop when K/N = 0.05):
Looking at Figure 5(d), we see that also for WAN, the total
number of sensors needed to localize the source is smaller
with D-OFF.

7.6 Source Localization with Dynamic Sensors

Different GAIN functions. We study the effect of GAIN
on the performance of our dynamic algorithm. For each
variant, i.e., SIZE-GAIN, DRS-GAIN, RC-GAIN, we report
the relative cost in terms of number of sensors |U|/N when
Ks + Kd = N . We experiment with both a deterministic
setting (ε = 0) with KDRS static sensors and a non-
deterministic setting (ε = 0.2) with KMED static sensors
(see Section 7.3). The results are depicted in Figures 7(a)
and 7(b). We observe that for the real-world networks
and ε = 0, all proposed GAIN functions have similar
performances. For FB and U-WAN, this is true also when
ε > 0. These are the cases in which source localization is
achieved with the smallest number of sensors. We conclude
that, when source localization is less challenging, GAIN
does not have a strong effect. In all other cases, SIZE-GAIN
consistently gives the best performance. The improvement,
with respect to DRS-GAIN, is most noticeable when ε > 0;
indeed, in this setting, and in particular for online localiza-
tion, DRS-GAIN is outperformed by the simple RC-GAIN.
We attribute this to the fact that, when there is high variance
in the transmission delays, splitting the candidate sources
into subsets of nodes that have different average infection
times (see the definition of DRS-GAIN in Eq. (11)), does
not guarantee that we are able to distinguish them based
on the observed infection times [48]. Instead, as mentioned
in Section 5, RC-GAIN enforces a continuous progress in
shrinking the set of candidate sources.

Deployment delay. When applying D-ON, an important
parameter is the deployment delay θ, i.e., the time between
two consecutive placements of a dynamic sensor. On the
one hand, the larger θ is, the smaller we expect the cost in
terms of number of sensors |U| to be; on the other hand, the
smaller θ is, the less time we expect to need for localizing
the source, hence the fewer individuals are infected before
we do so. To choose θ, we must also account for the scale
of edge weights because, when transmission delays have
larger (respectively, smaller) mean, the optimal θ is also
likely to be larger (resp., smaller). Here, for simplicity of
exposition, we ignore this aspect and experiment only with
networks in which all weights are equal to 1. We fix ε = 0.2.
We vary θ and look at the number |D| of dynamic sensors
used to localize the source and at the fraction µ of infected
individuals at the time of localization. Figures 8(a) and 8(b)

display the results for KDRS and KMED sensors, respec-
tively. In both cases, we observe a trade-off between |D| and
µ. When using KDRS sensors, |D| is smaller, especially for
small θ. However, in line with the results of Figure 6(a),
KMED sensors guarantee a smaller fraction of infected µ.

Budget allocation Given a total budget K , how much of
it should we allocate for static and how much for dynamic
sensors? We choose KMED static sensors, set ε = 0.2 and
run D-ON. We take a total budget K/N = 5% and we look
at the impact of different values of Ks and Kd = K − Ks

on the total number of sensors needed to localize the source
(which can be smaller than K if |B| = 1 is reached before
Kd is exhaust). We also evaluate the cardinality of the final
set B and the fraction of infected nodes µ at the final stage
of the algorithm. The results are displayed in Figure 9(b).
We observe that both |U| and |B| increase with Ks, which
indicates that a small budget for static sensors guarantees
both a lower cost in terms of number of sensors |U| and
a higher precision. However µ is minimized when we use
around half of our budget for static sensors. In fact, when
Ks is small, we need to deploy many dynamic sensors in
order to localize the source; instead, when Ks is large and
Kd is small, after placing a few dynamic sensors, we have
to wait for the static sensors to get infected in order to use
this information to refine B.

Size of |B| at successive iterations. We evaluate the running
time of D-ON and D-OFF. The running time of each iteration
of our algorithms is linear in |B|. Hence to estimate the
running time of source localization we look, for the real-
world topologies, at how many iterations are needed to
localize the source and at how |B| decreases along the
successive iterations of the algorithm. The running time of
D-OFF is smaller than that of D-ON, so we focus on this
last case. As we can see in Figure 6(c), the approximate
DMD is 303 (around 0.08 · N ) for the FB network, 751
(around 0.3 · N ) for WAN and 484 for U-WAN (around
0.2 · N ). Hence, source localization is more challenging on
the WAN network. This is confirmed by the results shown
in Figure 7(c). In the FB network, with variance parameter
ε = 0.2, the source is localized with in average 15 iterations
of the localization algorithm. For the U-WAN network, the
average number of iterations needed is larger (around 37).
We attribute this effect to the presence of bottleneck edges,
i.e., edges that appear on many different shortest paths and
make it difficult to estimate the source based on its distance
to the sensors. This effect becomes even stronger with the
weighted version of the WAN network (where the number
of iterations needed is in average 98) and it is reflected in
the average total number of sensors U used for localization:
0.021 · N for FB, 0.022 · N for U-WAN and 0.042 · N for
WAN (see Figures 7(a) and 7(b)). This result highlights that
the high variability among the edge-weights makes source
localization substantially more difficult, especially for ε > 0
(see Figures 7(a) and 7(b) for a comparison of the cost
in terms of number of sensors |U| between deterministic
and non-deterministic delays). Also the cardinality of |B|
decreases more slowly for the weighted network WAN than
for FB and U-WAN. However, for all three topologies, |B|
decreases faster than linearly (note the logarithmic scale in
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Figure 7(c)), confirming the feasibility of our approach to
source localization for a variety of real-world networks.

