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A meta-learning approach for genomic survival
analysis
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RNA sequencing has emerged as a promising approach in cancer prognosis as sequencing

data becomes more easily and affordably accessible. However, it remains challenging to build

good predictive models especially when the sample size is limited and the number of features

is high, which is a common situation in biomedical settings. To address these limitations, we

propose a meta-learning framework based on neural networks for survival analysis and

evaluate it in a genomic cancer research setting. We demonstrate that, compared to regular

transfer-learning, meta-learning is a significantly more effective paradigm to leverage high-

dimensional data that is relevant but not directly related to the problem of interest. Speci-

fically, meta-learning explicitly constructs a model, from abundant data of relevant tasks, to

learn a new task with few samples effectively. For the application of predicting cancer survival

outcome, we also show that the meta-learning framework with a few samples is able to

achieve competitive performance with learning from scratch with a significantly larger

number of samples. Finally, we demonstrate that the meta-learning model implicitly prior-

itizes genes based on their contribution to survival prediction and allows us to identify

important pathways in cancer.
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Cancer is a leading cause of death in the world. Accurate
prediction of its survival outcome has been an interesting
and challenging problem in cancer research over the past

decades. Quantitative methods have been developed to model the
relationship between multiple explanatory variables and survival
outcome, including fully parametric models1,2 and semi-
parametric models, such as the Cox proportional hazards
model3. The Cox model makes a parametric assumption about
how the predictors affect the hazard function, but makes no
assumption about the baseline hazard function itself4. In most
real world scenarios, the form of the true hazard function is either
unknown or too complex to model, making the Cox model the
most popular method in survival analysis5.

In clinical practice, historically, survival analysis has relied on
low-dimensional patient characteristics, such as age, sex, and
other clinical features in combination with histopathological
evaluations such as stage and grade6. With advances in high-
throughput sequencing technology, a greater amount of high-
dimensional genomic data is now available and more molecular
biomarkers can be discovered to determine survival and improve
treatment. With the cost of RNA sequencing coming down sig-
nificantly, from an average of $100M per genome in 2001 to $1k
per genome in 20157, it is becoming more feasible to use this
technology to prognosticate. Such genomic data often has tens of
thousands of variables which requires the development of new
algorithms that work well with data of high dimensionality.

To address these challenges, several implementations of reg-
ularized Cox models have been proposed8–10. A regularized
model adds a model complexity penalty to the Cox partial like-
lihood to reduce the chance of overfitting. More recently, the
increasing modeling power of deep learning networks has aided
in developing suitable survival analysis platforms for high-
dimensional feature spaces. For example, autoencoder archi-
tectures have been employed to extract features from genomic
data for liver cancer prognosis prediction11. The Cox model has
also been integrated in a neural network setting to allow greater
modeling flexibility12–15.

In studying a specific rare cancer’s survival outcome, one
interesting problem is whether it is possible to make use of the
abundant data that is available for more common relevant cancers
and leverage that information to improve the survival prediction.
This problem is commonly approached with transfer-learning16,
where a model which has been trained on a single task (e.g., 1 or
more abundant cancers) is used to fine-tune on a related target
task (rare cancer). In survival analysis, transfer-learning has
shown to significantly improve prediction performance17. Deep
neural networks used to analyze biomedical-imaging data can also
take advantage of information transfer from data in other settings.
For example, multiple studies show that convolutional neural
networks pretrained on ImageNet data can be used to build per-
formant survival models with histology images18,19.

In this context, meta-learning is an area in deep learning
research that has gained much attention in recent years which
addresses the problem of “learning to learn”20,21. A meta-learning
model explicitly learns to adapt to new tasks quickly and effi-
ciently, usually with a limited exposure to the new task envir-
onment. Such a framework may potentially adapt better than the
traditional transfer-learning setting where there is no explicit
adaptation incorporated in the pre-training algorithm. This
problem setting with limited exposure to a new task is also known
as few-shot learning: learn to generalize well, given very few
examples (called shots) of a new task17. Recent advances in meta-
learning have shown that, compared to transfer-learning, it is a
more effective approach to few-shot classification22,23, regres-
sion20, and reinforcement learning24,20. In this study, we propose
a meta-learning framework based on neural networks for survival

analysis applied in a cancer research setting. Specifically, for the
application of predicting survival outcome, we demonstrate that
our method is a preferable choice compared to regular transfer-
learning pre-training and other competing methods on three
cancer datasets when the number of training samples from the
specific target cancer is very limited. Finally, we demonstrate that
the meta-learning model implicitly prioritizes genes based on
their contribution to survival prediction and allows us to uncover
biological pathways associated with cancer survival outcome.

Methods
Datasets. We use the RNA-sequencing data from The Cancer Genome Atlas
(TCGA) pan-cancer datasets25. We remove the genes with NA values and nor-
malized the data by log transformation and z-score transformation. The feature
dimension is 17,176 genes after preprocessing. The data contains 9707 samples
from 33 cancer types. The outcome is the length of survival time in months. 78% of
the patients are censored, which means that the subject leaves the study before an
event occurs or the study terminates before an event occurs to the subject.

Survival prediction model. To describe the effect of categorical or quantitative
variables on survival time, several approaches are commonly considered13. The
most popular method is the Cox-PH model3, which is a semi-parametric pro-
portional hazards model, where the patient hazards depend linearly on the patient
features and the relative risks of the patients are expressed in the hazard ratios.
Survival trees and random survival forests are an attractive alternative approach to
the Cox models26. They are an extension of classification and regression trees and
random forests for time-to-event data, and are fully non-parametric and flexible.
Artificial neural networks (ANNs)-based models have also been used to predict
survival, but the survival time is often converted to a binary variable or discrete
variables and the prediction is framed as a classification problem27,28. To overcome
the potential loss of accuracy in the previous methods, ANNs based on propor-
tional hazards are recently developed. It is shown that when applied to high-
dimensional RNA-seq data, the neural network extension of the Cox model
achieves better performance than the Cox-PH (including Ridge and LASSO reg-
ularization), random survival trees, and other ANN-based models13. It can directly
integrate the meta-learning optimization algorithm and is therefore the most sui-
table choice of model structure in our framework.