7.7 Comparison with existing methods
We compare our algorithms for source localization with the
two following existing methods:
� GAU: this method estimates the source through

maximum-likelihood assuming Gaussian transmission
delays. It was initially proposed by Pinto et al. [40] un-
der the assumption that each sensor reveals its infection
time and from which node it received the infection. It
was then generalized to the setting where the latter
information is not available [48]. In this last work,
it was also shown that the method can be applied
with different infection-delays distributions (such as
truncated-Gaussian and uniform). Here, we consider
the improved estimator used in Spinelli et al. [48].
� EIF: this method estimates the source by computing, for

every candidate source v, an infection tree Tv rooted at
v that is compatible with the observed infection times.
Every spreading tree Tv is given a cost that quantifies
how much the observed infection times deviate from
the expected infection times when the infection spreads
along Tv . The estimated source is the root v of the
spreading tree Tv with minimal cost. The method was

proposed by Zhu et al. [55] and it is independent from
the transmission-delay distribution, only the average
delays are needed for the estimation.

We take K = 5%N . For GAU, EIF and S-ON/-OFF, all
sensors are static; for D-ON Ks = 2%N sensors are static
and Kd = K − Ks = 3%N sensors are dynamic. We
look at P(B = {s∗}), i.e., the probability that the source
is correctly identified without ties, for ε = 0 (Figure 10(a))
and for ε = 0.2 (Figure 10(b)). For ε = 0, the performance
of GAU and S-ON/-OFF is identical: They both identify the
correct equivalence class of the source (see Definition 5) but
cannot distinguish among nodes in the same equivalence
class. For tree networks (PLT and RT) the performance of
EIF is also identical to that of S-ON/-OFF and GAU: On
trees, all the nodes in the equivalence class of the source,
and only these nodes, are the roots of the minimal cost
spreading trees. Instead, on non-tree networks, the presence
of loops makes it more challenging to correctly identify the
spreading tree and the performance of EIF is poorer than
that of GAU and S-ON/-OFF. For all network topologies,
D-ON beats all other methods by a large margin. For ε 6= 0,
the performance of S-ON/-OFF is lower than that of GAU.
In fact, our methods are designed to have maximum recall
(P(s? ∈ B) = 1) and, for both S-ON/-OFF and D-ON, all
nodes that have a positive probability of being the source
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are contained in B. When moving from a deterministic to
a non-deterministic setting, the various methods suffer a
performance drop in different ways: S-ON/-OFF and D-ON
have a drop in precision; GAU and EIF have a drop in recall.
In a non-deterministic setting, D-ON still detects the source
with no ambiguity with a high probability, again strongly
outperforming the alternative methods.

7.8 Resistance to unbounded delay distributions
Our theoretical results are derived under the hypothesis of
bounded-support for the distribution of the transmission
delays (see Section 3-6). However in some applications we
would like to work with transmission delays that are not up-
per bounded by a constant. We test our D-ON method when
each transmission delay Xuv is drawn from a Gamma dis-
tribution Γ(k, 1/k) (hence E[Xuv] = 1 and V ar(Xuv) = 1/k)
which include the case of exponential transmission delays
(k = 1). In this setting, D-ON is not guaranteed to always
detect the source (i.e., Theorem 2 does not hold) and it can
happen that v? is removed from the set of candidates B.

Let ε0 be the minimum value such that P(Xuv ∈
[wuv(1 − ε0), wuv(1 + ε0)]) = 0.75. In order to account for
the variance of Xuv but still enforce the removal of nodes
from B we run D-ON with ε = min(ε0(k), 0.6). Figure 10(c)
shows the final size of the set B while Figure 10(d) depicts
the average distance d̄ from s? to the nodes in B. For
moderate variance, d̄ is very small for all the topologies
considered; for PLT, RGG and RT this distance is very small
even for large values of the variance, indicating a good
performance of our methods, especially for tree networks,
even with unbounded and highly variable delays.

8 RELATED WORK

Adaptive resource allocation. Two-stage resource allocation
is studied in several contexts, including information diffu-
sion [12], curing policies for epidemics [13], [42] and more
general robust-optimization problems where, to reach some
objective, we allocate a-priori only a part of the resources
and we deploy the rest, at a higher cost, when more informa-
tion is available [24]. Another related line of work in the field
of artificial intelligence is that of active learning: It studies
how to adaptively take a sequence of decisions, based on
sparse data, in order to optimize a given objective [21], [45].

We briefly review some important contributions to
source localization (see [26] for an in-depth discussion).

Complete observation. The first source-estimator was pro-
posed by Shah and Zaman [46] in 2009. This work, and
many others that followed, rely on what is often called a
complete observation of the epidemic (see Assumption (B.1) in
Section 1) [41], [54]. In these models, the source is estimated
by maximum likelihood estimation (MLE).

The results of [46] have been extended in many ways,
e.g., to the case of multiple sources [10], [25], [35] or to a
setting where (B.2) is replaced with an assumption similar
to (A.2) [29]. An alternate line of work that also uses
Assumption (B.1), allows the observed states to be noisy,
i.e., potentially inaccurate. For example, a model in which
it is not possible to distinguish between susceptible and
recovered nodes was studied by Zhu et al. [57].

Partial observation. Follow-up work considers a partial
observation setting where a randomly-selected fraction of
nodes reveal their state [32], [36], [50], [56], [58]. These
works do not assume that the infection times are known
(see Assumption (A.2)), hence they need a large fraction of
the nodes to be sensors (typically more than 30%).

Static sensor placement. Other works address the problem
of strategically selecting sensor nodes a-priori, i.e., finding
a static sensor placement. In the deterministic setting (see
Assumption (B.5)) some works considered the problem of
minimizing the budget required for detecting the source.
This question is similar to the one we address, except that
we allow random transmission delays and, most impor-
tantly, we propose an online solution. On trees, under (B.2)
and (B.5), the minimization of the number of sensors has
been studied [51]. Without (B.2) and (B.4), but with (B.5), ap-
proximation algorithms were developed by Chen et al. [9].

Budgeted sensor placement. In a network of N nodes, the
minimal budget required for source-localization can go up
to N − 1, in which case the result of Chen et al. is not
practical. Hence, researchers have looked into a budgeted
version of the problem, i.e., how to place sensors given that
only a limited number of them is available. In this direction,
“common sense” approaches, e.g., using high-degree ver-
tices, or centrality measures were first evaluated [34], [40].
Later, the budgeted optimization problem was solved on
trees [8] (B.4). Without (B.4), a heuristic approach, based
on the definition of a double resolving set of a graph
(see Section 2), has been shown to outperform all previous
heuristics [48]. Due to budget restrictions, none of the works
mentioned above can guarantee exact source localization.

Sequential sensor placement. Working under (B.5)
and (B.2), Zejnilovic et al. [52], propose an algorithm that
sequentially places sensors in order to localize the source
after the epidemic has spread through the entire network.
Adopting very different techniques, we propose a solution
that selects the sensors while the epidemic evolves, enhanc-
ing both cost- and time-efficiency. Moreover, our approach
works without (B.5) and (B.2).

Transmission delays. Several models of how the epidemic
spreads have been studied [30]. Discrete-time transmis-
sion delays were initially very common (see Assumption
(B.5)) [2], [36], [41]. Then, to better approximate realistic
settings, continuous-time transmission models with varying
distributions for the transmission delays have been adopted;
e.g., exponential [35], [46], Gaussian [33], [34], [40], [53] or
truncated Gaussians [48]. We mainly consider continuous
bounded-support distributions that are tractable yet versa-
tile.

9 FUTURE WORK

Several research directions can be investigated using the
framework and the formalism introduced in this work. First,
a natural and realistic extension would attribute a different
cost to static and dynamic sensors or would give the sensors
a cost that depends on the time at which they are deployed.
Second, in order to further decrease the number of sensors
needed, we could approximate the set of candidate sources
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Fig. 10: (a-b): Comparison of D-ON and S-ON/-OFF with the baseline methods GAU and EIF. (c-d): Performance of D-ON
when the transmission delays are Gamma random variables with mean 1 in terms of (a) P(B = {v?}) and (b) average
distance d̄(v?,B) from the nodes in B to v? (rescaled with the diameter ∆). Kd = 10% and ε is chosen as described in
Section 7.8.

B with a smaller set B ⊆ B excluding the nodes that have
a small probability to be the source. Clearly this operation
leads to possible errors (i.e., cases in which the source v? is
removed from the set of candidates) but, depending on the
budget available, a favourable trade-off between cost and
precision could be achieved.

A more theoretical and very interesting direction is the
investigation of upper bounds for the number of dynamic
sensors needed to reach B = {v?} for special classes of
networks. This would lead to a deeper understanding of
the inherent difficulties of source localization.

An interesting and closely related line of work would
investigate source localization and sensor placement in ad-
versarial settings, e.g., where the epidemic spread is de-
signed to obfuscate the position of the source [16] or where
an adversary knows the position of the static sensors and
chooses the source in order to maximize the difficulty of
source-localization. We believe that these settings would re-
quire different assumptions about the sensors: for example,
sensors that can be iteratively moved in the network or that
can reveal information about the infection provenance could
be considered.
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APPENDIX A
HARDNESS OF KDRS
We approximate the k-DRS set following the approach of
Spinelli et al. [48]. The underlying idea to this approach is
that any set W ⊆ V partitions V in a set of equivalence
classes in the following way: any two nodes u, v ∈ V are
equivalent if for all w1, w2 ∈ W , d(u,w1) − d(u,w2) =
d(v, w1)−d(v, w2). Clearly, ifW is a DRS, we have n equiva-
lence classes, each consisting of only one node. A k-DRS is a
set that maximizes the number of equivalence classes among
the sets of cardinality smaller or equal than k. Computing
a k-DRS is NP-hard, hence we use a greedy approximation.
For every v ∈ V we initialize Wv = {v} and add for k − 1
times the node that maximize the number of equivalence
classes in which V is partitioned. We then choose the set
Wv that maximizes the number of equivalence classes as
approximation of k-DRS.

The number of equivalence classes can be seen, in a nat-
ural way, as a measure of the success of source localization
for deterministic epidemics using static sensors. Given a set
of static sensors U , we define the average error E

E(U) =
1

N

∑
v∈V
E(U|v = v?) =

1

N

∑
v∈V

|Bv=v?(U)| − 1

|Bv=v?(U)| ,

where Bv=v?(U) = [v]U is the set of candidate sources
when v = v?.

In this way, E = 0 if and only if |B| = 1. Moreover,
we always have E < 1 and E grows with the number
of candidate sources. In fact, E is equal to the average
probability that, choosing a node uniformly at random from
B, we do not pick v?.

Hence,

E(U) =
1

N

∑
v∈V

|[v]U | − 1

|[v]U |
= 1− q

N

and, maximizing the number of equivalence classes is
actually equivalent to minimize E .