Meta-learning. Our proposed survival prediction framework is based on a neural
network extension of the Cox regression model that relies on semi-parametric
modeling by using a Cox loss13. The model consists of two modules: the feature
extraction network and the Cox loss module (Fig. 1). We use a neural network with
two hidden layers to extract features from the RNA sequencing data input, which
yields a lower dimensional feature vector for each patient. The features are then fed
to the Cox loss module, which performs survival prediction by doing a Cox
regression with the features as linear predictors of the hazard3. The parameters of
the Cox loss module β are optimized by minimizing the negative of the partial log-
likelihood:

LðβÞ ¼ �
X

yi¼uncensored
ziβ� log

X
yj ≥ yi

ezjβ
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5; ð1Þ

where yi is the survival length for patient i, zi contains the extracted features for
patient i, and β is the coefficient weight vector between the features and the
output. Since zi is the output of the feature extraction module, it can be further
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Fig. 1 Schematic showing the survival prediction model architecture. The
model consists of a feature extraction module, and a Cox loss module.
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represented by

zi ¼ f φ xið Þ; ð2Þ
where xi is the input predictor of patient i, f denotes a nonlinear mapping that
the neural network learns to extract features form the predictor, and φ denotes
the model parameters including the weights and biases of each neural network
layer. The feature extraction module parameters φ and Cox loss module para-
meters β are jointly trained in the model. For convenience in the following
discussion we denote the combined parameters as θ.

The optimization of parameters θ consists of two stages: a meta-learning stage,
and a final learning stage. The meta-learning stage is the key process, where the
model aims to learn a suitable parameter initialization for the final learning stage,
so that during final learning the model can adapt efficiently to previously unseen
tasks with a few training samples29. In order to reach the desired intermediate state,
a first-order gradient-based meta-learning algorithm is used to train the network
during the meta-learning stage20,29.

Specifically, at the beginning of meta-learning training, the model is randomly
initialized with parameter θ. Consider that the training samples for the meta-
learning stage consist of n tasks Tτ, τ= 1, 2…n. A task is defined as a common
learning theme shared by a subgroup of samples. Concretely, these samples come
from a distribution on which we want to carry out a classification task, regression
task, or reinforcement learning task. The algorithm continues by sampling a task Tτ
and using samples of Tτ to update the inner-learner. The inner-learner learns Tτ by
taking k steps of stochastic gradient descent (SGD) and updating the parameters to
θkτ :

θ0τ ¼ θ

θ1τ  θ0τ � αL0τ;0 θ0τ
� �

θ2τ  θ1τ � αL0τ:1 θ1τ
� �

¼
θkτ  θk�1τ � αL0τ;k�1 θk�1τ

� �

; ð3Þ

where θkτ is the model parameter at step k for learning task τ, Lτ;k�1 is the loss
computed on the kth minibatch sampled from task τ, Lτ;1 is the loss computed on
the second minibatch sampled from task τ and so on. The ‘prime’ symbol denotes
differentiation, and α is the inner learner step size. Note that this learning process is
the separate for all tasks, starting from the same initialization θ.

After an arbitrary m (<n) number of tasks are independently learnt by the above
k-step SGD process, and obtaining θkτ , τ= 1, 2, … m, we make one update across
all these m tasks with the meta-learner to get a better initialization θ:

θ  θ þ γ
1
m

Xm
τ¼1
ðθkτ � θÞ; ð4Þ

where γ is the learning step of the meta-learner. The term 1
m

Pm
τ¼1ðθkτ � θÞ can be

considered as a gradient, so that for example a popular optimization algorithm
such as Adam30 can be used by the meta-learner to self-adjust learning rates for
each parameter. The entire process of inner-learner update and meta-learner
update is repeated until a chosen maximum number of meta-learning epochs is
reached. This algorithm is shown to encourage the gradients of different
minibatches of a given task to align in the same direction, thereby improving
generalization and efficient learning later on29.

In the final learning stage, the model is provided with a few-sample dataset of a
new task. First, the model is initialized with the meta-learnt parameters θ, which
are then fine-tuned with the new task-training data to θk

0
τ and finally the fine-tuned

model is evaluated with testing data from the new task. The training procedure of

final learning does not require a special algorithm, and can be conducted with
regular mini-batch stochastic gradient descent. This final learning stage is equal to
the inner-learning loop for a single task in Eq. (3) without any outer loop.

Algorithm 1 summarizes the complete procedure.

Algorithm 1
Meta-learning for few-shot survival prediction

Initialize randomly θ= {ϕ, β}, the feature extractor and Cox model parameters,
respectively
Let the (inner) survival loss function be defined as in Eq. (1):
L ¼ �Pyi¼uncensored f φðxiÞβ� log

P
yj ≥ yi

efφðxjÞβ
� �h i

for i ← 0 to n do
for m randomly sampled tasks Tτ do

Compute θkτ , denoting k update steps with L, as in Eq. (3)
end
Update θ  θ þ γ 1

m

Pm
τ¼1ðθkτ � θÞ

i ← i+m
end
Return θ

Experimental setup. In order to assess the meta-learning method’s performance,
we compare it with several alternative training schemes based on the same neural
network architecture: regular pre-training, combined learning, and direct learning.
First, meta-learning initially learns general knowledge from a dataset containing
tasks that are relevant but not directly related to the target, and then learns task-
specific knowledge from a very small target task dataset. We define the first dataset
as the “multi-task training data”, and the second as the “target task training data”.
Secondly, regular pre-training also has a two-stage learning process on the same
datasets, but unlike meta-learning without explicitly focusing on learning to reach
an initialization that is easy to adapt to new tasks. Thirdly, combined learning does
not involve a two-stage learning process, but also leverages knowledge from the
relevant tasks by combining the multi-task training data and the target task
training data together in one dataset to train a prediction model. Direct learning on
the other hand, only uses the target task training samples. To illustrate the effec-
tiveness of the methods with few samples, we consider three cases of direct
learning: a large sample size, a medium sample size, and a small sample size which
is the same size as the “target task training data” used for the other methods (i.e.
regular pre-training, combined learning and meta-learning) (Fig. 2).