APPENDIX B
APPROXIMATION ALGORITHM FOR DMD
The problem of minimizing the required number of sensors
in order to identify the source in the zero-variance setting
has first been studied in relation to the DRS problem by
Chen et al. [9]; in fact, a sensor set U such that the number
of equivalence classes is q = N (and hence the source can
always be identified) is nothing but a DRS.
Finding a Doubly Resolving Set of minimum size is known
to be NP-hard [27]. Chen et al. proposed an approximation
algorithm based on a greedy minimization of an entropy

function [9]. Note that this has no connection to true
information-theoretic entropy.

Definition 10. Let G a network, U ⊆ V , |U| = k. The entropy
of U is

HU = log2(
∏

[u]U⊆V

|[u]U |!).

Note that HU is minimized if and only if each equivalence
class consists of only one node and hence if and only if
the average error E defined in Section A is equal to 0.
However, despite the fact that HU is minimized when E is
minimized and that both are computed based the same set
of equivalence classes for a given U , the greedy processes
that minimize HU and E are not the same. This can be seen
by rewriting both objective functions in the following way.
Let [c1, . . . , cq] be the sequence of equivalence class sizes.
Then HU can be written as

HU ([c1, .., cq]) =
l∑
i=1

ci∑
j=2

log(j) =

max cj∑
i=2

log(i)#{cj ≥ i}.

Analogously we have the following equality for the error
E([c1, . . . , cq]):

nE([c1, . . . , cq])) = n− q =

max cj∑
i=2

#{cj ≥ i}.

Hence, though similar in spirit, a greedy minimization of
HU is not related to a greedy optimization of E and the
greedy algorithm of Chen et al. [9] is effectively different
from the one of Spinelli et al. [48].

APPENDIX C
S-OFF: TECHNICAL DETAILS

We give the technical details regarding the computation of
the set of candidate sources B, starting from the case of
deterministic epidemics and later extending our results to
the more general case when ε > 0.

We first note that, using Definition 7 we can rewrite
P(O|v? = v) as

P(O|v? = v) = P

( ⋂
ωi 6=ωj∈O

Aωi,ωj

∣∣∣∣v? = v

)
. (12)

The next lemma formalizes that, when epidemics spread
deterministically, the only source of randomness in the
epidemic is the value of v?.

Lemma 2. Let O be a set of observations and let ε = 0. Then,
for all v ∈ V , P(O|v? = v) ∈ {0, 1}.
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Proof. Let us pick v ∈ V such that P(O|v? = v) > 0. We
want to prove that P(O|v? = v) = 1. We have

P(O|v? = v) > 0

⇔ P
( ⋂
ωi 6=ωj∈O

Aωi,ωj |v? = v
)
> 0

⇒ P(Aωi,ωj
|v? = v) > 0 ∀ ωi 6= ωj ∈ O

⇔ P(T (v, ui)− T (v, uj) = ti − tj) > 0 ∀ ωi 6= ωj ∈ O
(a)⇔ P(Aωi,ωj |v? = v) = 1 ∀ ωi 6= ωj ∈ O
⇔ P(O|v? = v) = 1,

where (a) holds because T (v, ui)−T (v, uj) is deterministic
and equal to d(v, ui)− d(v, uj).

A particular case of Lemma 2 is the following.

Lemma 3. Let ε = 0 and let ω1 , (u1, t1) and ω2 , (u2, t2)
be two observations. Then P(Aω1,ω2 |v? = v) > 0 if and only if
P(Aω1,ω2 |v? = v) = 1. Moreover, P(Aω1,ω2 |v? = v) > 0 if
and only if d(v, u1)− d(v, u2) = t1 − t2.

Proof. As in the proof of Lemma 2, P(Aω1,ω2
|v? = v) >

0 ⇔ P(T (v, u1)− T (v, u2) = t1 − t2) > 0 ⇔ P(T (v, u1)−
T (v, u2) = t1 − t2) = 1⇔ d(v, u1)− d(v, u2) = t1 − t2.

We are now ready to prove Proposition 1 which gives a
practical way of computing B.

Proposition 1. Let O be a set of observations and let ε = 0.
Let ω1 , (u1, tu1

) ∈ O be a fixed observation, which we call the
reference observation. Then, the set of candidate sources B is

B =
⋂

ω∈O\{ω1}

Bω1,ω.

Proof. We have

v ∈ B (a)⇔ P(O|v? = v) = 1

(b)⇔ P(Aωi,ωj
|v? = v) = 1 ∀ωi 6= ωj ∈ O

(c)⇔ v ∈ Bωi,ωj ∀ωi 6= ωj ∈ O
⇔ v ∈

⋂
ωi 6=ωj∈O

Bωi,ωj ,

where (a) holds by Lemma 2, (b) follows from (12) and (c)
holds by Lemma 3.

To prove B ⊆ ⋂ω∈O\{ω1} Bω1,ω it is enough to note that⋂
ωi 6=ωj∈O Bωi,ωj ⊆

⋂
ω∈O\{ω1} Bω1,ω . For the reverse inclu-

sion, take v ∈ ⋂ω∈O\{ω1} Bω1,ω and ωi , (ui, tui
), ωj ,

(uj , tuj
) ∈ O\{ω1}, ωi 6= ωj . Since v ∈ Bω1,ωi

∩ Bω1,ωj
, by

Lemma 3 we have

d(v, ui)− d(v, u1) = ti − t1, (13)
d(v, uj)− d(v, u1) = tj − t1. (14)

By subtracting (13) from (14), we get d(v, ui) − d(v, uj) =
ti − tj , which, again by Lemma 3 implies v ∈ Bωi,ωj . Hence
we can conclude that v ∈ ⋂ωi 6=ωj∈O Bωi,ωj .