In our experiments, the “multi-task training data” is the pan-cancer RNA
sequencing data containing samples from any cancer sites except one cancer site
that we define as the target cancer site. The associated target cancer data is
considered as the “target task data”. This target task dataset is split into training
data and testing data, stratified by disease sub-type and censoring status. For meta-
learning, regular pre-training, and combined learning we will not use all of the
training set for the target task, as we want to assess the performances when the
algorithm is exposed to only a small number of target task training samples.
Therefore, we will randomly draw 20 samples from the training dataset as one
“target task training data”. We choose a small sample size of 20 because it is a
possible case in real life situations where the target task is the study of rare
diseases31, or where new technologies are used to produce data which only have the
capacity to produce a small sample. For direct learning, we randomly draw three
different sizes from the training datasets to form training data, 20 for the small size,
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Fig. 2 Data flow schematic. 25 trials are conducted each for the meta-learning, regular pre-training, combined learning, and direct learning frameworks.
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150 for the medium size, and 250 for the large size. All methods are evaluated on
the common testing data of the target task.

Finally, as a linear baseline, we use the combined learning training sample
(multi-task training data and target task training data) to train a linear cox
regression model. We conduct 25 experiment trials for each method, where each
trial is trained with a randomly drawn "target task training dataset as
described above.

Evaluation. We evaluate the survival prediction model performances with two
commonly used evaluation metrics: the concordance index (C-index)4 and the
integrated Brier score (IBS)32. Fistly, the C-index is a standard performance
measure of a model’s predictive ability in survival analysis. It is calculated by
dividing the number of all pairs of subjects whose predicted survival times are
correctly ordered, by the number of pairs of subjects that can possibly be ordered.
A pair cannot be ordered if the earlier time in the pair is censored or both events in
the pair are censored. A C-index value of 1.0 indicates perfect prediction where all
the predicted pairs are correctly ordered, and a value of 0.5 indicates random
prediction. Secondly, the IBS is used to evaluate the error of survival prediction and
is represented by the mean squared differences between observed survival status
and the predicted survival probability at a given time point. The IBS provides an
overall calculation of the model performance at all available times. An IBS value of
0 indicates perfect prediction, while 1 indicates entirely inaccurate prediction.

We select target cancer sites from TCGA with the following two inclusion
criteria: (1) a minimum of 450 samples, providing enough training samples for
different benchmarking training schemes and (2) a minimum of 30% non-
censoring samples, enabling more accurate evaluation than more heavily censored
cohorts. This results in the following cancers: glioma, including glioblastoma
(GBM) and low-grade-glioma (LGG); non-small cell lung cancer, including lung
adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), and head-
neck squamous cell carcinoma (HNSC). These three types of cancers are also of
clinical interest, because gliomas are the most common type of malignant brain
tumor, and lung cancer is the deadliest cancer in the world33,34. HNSC, on the
other hand, is a less widely studied type of cancer, which nonetheless attracted
growing attention in the recent decade since the release of the publicly available
largest dataset in HNSC by TCGA35,36.

In addition, to further validate the model in the small sample training setting,
we select an additional rare cancer cohort, mesothelioma (MESO), with
<90 samples in total. Due to the small sample size, we do not compare to the
medium or large sample direct learning, but only compare to the small sample
direct learning.

Finally, we use a fully independent testing cohort to validate the model. We use
a non-small cell lung cancer cohort consisting of 129 patient samples collected
from the Stanford University School of Medicine and Palo Alto Veterans Affairs
Healthcare System37. The data is available at National Center for Biotechnology
Information Gene Expression Omnibus (NCBI GEO)38. For the meta-learning,
regular pre-training and combined learning methods, we use the same meta-learnt
and pre-trained models that are trained with TCGA data for testing the non-small
cell lung cancer. The final training and testing is done on the independent dataset.
Due to the small sample size, we also only include small sample direct learning for
comparison.

For the three large target cancer cohorts, 20% of the target data is used for
testing, and we evaluate the C-index and IBS in 25 experimental trials for each
method. For the small cancer cohort and independent data cohort, 50% of the data
is used for testing, and we conduct 10 trials for each method due to limited training
samples for sampling.

Hyper-parameter selection. To avoid overfitting, we do not conduct a separate
hyper-parameter search for each of the cancer datasets. Instead, we search for
hyper-parameters on one type of cancer and apply the chosen parameters to all
experiments. We select the largest cancer cohort, glioma, and use 5-fold cross-
validation for hyper-parameter selection. For each given set of hyper-parameters,
we average the results from five validation sets (each is 20% of training data). Since
there is similarity in the algorithm between methods (combined learning, direct
learning, and regular pre-training), we share hyper-parameters between experi-
ments when it makes sense, as detailed below.

All methods use the same neural network architecture with two hidden fully
connected layers of size 6000 and 2000, and an output fully connected feature layer
of size 200. Each layer uses the ReLU activation function39. Initially we experiment
with 4 different structures: 1 or 2 hidden layers with feature size of 200 or 50,
respectively. We chose the optimal structure detailed before and use it as the
architecture for all methods in our subsequent discussion.