We now turn to non-deterministic epidemics and give a
proof of Proposition 2 which is at the basis of the definition
of the superset B̃ of candidate sources (see (6)).

Proposition 2. Let 0 < ε < 1, let ω1 , (u1, tu1
), ω2 ,

(u2, tu2
) ∈ O, ω1 6= ω2, and let v ∈ B. Then

|d(v, u1)−d(v, u2)− tu1
+ tu2

| ≤ ε(d(v, u1)+d(v, u2)). (5)

Proof. Since v ∈ B, P(Aω1,ω2 |v? = v) > 0. We prove that, if
v? = v, (5) holds. From this we can conclude that (5) holds
for every v ∈ B, because if there were v ∈ B such that (5)
does not hold, we would have P(Aω1,ω2 |v? = v) = 0, giving
a contradiction with v ∈ B.

Recall that, if v? = v, the infection time of u is tu =
t? + T (v, u). Since the infection delay along edge (x, y) has
range [(1− ε)wxy, (1 + ε)wxy], we have

T (v, u) ≤ (1 + ε)d(v, u). (15)

If Q is the collection of all paths connecting v and u and, for
p ∈ Q, dp(v, u) is the weighted length of path p we have

T (v, u) ≥ (1− ε) min
p∈Q

dp(v, u) = (1− ε)d(v, u). (16)

Combining inequalities (15) and (16) we obtain

|T (v, u1)− d(v, u1)| ≤ εd(v, u1), (17)
|T (v, u2)− d(v, u2)| ≤ εd(v, u2). (18)

From (17) and (18) and using the relation T (v, u1) −
T (v, u2) = tu1 − tu2 we obtain (5).

Algoritm 4 gives the pseudo-code for computing of B̃.

Algorithm 4 S-OFF - non-deterministic epidemic

Require: O set of observations
B̃ ← V
for (u, tu), (z, tz) ∈ O, u 6= z do

for v ∈ B̃ do
D ← |d(v, u)− d(v, z)− tu + tz|
E ← ε(d(v, u) + d(v, z))
if D > E then

remove v from B̃
return B̃

Finally, we give a proof of Proposition 3.

Proposition 3. Let U be the sensor set. Let

∆(U) , max
u∈U,v∈V

d(v, u)

and

δ(U) , min
[v1]U 6=[v2]U

max
u1,u2∈U

|d(v1, u1)− d(v1, u2)−

d(v2, u1) + d(v2, u2)|. (7)

If ε < ε0 , δ(U)/4∆(U) and v? = v, then B̃ ⊆ [v]U .

Proof. Let v? = v and w /∈ [v]U . We want to prove that
w /∈ B̃. By hypothesis, there exist u1, u2 ∈ U such that

|d(v, u1)− d(v, u2)− d(w, u1) + d(w, u2)| ≥ δ(U). (19)

For every z ∈ V , let µz(u1, u2) , d(z, u2) − d(z, u1). By
Equation (5), the deviation of tu2

− tu1
from µv(u1, u2) is

upper bounded by

|tu2 − tu1 − µv(u1, u2)| ≤ ε(d(v, u2) + d(v, u1)) ≤ 2ε∆(U).
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Moreover, by definition of B̃, a similar bound holds for
every z ∈ B̃:

|tu2
− tu1

− µz(u1, u2)| ≤ ε(d(z, u2) + d(z, u1)) ≤ 2ε∆(U).

Assume by contradiction that w ∈ B̃. Then, by applying
the triangle inequality and the hypothesis ε < δ(U)/4∆(U) we
have

|µv(u1, u2)− µw(u1, u2)| ≤ |tu2
− tu1

− µv(u1, u2)|
+ |tu2

− tu1
− µw(u1, u2)|

≤ 4ε∆(U) < δ(U)
(20)

which contradicts (19). Hence, B̃ ⊆ [v]U .

APPENDIX D
S-ON: TECHNICAL DETAILS

We show how B and B̃ can be updated when we have
negative observations.

As in Appendix C, we start with the case of deterministic
epidemics. The next lemma extends Lemma 2 and Lemma 3
to the case in which O contains negative observations.

Similarly to Section C, using Definitions 7 and 8 we can
rewrite P(Ot|v? = v) as

P

(( ⋂
ωi 6=ωj∈O+

t

Aωi,ωj

)⋂( ⋂
ωi∈O+

t ,

ωj∈O−t

Atωi,ωj

)∣∣∣∣∣v? = v

)
.

Lemma 4. Let t ∈ R, ω1 , (u1, tu1) ∈ O+
t and ω2 , (u2, ∅) ∈

O−t . Then P(Atω1,ω2
|v? = v) > 0 if and only if P(Atω1,ω2

|v? =
v) = 1 and d(v, u1)− d(v, u2) < tu1

− t.

Proof. We have the following sequence of equivalences.

P(Atω1,ω2
|v? = v) > 0

⇔ P(T (v?, u1)− T (v?, u2) < tu1
− t) > 0

(a)⇔ P(T (v?, u1)− T (v?, u2) < tu1 − t) = 1

⇔ d(v?, u1)− d(v?, u2) < tu1 − t

(21)

where (a) holds because, given the value of v?, T (v?, u1)−
T (v?, u2) is deterministic and equal to d(v?, u1)− d(v?, u2).

Proposition 4. Let t ∈ R, Ot be the set of observations at time
t and ε = 0. Let ω1 , (u1, tu1

) ∈ O+
τ? be the first positive

observation that we call the reference observation. Then, the set of
candidate sources Bt is

Bt =

( ⋂
ω∈O+

t \{ω1}

Bω1,ω

)⋂( ⋂
ω∈O−t

Bω1,ω,t

)
.

Moreover, if t, t′ ∈ R, t′ > t, Bt′ ⊆ Bt.

Proof. The fact that Bt contains all and only the nodes
that have a positive probability to be the source given the
information available at time t is a direct consequence of the
definition of Bt and Ot.

Similarly to the proof of Proposition 1 we have

v ∈ Bt

⇔ v ∈
( ⋂
ωi 6=ωj∈O+

t

Bωi,ωj

)⋂( ⋂
ωi∈O+

t ,ωj∈O−t

Bωi,ωj ,t

)

and hence

Bt ⊆
( ⋂
ω∈O+

t \{ω1}

Bω1,ω

)⋂( ⋂
ω∈O−t

Bω1,ω,t

)
.

If ωi, ωj ∈ O+
t \{ω1}, ωi 6= ωj , as in the proof of Proposi-

tion 1 we have that v ∈ Bω1,ωi
∩ ∈ Bω1,ωj

implies v ∈ Bωi,ωj
.

Let now ωi , (ui, tui) ∈ O+
t \{ω1} and ωj , (uj , ∅) ∈ O−t

and take v ∈ Bω1,ωi ∩ Bωj ,ω1,t. By Lemma 3 and Lemma 4
we have

d(ui, v)− d(u1, v) = tui
− tu1

(22)
d(u1, v)− d(uj , v) < tu1

− t. (23)

Combining (22) and (23), we have d(ui, v)−d(uj , v) < tui
−t

and, by Lemma 4, v ∈ Bωi,ωj ,t. Hence we proved

Bt ⊇
( ⋂
ω∈O+

t \{ω1}

Bω1,ω

)⋂( ⋂
ω∈O−t

Bω1,ω,t

)
.

Let now t, t′ ∈ R and t′ > t and take v ∈ Bt′ . As O+
t′ ⊇ O+

t ,

v ∈
⋂

ωi∈O+
t \{ω1}

Bω1,ω.

If ωj , (uj , ∅) ∈ O−t′ , by Lemma 4, d(u1, v) − d(uj , v) <
tu1 − t′ and, since t′ > t, d(u1, v) − d(uj , v) < tu1 − t.
Hence, again by Lemma 4, v ∈ Bω1,ωj ,t and Bt′ ⊆ Bt.

We now turn to non-deterministic epidemics. As in S-
OFF, when 0 < ε < 1, we compute a superset of the
candidate set B̃t ⊇ Bt. To do this, we extend Proposition 2
to account for negative observations.

Proposition 7. Let t ≥ τ?, ω1 , (u1, tu1) ∈ O+
t , ω2 ,

(u2, ∅) ∈ O−t and let v ∈ Bt. Then,

d(u1, v)− d(u2, v)− tu1 + t < ε(d(u1, v) + d(u2, v)). (24)

Proof. The proof of the result follows closely that of Propo-
sition 2. We limit ourselves to highlighting the differences.
If v? = v, we have

T (v, u1) ≥ d(v, u1)− εd(v, u1), (25)
T (v, u2) ≤ d(v, u2) + εd(v, u2). (26)

Combining (25) and (26) and using the relation T (v, u1) −
T (v, u2) < tu1

− t, we obtain (24).

In view of Proposition 7 and Remark 1, we can compute
and update B̃ with Algorithm 5. Like for Algorithm 4, the
running time of Algorithm 5 is O(K2

sN).
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Algorithm 5 S-ON - non-deterministic epidemic

Require: Observation sets {O+
i }Fi=1, {O−i }Fi=1

B̃0 ← V
i← 1
while i ≤ F and |B̃i−1| > 1 do

i← i+ 1
B̃i ← B̃i−1

for (u, tu) ∈ O+
i \O+

i−1, (z, tz) ∈ O+
i do

for v ∈ B̃i do
D ← |d(u, v)− d(z, v)− tu + tz|
E ← ε(d(u, v) + d(u, v))
if D > E then

remove v from B̃i
for (u, ∅) ∈ O−i , (z, tz) ∈ O+

i do
for v ∈ B̃i do

D ← d(z, v)− d(u, v)− tz + ti
E ← ε(d(u, v) + d(z, v))
if D ≥ E then

remove v from B̃i
return Bi

APPENDIX E
D-ON: TECHNICAL DETAILS

We give here some details concerning our D-ON algorithm.
As a pseudo-code for the complete algorithm would be

quite involved (hence not very helpful for the reader), we
limit ourselves to giving the pseudo-code for the subrou-
tines with which, at a time t, we update the candidate set B,
the sensors set U , and the observation set O = O+ ∪ O−.
The initialization, i.e., the first computation of B at time τ?

is done in D-ON as for S-ON (i.e., as in the first iteration of
the while loop of Algorithm 2).

At time t, the candidate set B, the sensors set U , and the
observation set O = O+ ∪ O− are updated in two cases:

I) if t = τ? + θj, j ∈ N, i.e., at time t a new dynamic
sensor is added. In this case B, U andO = O+∪O− are
updated with the subroutine presented in Algorithm 6.

II) if t = tu > τ?, i.e., t is the infection time of a static
sensor or of a node that was chosen as dynamic sensor
before time t but was not yet infected at time t. In this
case B, U and O = O+ ∪ O− are updated with the
subroutine presented in Algorithm 7.

In Algorithm 6 and 7, t̄ denotes the time at which B, U
and O where last updated before time t. If t is the time of
the first update, t̄ = τ?. To simplify the notation, the time
index for the set B is omitted.

The extensions of Algorithm 6 and 7 to non-deterministic
epidemics follow from Proposition 7 and Algorithm 5.