For the regular pre-training model, we search for hyper-parameters for the pre-
training stage and fine-tuning stage separately. For both stages, we test the mini-
batch gradient descent and Adam optimizers, and determine learning rates with
grid search on a grid of [0.1, 0.05, 0.01, 0.005, 0.001] for SGD and a grid of [0.001,
0.0005, 0.0001, 0.00005, 0.00001] for Adam. We test batch sizes of 50, 100, 200, and
800 for pre-training. The selected parameters for the pre-train stage are: an SGD
optimizer with learning rate of 0.001, L2 regularization scale of 0.1 and batch size of
800. The selected parameters for the fine-tune stage are: an SGD optimizer with
learning rate of 0.001, L2 regularization scale of 0.1, and batch size of 20 which is

the size of each target cancer training dataset. For the combined learning model
and direct learning model, since the algorithm is very similar to the regular pre-
training model’s pre-train stage, we use the same parameters selected for the pre-
train. The batch sizes for direct learning is half of the size of training data.

For the meta-learning model, we search for hyper-parameters for the meta-
learning only. For the final learning stage, we use the same hyper-parameters as in
the fine-tune stage of the regular pre-training model, as both methods can use
similar algorithms in the last stage of training. From our previous discussion, in the
meta-learning stage an SGD optimizer and an Adam optimizer are suitable for the
inner learner and meta-learner, respectively. For the learning rates, we perform grid
search on a grid of [0.1, 0.05, 0.01, 0.005, 0.001] for SGD and a grid of [0.001,
0.0005, 0.0001, 0.00005, 0.00001] for Adam. Batch size is searched from [50, 100,
200, 800], the number of tasks for averaging one meta-learner update is searched
from [5, 10, 20], and the number of gradient descent steps for the inner-learner is
searched from [3, 5, 10, 20]. The selected parameters for the meta-learning stage
are shown in Table 1.

Finally, in order to evaluate the effect of fluctuations of the meta-learning
hyper-parameters, and ensure that our results reflect the average performance over
fluctuations, we conduct a series of tests on the validation data where in each
experiment we vary one of the five unique meta-learning hyper-parameters from
the chosen value by tuning it up or down by one grid, obtaining 10 sets of varied
hyper-parameters. We do 5-fold cross-validation for each set of varied hyper-
parameters and compute the C-index from the resulting 50 experiments. We also
do 50 random experiments using the selected hyper-parameters and compare the
average results of varied versus selected hyper-parameters. We conduct a two-
sample t-test on the two results, and conclude that the results obtained by varied
parameters do not have a significant difference from the results obtained by the
chosen parameters (mean C-index difference of 0.005 with p value= 0.50).
Therefore, our results are robust with respect to fluctuations of the hyper-
parameters and our conclusions are not based on excessive hyper-parameter
tuning.

Interpretation of the genes prioritized by the meta-learning model. We apply
risk score backpropagation15 to the meta-learned models to investigate the feature
importance of genes for each of the three target cancer sites. For a given sample,
each input feature is assigned a risk score by taking the partial derivatives of the
risk with respect to the feature. A positive risk score with high absolute value means
the feature is important in poor prediction (high risk), and a negative risk score
with high absolute value means the feature is important in good prediction (low
risk). The features are ranked by the average of risk score across all samples.

Two approaches were adopted for annotating the genes with ranked risk scores
generated by the meta-learning model. Firstly, the top 10% high-risk genes (genes
with positive risk scores) and the top 10% low-risk genes (genes with negative risk
scores) from each cancer type were subjected to gene set over-representation
analysis, by comparing the genes against the gene sets annotated with well-defined
biological functions and processes. We model the association between the genes
and each gene set using a hypergeometric distribution and Fisher’s exact test.
Secondly, instead of arbitrary thresholding in the first approach, all the genes,
together with their ranked risk scores were incorporated in the gene set enrichment
analysis with the fgsea R package40 which calculates a cumulative gene set
enrichment statistic value for each gene set. The gene set databases used in this
analysis include Kyoto Encyclopedia of Genes and Genomes (KEGG)41, The
Reactome Pathway Knowledgebase42 and WikiPathways43.

Results
Meta-learning outperforms regular pre-training and combined
learning. For all of the large target cancer sites, meta-learning
achieves similar or better performance than regular pre-training
or combined learning (Fig. 3; Table 2). For the glioma cohort, the
mean C-index for meta-learning is 0.86 (0.85–0.86 95% CI),
compared to 0.84 (0.83–0.85 95% CI) for regular pre-training and

Table 1 Selected hyper-parameters for meta-learning’s
meta-learning stage.

Hyper-parameter Value

Task-level optimizer SGD
Task-level learning rate 0.01
Task-level gradient steps 5
Task-level Batch size 100
Meta-level optimizer ADAM
Meta-level learning rate 0.0001
Meta-level tasks batch size 10
L2 regularization scale 0.1
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0.81 (0.81–0.82 95% CI) for combined training. For the lung
cancer cohort, the mean C-index is 0.65 (0.65–0.66 95% CI) for
meta-learning, 0.60 (0.58–0.61 95% CI) for regular pre-training,
and 0.62 (0.62–0.63 95% CI) for combined training. For the
HNSC cohort, the result is 0.61 (0.59–0.63 95% CI) for meta-
learning, 0.59 (0.57–0.61 95% CI) for regular pre-training and
0.62 (0.61–0.64 95% CI) for combined training. Note that, the
variance of the meta-learning results across 25 random trials also
tends to be the smallest, which is most observable for the lung
cancer and glioma cohorts. In addition, each of these multi-layer
neural networks also shows better performance on average than a
linear baseline model. The linear baseline model achieves a C-
index of 0.61 for lung cancer (0.60–0.62 95% CI), 0.77 for glioma
(0.74–0.80 95% CI), and 0.59 for HNSC (0.58–0.62 95% CI).

Meta-learning achieves competitive predictive performance
compared to direct learning. Next, we compare our meta-
learning approach with regular direct learning on the target task
training samples with different cohort sizes. The performance of
direct learning drops significantly when the number of training
samples decreases from 250 to 20, which is anticipated because a
great amount of information is lost and the model can hardly
learn well. However, meta-learning and pre-training can com-
pensate for such lack of information by transferring knowledge
from the pan-cancer data explicitly and implicitly, respectively.

We show that meta-learning achieves similar or better prediction
performance than large-sample direct training in lung cancer and
HNSC, and reaches comparable performance with medium-
sample direct training in glioma (Fig. 4; Table 2). For the lung
cancer cohort, the mean C-index is 0.57 (0.56–0.58 95% CI) for
large sample direct learning, 0.54 (0.52–0.56 95% CI) for medium
sample direct learning, 0.53 (0.50–0.55 95% CI) for small sample
direct learning, and 0.65 (0.65–0.66 95% CI) for meta-learning.
For the glioma cohort, the mean C-indices for large sample,
medium sample and small sample direct learning are 0.86
(0.86–0.87 95% CI), 0.85 (0.85–0.86 95% CI), and 0.82 (0.81–0.84
95% CI), respectively, and for meta-learning the mean C-index is
0.86 (0.85–0.86 95% CI). For the HNSC cohort, the mean C-index
is 0.62 (0.60–0.64 95% CI) for large sample direct learning, 0.57
(0.54–0.59 95% CI) for medium sample direct learning, 0.53
(0.49–0.56 95% CI) for small sample direct learning, and 0.61
(0.59–0.63 95% CI) for meta-learning. Thus, in all three cancer
sites, meta-learning reaches competitive performances as large
sample direct learning and can outperform it in certain cases.

Risk score ranked genes are enriched in key cancer pathways.
Next, we investigated for each cancer site what genes are most
important in the meta-learning model (Fig. 5, Supplementary
Tables 1–6). In gliomas, the high-risk genes are associated with
viral carcinogenesis (p value= 0.002), Herpes simplex infection
(p value= 0.007), cell cycle (p value= 0.03), apoptosis (p value=
0.03), DNA damage response (p value= 0.04), all of which are
also enriched in gene set enrichment analysis with positive
enrichment scores (Fig. 5a). The low-risk genes are associated
with HSF1 activation (p value= 0.02) which is involved in
hypoxia pathway, and tryptophan metabolism (p value= 0.04),
the latter is also enriched in gene set enrichment analysis with
negative enrichment score. Tryptophan catabolism has been
increasingly recognized as an important microenvironmental
factor in anti-tumor immune responses44 and it is a common
therapeutic target in cancer and neurodegeneration diseases45.

In head and neck cancer, the high-risk genes are associated
with PTK6 signaling (p value= 0.01), which regulates cell
cycle and growth, and cytokines and inflammatory response
(p value= 0.009). The low-risk genes are associated with
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Fig. 3 C-Index for target cancer survival prediction, comparing combined learning, regular pre-training and meta-learning. The figure shows results for
lung cancer (top panel), glioma (middle panel) and head and neck cancer (bottom panel).

Table 2 Integrated Brier scores (IBS) with 95% confidence
intervals (n= 25 trials) for target cancer survival prediction
with 20 samples, unless specified otherwise.

Method Glioma Lung cancer HNSC

Direct (250 samples) 0.24 ± 0.02 0.19 ± 0.01 0.20 ± 0.01
Direct (150 samples) 0.25 ± 0.01 0.19 ± 0.01 0.21 ± 0.01
Direct 0.30 ± 0.02 0.24 ± 0.02 0.30 ± 0.02
Combined 0.29 ± 0.02 0.21 ± 0.02 0.26 ± 0.02
Pre-training 0.31 ± 0.02 0.23 ± 0.02 0.26 ± 0.02
Meta-learning 0.28 ± 0.01 0.16 ± 0.01 0.16 ± 0.00

Lower value is better. Best performing method in bold.
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Pathway Gene ranks NES Pval
Renin–angiotensin system,KEGG 1.71 1.0e–02

Viral carcinogenesis,KEGG 1.53 1.4e–03
Hepatitis C,KEGG 1.51 4.6e–03

Phototransduction,KEGG 1.51 4.2e–02
Epstein–Barr virus infection,KEGG 1.49 3.4e–03

Small cell lung cancer,KEGG 1.40 3.0e–02
Herpes simplex infection,KEGG 1.38 2.1e–02

p53 signaling pathway,KEGG 1.37 4.9e–02
Cushing syndrome,KEGG 1.30 5.0e–02

Tryptophan metabolism,KEGG –1.55 2.3e–02
TP53 regulates transcription of cell death genes 1.92 1.1e–03

Mitotic G1–G1–S phases 1.65 1.7e–02
Apoptosis 1.65 2.5e–03

Integrated breast cancer pathway 1.62 6.3e–03
Prostaglandin synthesis and regulation 1.60 1.2e–02

Oxidative damage 1.57 1.7e–02
Interferon alpha–beta signaling 1.53 3.9e–02

G1 to S cell cycle control 1.50 2.0e–02
Preimplantation Embryo 1.50 2.7e–02
IL17 signaling pathway 1.47 4.7e–02

BDNF–TrkB signaling 1.46 4.4e–02
DNA damage response 1.42 3.3e–02

Cell cycle 1.34 3.9e–02
Protein alkylation leading to liver fibrosis –1.42 4.5e–02

Peptide GPCRs –1.42 4.2e–02
Tryptophan metabolism –1.45 4.0e–02

Transcription factor regulation in adipogenesis –1.57 2.8e–02
0 4000 8000 12,000 16,000

Pathway Gene ranks NES Pval
African trypanosomiasis,KEGG 1.71 6.4e–03

Proteasome,KEGG 1.61 1.1e–02
Cell cycle,KEGG 1.52 6.4e–03

beta–Alanine metabolism,KEGG 1.50 3.8e–02
Pathogenic Escherichia coli infection,KEGG 1.48 2.8e–02