E.1 Extending the Gain Functions to Negative Obser-
vations

In online source localization, dynamic sensors can yield
negative observations. For this reason, the computation of
gSIZE
U and gDRS

U given in Section 5.2 should slightly change
to account for the case in which a dynamic sensor is not
infected by the time at which it is deployed.

Algorithm 6 D-ON - Update I - deterministic epidemic

Require: B, U , Ot̄, ω1 , (u1, t1) ∈ O+
τ?

d′ ← argmaxd∈V \UGAINU (d)
U ← U ∪ {d′}
if d′ is infected then

td′ ← infection time of d′

O+
t ← O+

t̄ ∪ (d′, td′)
O−t ← O−t̄
for v ∈ B do

if d(d′, v)− d(u1, v) 6= td′ − t1 then
remove v from B

for ω , (u, ∅) ∈ O−t do
for v ∈ B do

if d(u, v)− d(u1, v) < t− t1 then
remove v from B

else
O+
t ← O+

t̄
O−t ← O−t̄ ∪ (d′, ∅)
for ω , (u, ∅) ∈ O−t do

for v ∈ B do
if d(u, v)− d(u1, v) < t− t1 then

remove v from B

Algorithm 7 D-ON - Update II - deterministic epidemic

Require: B, Ot̄, ω1 , (u1, t1) ∈ O+
τ? ,

(u, tu) new positive observation
O+
t ← O+

t̄ ∪ (u, tu)
O−t ← O−t̄
for v ∈ B do

if d(u, v)− d(u1, v) 6= tu − t1 then
remove v from B

for ω , (w, ∅) ∈ O−t do
for v ∈ B do

if d(w, v)− d(u1, v) < t− t1 then
remove v from B

Definition 11 (Possible infection times). Let U be a set
of sensors, c ∈ V \U , OU , {(u, tu), u ∈ U} and fix
(u1, t1) ∈ OU arbitrarily. Let BU be the set of candidate
sources after observing the infection times of the nodes in U , i.e.,
BU = {v ∈ V : P(v = v?|OU ) > 0}. Then

T cU,t , {h ∈ (−∞, t] : h = d(v, c)− d(v, u1)− t1
for some v ∈ BU} (27)

is the set of possible infection times of c that are smaller than t.

Again, Definition 11 does not depend on the choice of
(u1, t1) ∈ OU . The next proposition extends Proposition 6
to online localization.

Proposition 8. Let U be a set of sensors, c ∈ V \U , OU ,BU as
in and Definition 9 and fix (u1, t1) ∈ OU arbitrarily. Call tc the
infection time of c and define

bU (c, h) , {v ∈ Bi−1 : P(v = v?|tc = h) > 0}
= {v ∈ BU : h = d(v, c)− d(v, u1) + t1},

b̃U (c) , {v ∈ Bi−1 : P(v = v?|tc > t) > 0}
= {v ∈ Bi−1 : t < d(v, c)− d(v, u1) + t1}.
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Then at time t, gSIZE can be computed as,

gSIZE
U (c) =

∑
h∈T c

U,t

P(v? ∈ bU (c, h)) · (|BU | − |bU (c, h)|)

+ P(v? ∈ b̃U (c)) · (|BU | − |b̃U (c)|). (28)

Proof. Follows from the definition of gSIZE
U , Tc and bU (·, ·).

For gDRS, let Xc = 1 if there exists v ∈ BU such that the
infection time tc of c is larger than t (i.e., such that d(v, c)−
d(v, u1) − t1 > t), Xc = 0 otherwise. Then, the value of
DRS-GAIN at time t is defined as

gDRS
U (c) , |T cU,t|+Xc. (29)

As in Section 5.2, we use the same definition of gDRS

for both deterministic and non-deterministic epidemics. In-
stead, an approximation of gSIZE is given in Appendix G.

APPENDIX F
EXAMPLE TO COMPLEMENT REMARK 1

Figure 11 complements Remark 1 showing why, when ε > 0,
in order to obtain a smaller set of candidate sources, we do
not use a single sensor as reference point. In fact, if we take
ε = 0.25 and the infection times as in Figure 11, for node
v 6= we have

|d(v, u)− d(v, z)− tu + tz| ≤ ε(d(v, u) + d(v, z))

and

|d(v, u)− d(v, w)− tu + tw| ≤ ε(d(v, u) + d(v, w))

but

|d(v, w)− d(v, z)− tw + tz| > ε(d(v, w) + d(v, z)).

Hence, taking u as reference sensor and comparing tu
with tz and tw we would not remove v from the set of can-
didate sources, which instead we do if we further compare
tw and tz .

u
tu=7.8

tw=4.5 w

z
tz=2.3

v?
v

Fig. 11: When ε > 0, taking a single reference sensor, we get
a larger set of candidate sources. In this example, taking
u as reference sensor and comparing tu with tz and tw
we would not remove v from the set of candidate sources,
which instead we do if we further compare tw and tz .

APPENDIX G
APPROXIMATE SIZE-GAIN FOR THE NON-
DETERMINISTIC CASE

When epidemics spread deterministically, Proposition 6
and 8 show that, for any candidate sensor c, the probability
of it being infected at time h, can be computed summing
over the possible the nodes v = v? such that c is infected
at time h. We limit ourselves to give a generalization of
Proposition 8 to non-deterministic epidemic for the online
localization setting For offline localization, Proposition 6 can
be generalised to non-deterministic epidemic analogously.
We adopt the notations of Section 6.