Mineral absorption,KEGG 1.45 4.0e–02
Proteoglycans in cancer,KEGG 1.35 1.8e–02

Protein processing in endoplasmic reticulum,KEGG 1.34 2.9e–02
Hepatocellular carcinoma,KEGG 1.30 4.0e–02
cAMP signaling pathway,KEGG –1.32 3.1e–02

Toxoplasmosis,KEGG –1.36 3.6e–02
FoxO signaling pathway,KEGG –1.39 2.2e–02

Autophagy,KEGG –1.48 9.7e–03
Fc epsilon RI signaling pathway,KEGG –1.54 1.4e–02

B cell receptor signaling pathway,KEGG –1.56 9.6e–03
Autophagy,KEGG –1.48 9.7e–03

NAD+ biosynthetic pathways 1.68 1.4e–02
Cell cycle 1.56 4.0e–03

Cytokines and inflammatory response 1.52 4.4e–02
Photodynamic therapy-induced NF-kB survival signaling 1.50 3.5e–02

Tumor suppressor activity of SMARCB1 1.50 3.7e–02
Pathogenic Escherichia coli infection 1.48 2.8e–02

Interleukin-4 and Interleukin–13 signaling 1.44 2.1e–02
Proteasome degradation 1.44 3.1e–02

Parkin–ubiquitin proteasomal system pathway 1.37 5.0e–02
Structural pathway of Interleukin 1 (IL-1) –1.42 4.8e–02

MicroRNAs in cardiomyocyte hypertrophy –1.49 1.6e–02
Hematopoietic stem cell gene regulation by GABP alpha–beta complex –1.51 4.4e–02

miRNA regulation of prostate cancer signaling pathways –1.53 3.1e–02
IL-1 signaling pathway –1.54 1.4e–02

Differentiation of white and brown adipocyte –1.56 2.9e–02
Type II diabetes mellitus –1.67 1.6e–02

Fatty acid biosynthesis –1.84 3.0e–03
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Pathway Gene ranks NES Pval
Pentose phosphate pathway,KEGG 1.99 5.6e–04

Chronic myeloid leukemia,KEGG 1.73 1.3e–03
Glioma,KEGG 1.70 2.0e–03

Bladder cancer,KEGG 1.68 6.3e–03
Melanoma,KEGG 1.68 3.2e–03

Tuberculosis,KEGG 1.52 2.9e–03
Phospholipase D signaling pathway,KEGG 1.50 5.6e–03

MicroRNAs in cancer,KEGG 1.45 9.7e–03
Type I diabetes mellitus,KEGG –1.67 7.7e–03

Mammary gland development pathway - pregnancy and lactation (stage 3 of 4) 1.97 5.6e–04
Retinoblastoma gene in cancer 1.89 4.0e–05

Non-genomic actions of 1,25 dihydroxyvitamin D3 1.88 3.2e–04
LTF danger signal response pathway 1.75 8.9e–03

Fluoropyrimidine activity 1.71 7.2e–03
Signaling of hepatocyte growth factor receptor 1.67 8.3e–03

Non-small cell lung cancer 1.58 9.0e–03
Nanoparticle triggered autophagic cell death –1.83 3.7e–03
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Fig. 5 Gene set enrichment analysis of the ranked gene list in (a) Glioma (b) Head and neck cancer (c) Lung cancer. The gene set databases used in this
analysis included Kyoto Encyclopedia of Genes and Genomes (KEGG) and WikiPathways. Pval enrichment p-value, NES normalized enrichment score. In a
and b the enrich pathways with p value below 0.05 were displayed. In c the enrich pathways with p value below 0.01 were displayed.
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autophagy (p value= 0.02), which is also enriched in gene set
enrichment analysis. Other enriched pathways include B cell
receptor signaling pathway, cell cycle, and interleukin 1 signaling
pathway (Fig. 5b). Interleukin 1 is an inflammatory cytokine
which plays a key role in carcinogenesis and tumor progression46.

In lung cancer, the top high-risk genes are associated with
“non-small cell lung cancer” pathway (p value= 0.01), tubercu-
losis (p value= 0.008), Hepatitis B and C virus infection
(p value= 0.03), and many pathways implicated previously in
cancer. These pathways are also enriched in gene set enrichment
analysis (Fig. 5c). Pulmonary tuberculosis has been shown to
increase the risk of lung cancer47,48. The low-risk genes are
associated with energy metabolism (p value= 0.03), ferroptosis
(p value= 0.037), and AMPK signaling pathway (p value=
0.046), all related to energy metabolism, particularly lipid
metabolism. AMPK signaling pathway activation by an AMPK
agonist was shown to suppresses non-small cell lung cancer
through inhibition of lipid metabolism22. AMPK signaling and
energy metabolism are also enriched in gene set enrichment
analysis. Other enriched pathways include Notch signaling,
interleukin signaling, ErbB signaling, and signaling pathways
regulating pluripotency of stem cells.

Validation on the small sample rare cancer cohort. Next we
conduct validation on the small sample rare cancer cohort. It is
shown that meta-learning achieves similar or better performance
than regular pre-training, combined learning, or small sample
direct learning (Fig. 6). The mean C-index for meta-learning is
0.66 (0.63–0.69 95% CI), compared to 0.62 (0.59–0.64 95% CI)
for regular pre-training, 0.65 (0.63–0.67 95% CI) for combined
training, and 0.60 (0.59–0.62 95% CI) for small sample direct
learning.

Validation on the independent lung cancer cohort. Finally, we
test on the independent lung cancer cohort. We use the same
meta-learnt and pre-trained models that are trained with TCGA
data for the lung cancer target site. On this cohort, it is shown

that meta-learning has better performance than regular pre-
training, combined learning, or small sample direct learning
(Fig. 7). The mean C-index for meta-learning is 0.63 (0.61–0.65
95% CI), compared to 0.58 (0.55–0.61 95% CI) for regular pre-
training, 0.59 (0.55–0.64 95% CI) for combined training, and 0.54
(0.50–0.58 95% CI) for small sample direct learning.

Discussion
Previous studies have shown that when analyzing high-dimensional
genomic data, deep learning survival models can achieve compar-
able or superior performance compared to other methods (e.g., Cox
elastic net regression, random survival forests)49. However, the
performance of deep learning is often limited by the relatively small
amount of available data15. To address this issue, our work
investigates different deep learning paradigms to improve the
performance of deep survival models, especially in the setting of
small size training data.

In previous studies the most common way to build deep sur-
vival models is to train neural networks with a large number of
target task training samples from scratch, a process we call direct
training. Direct training with a large sample size (e.g. n= 250)
can thus be considered as a baseline. As expected, the perfor-
mance of direct training drops when the number of training
samples decreases (e.g. from n= 150 to n= 20). On the other
hand, combined learning, regular pre-training, and meta-learning
all leverage additional data from other sources, thereby enabling
them to achieve better performances when the training sample
size is small. We use a small number of target cancer site training
samples (e.g. n= 20) with these methods and investigate their
performance.

When only small (task) sample sizes are available for meta-
training, a Bayesian approach to meta-learning is an option50,51.
Although Bayesian meta-learning with few(er) training tasks has
shown less meta-overfitting (on training tasks) and performance
improvements over regular meta-learning in low-dimensional
settings, in high-dimensional settings the improvement is
marginal51.
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Fig. 6 C-Index for survival prediction on the mesothelioma cohort, comparing small (20) size sample direct learning, combined learning, regular pre-
training, and meta-learning. n= 45 testing samples from mesothelioma cohort over 10 independent experiments. The upper and lower bars in the box-
plots represent the largest and smallest data points excluding any outliers. The upper and lower bounds of the boxes represent the 25th percentile and 75th
percentile of the data, respectively. The middle bars represent the median of the data.
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It is important to note that combined learning, regular pre-
training, and meta-learning are exposed to exactly the same
information, but differ only in their algorithms. Combined
learning is a one-stage learning process, whereas pre-training and
meta-learning are two-stage learning methods. Meta-learning
shows better predictive performance than combined or regular
pre-training, indicating that it is able to adapt to a new task more
effectively due to the improved optimization algorithm targeting
the few-sample training environment.

It has been shown that methods which use only target task data
(direct learning with different size samples) and methods which
use additional information (combined, pre-training and meta-
learning) perform differently, and one type of approach may be
better than the other on different cancer sites. For example, on
glioma, direct learning tends to do better overall; whereas on lung
cancer, the other methods outperform direct learning. This may
be due to that fact that the amount of information that can be
learnt from related data versus from the target data is different for
each cancer site. If there is significant information within the
target cancer samples alone, then direct training will be more
effective than learning from other cancer samples. On all three
cancer sites we observe that meta-learning achieves similar or
better performance than medium-size direct training, and out-
performs large-size direct training in some cases. However, the
advantage of meta-learning may not generalize to every cancer
site. Certain cancers may have very unique characteristics so that
transfer of information from other cancers may not help in
prediction regardless of improved adaptivity. For the three cancer
sites, the affinity of each target cancer to other types of cancers in
the pan-cancer data aids the performance of meta-learning, which
efficiently transfers the information from other cancers to the
target cancers. On the other hand, some cancers are more dis-
similar from other cancer sites which makes information transfer
difficult. For example, for another cancer site, kidney cancer,
specifically kidney renal clear cell carcinoma (KIRC) and kidney
renal papillary cell carcinoma (KIRP), both meta-learning and
pre-training do not produce good survival prediction. This can be
visualized in Supplementary Fig. 1, comparing the affinity

between different target cancers with the rest of the cancers on a
t-distributed stochastic neighbor embedding (t-SNE) graph.
Therefore, in order for meta-learning to achieve good perfor-
mance, the related tasks training data need to contain a reason-
able amount of transferable information to the target task.

The performance of meta-learning can be explained by the
learned learning algorithm at the meta-learning stage where the
model learns from related tasks. We further investigate how to
optimize meta-learning performance. We examine results from
two sampling approaches when forming one task, where we either
draw samples only from one cancer, or draw samples from
multiple types of cancer. It is a more natural choice to consider
each cancer type as a separate task, but we found that the latter
leads to improved performance. To explain this improvement, we
examine the gradient of the meta-learning loss function. It can be
shown that the gradient of the loss function contains a term that
encourages the gradients from different minibatches for a given
task to align in the same direction (Supplementary Note 1). If the
two minibatches contain samples from the same type of cancer,
their gradient might already be very similar and thus this higher
order term would not have a large effect. On the other hand, if the
second minibatch contains samples from a different type of
cancer than the first, the algorithm will learn something that is
common to both of them and thereby help to improve
generalization.

From a molecular point of view, certain cancer types are related
to each other and there is an inherent presence of inter-
dependency. For example, colon and rectal cancers are found to
have considerably similar patterns of genomic alteration52. In our
work, the multi-task training data contains many cancer sites
including cancer sites that may have inter-dependencies. We did
not focus on modeling the inter-dependencies within the multi-
task training data, but on transferring information from the
multi-task data to the new tasks. However, handling cross-task
relations in meta-learning is an interesting topic that could
potentially improve generalization further. Recent work has
proposed methods to accommodate the relations between tasks53.
This would be worth investigating in future work.
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Fig. 7 C-Index for survival prediction on the independent lung cancer cohort, comparing small (20) size sample direct learning, combined learning,
regular pre-training, and meta-learning. n= 64 testing samples from lung cancer cohort over 10 independent experiments. The upper and lower bars in
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The gene set enrichment analysis results validate our model for
prioritizing the genes for survival predication. In the three cancer
types investigated, the resulting gene lists are enriched in key
pathways in cancer including cell cycle regulation, DNA damage
response, cell death, interleukin signaling, NOTCH signaling
pathway, etc.