Proposition 9. Let tc be the infection time of c ∈ V \U and
t′c, t
′′
c the minimum and maximum values for tc given Ot, then

t′c ≥ min
v∈B

(
max

(u,tu)∈Ot,tu 6=∅

{
d(c, v)− d(u, v) + tu−

ε(d(c, v) + d(u, v))
})
,

t′′c ≤ max
v∈B

(
min

(u,tu)∈Ot,tu 6=∅

{
d(c, v)− d(u, v) + tω+

ε(d(c, v) + d(u, v))
})

Proof. We prove the bound for t′c, the one for t′′c is analogous.
Take v ∈ B. If v = v?, then for every (u, tu) ∈ Ot

t′c ≥ d(c, v)− d(u, v) + tu − ε(d(c, v) + d(u, v)),

hence

t′c ≥ max
(u,tu)∈Ot

{
d(c, v)− d(u, v) + tu − ε(d(c, v) + d(u, v))

}
.

The bound follows then from the fact that v? can be any
node in B.

For h ∈ [t′c, t
′′
c ], let a(c, h) be the set of nodes v that satisfy

(5) and (24) with v = v? for all observations in Ot∪{(c, h)},
and let ã(c) be the set of nodes v that satisfy (24) at time t
for all observations in Ot ∪ {(c, ∅)}. Then we define

gSIZE
U (c) =

∫ min(t′′c ,t)

min(t′c,t)
(|B| − |a(c, h)|)ftc(h)dh

+ (|B| − |ã(c)|)(1− Ftc(t)),

(30)

where ftc(·) denotes the density of the infection time tc of c
conditioned on Ot and Ftc is its cumulative function.

Let (u0, tu0
) ∈ Oτ? and, for h ∈ R, let us denote by Jh

the interval [h− 1
2 , h+ 1

2 ], by J ′h the interval [h− 1
2− tu0

, h+
1
2 − tu0

]. In order to compute (30), we make the following
approximations:

1) we approximate the integrand with a stepwise constant
function with steps of unity length centered around the
integer values in [t′c, t

′′
c ], i.e.

E[gSIZEU (c)] ≈∑
h∈Z,h∈[t′c,t′′c ],h≤t

(|B| − |a(c, h)|)P(tc ∈ Jh|Ot)

+ (|B| − |ã(c)|)P(tc > t|Ot);

2) we compute P(tc ∈ Jh|Ot) by summing over B:



6

P(tc ∈ Jh|Oi−1) =∑
v∈B

P(tc ∈ Jh|v = v?,Ot)P(v = v?|Ot).

In order to further limit the computational costs, if
P(v = v?|Oi−1) > 0, we approximate

P(v = v?|Ot) ≈
P(v = v?)

P(v? ∈ B)
,

i.e., we ignore the fact that, conditioned on the ob-
servations in Ot the probability of a node being the
source can differ from the (rescaled) prior. Moreover,
we approximate P(tc ∈ Jh|Ot) as follows. We take
(u0, tu0) as reference observation5 and we approximate
P(tc ∈ Jh|Ot) ≈ P(tc − tu0 ∈ J ′h).6

An important side-effect of the approximation of P(tc ∈
Jh) is that the event gSIZE

U (c) = |B|, i.e., no node is a valid
candidate source after adding c, might have a positive weight
in the computation of E[gSIZE

U ]. Specifically, there might be
a value of h such that P(tc − tu0

∈ J ′h) > 0 but |ac,h| = 0.
This can lead our algorithm to slow down by choosing
sensors that do not reduce the number of candidate sources.
We address this problem applying the following heuristic:
Whenever the number of candidate sources does not de-
crease in two consecutive steps we restrict the choice of the
new sensor to the set of candidate sources B. In fact, if the
infection time of at least one node in B is already observed,
adding a sensor in any other node in B implies that the
cardinality of B decreases at the next step.

APPENDIX H
WEIGHTS FOR THE WAN NETWORK

Our definition of the edge weights for the WAN network is
inspired by the work of Colizza et al. [11].

Let sij be the number of seats available on a flight
from airport i to airport j. The number of seats can be
inferred by the aircraft with which the flight is operated [38].
Moreover, let α = 0.7 denote the average occupancy rate
on a flight [11] and Ni denote the population of city i. We
approximate the probability that an individual flies from i
to j as αsij/Ni.

Let θ be the probability that an individual is infected
when the infection reached the city where he leaves. Then
the probability that a sick individual travels from i to j is 1−
(1− αsij/Ni)θNi . Hence the average delay for the infection
to spread from city i to city j can be estimated to be

wij = [1− (1− αsij/Ni)θNi ]−1 ≈ [1− exp−αsijθ]−1.

5. In case of a large diameter network, this choice could be optimized
taking as reference the sensor u (static or dynamic) which is closer to
the candidate source v; for a small-diameter network this would not
yield a substantial improvement.

6. If the time delays are all uniformly distributed with equal expected
values, we can normalize tc − tu0 to obtain a sum of uniform U([0, 1])
variables, i.e., an Irwin-Hall random variable and the latter probability
can be computed exactly. If time delays are uniformly distributed but
with different expected values, the probability P(tc − tu0 ∈ J ′h) is not
easily computable [5], hence we approximate the distribution of tc−tu0

with a Gaussian distribution with mean and variance equal to the mean
and variance of tc−tu0 . The latter Gaussian approximation can be used
for generally distributed transmission delays.

We assume θ = 0.05 and we round all weights wij to the
closest integer. Figure 12 shows the resulting weight distri-
bution (note the log-scale of the y-axis, hence the skewness
of the distribution).
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Fig. 12: Histogram of edge weights for the WAN network.