Apart from the well-recognized cancer pathways, our results
also reveal potential players affecting cancer development and
prognosis, that are not well-studied yet. Viruses have been linked
to the carcinogenesis of several cancers, including human papil-
loma virus in cervical cancer, hepatitis B and C viruses in liver
cancer, and Epstein-Barr virus in several lymphomas and naso-
pharyngeal carcinoma54. Our results further suggest that viruses
might also play a role in glioma and lung cancer, where the high-
risk genes are enriched in several viral carcinogenesis pathways.
In gliomas, the enriched pathways that are unfavorable for sur-
vival include Epstein-Barr virus and herpes simplex infection. In
lung cancer, both hepatitis B and C virus infection pathways are
enriched. This suggests that that hepatotropic viruses may affect
the respiratory system, including the association with lung cancer.
For example, hepatitis B virus infection has been associated with
poor prognosis in patients with advanced non-small cell lung
cancer55. The role of Epstein-Barr virus in gliomagenesis have
also been studied but the results remain inconclusive56. Whether
these viruses do play a role in carcinogenesis and further affect
cancer prognosis, or the association we observed reflects an
abnormal immune system that is unfavorable for the survival of
cancer patients remains to be investigated.

While it would be interesting to decipher the mechanisms of
viral infections in tumorigenesis in these cancers, it is difficult to
establish a direct link using genomic analysis from currently
available data. More well-designed experiments are needed. That
being said, the field of viral infections in tumorigenesis is under
active research now and there are several interesting studies that
suggest a wider role of viral infections in cancer. The recent study
of viral landscape in cancer by Pan-Cancer Analysis of Whole
Genomes (PCAWG) Consortium57 examined whole genome and
whole transcriptome sequencing data from 2658 cancers across
38 tumor types. Apart from the well-known viral etiology in
cancer (HPV in cervical cancer and head and neck cancer, HBV
in liver cancer, and EBV in gastric cancer), the study also found
frequent appearance of herpesviruses (EBV and HHV-6B) in
brain cancers. A 2018 study in Neuron58 found frequent presence
of herpesviruses in the brain tissues. Although this study is
designed to study Alzheimer’s disease, the fact that herpesviruses
are frequently found in brain tissues warrants further research of
the role of herpesviruses in not only neurodegenerative diseases,
but also cancer. A 2018 study in Cancer Research59 found virus
infection shapes the tumor immune microenvironment and
genetic architecture of six virus-associated tumor types. They
found that EBV infection was associated with decreased receptor
diversity in multiple cancers. The altered immune profile in the
tumor microenvironment may affect tumor progression and
patient survival, but more study is needed to confirm it.

As for the enriched pathways that are favorable for cancer
survival, we identified pathways related to metabolism, in parti-
cular, lipid metabolism, in all the three cancer types investigated.
In glioma, the top enriched pathway favorable for cancer survival
is adipogenesis regulation. In head and neck cancer, differentia-
tion of adopocyte and fatty acid biosynthesis are top enriched
favorable pathways. In lung cancer, ferroptosis and AMPK sig-
naling pathway are both related to energy metabolism. Ferrop-
tosis is a process driven by accumulated iron-dependent lipid
ROS that leads to cell death. Small molecules-induced ferroptosis
has a strong inhibition of tumor growth and enhances the sen-
sitivity of chemotherapeutic drugs, especially in drug resistance60.

AMPK plays a central role in the control of cell growth, pro-
liferation, and autophagy through the regulation of mTOR
activity and lipid metabolism22,61. The link between cancer and
metabolism is worth investigating in future studies.

To conclude, in survival analyses one problem that researchers
have encountered is the insufficient amount of training samples
for machine learning algorithms to achieve good performances.
We address this problem by adapting a meta-learning approach
which learns effectively with only a small number of target task
training samples. We show that the meta-learning framework is
able to achieve similar performance as learning from a sig-
nificantly larger number of samples by using an efficient knowl-
edge transfer. Moreover, in the context of limited training sample
exposure, we demonstrate that this framework achieves superior
predictive performance over both regular pre-training and com-
bined learning methods on two types of target cancer sites.
Finally, we show that meta-learning models are interpretable and
can be used to investigate biological phenomena associated with
cancer survival outcome.

The problem of small data size may be a limiting factor in
many biomedical analyses, especially when studies are conducted
with data that is expensive to produce, or in the case of multi-
modal data12. Our work shows the promise of meta-learning for
biomedical applications to alleviate the problem of limited data.
In future work, we intend to extend this approach to analysis with
medical imaging data, such as histopathology data and radiology
data, for building predictive models on multi-modal data with
limited sets of patients.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used in this manuscript are publicly available. The TCGA Gene expression data
is version 2 of the adjusted pan-cancer gene expression data obtained from Synapse:
https://www.synapse.org/#!Synapse:syn4976369.2. The independent lung cancer data can
be obtained from: https://wiki.cancerimagingarchive.net/display/Public/NSCLC
+Radiogenomics. The databases used in gene set enrichment analysis are publicly
available: Kyoto Encyclopedia of Genes and Genomes (KEGG) at https://www.genome.
jp/kegg/; the Reactome Pathway Knowledgebase at https://reactome.org/download-data;
and WikiPathways at https://www.wikipathways.org/index.php/Download_Pathways.
The remaining data are available within the Article, Supplementary Information or
available from the authors upon request.
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The code used to analyze the data in this manuscript is in the GitHub repository with
URL: https://github.com/gevaertlab/metalearning_survival62.
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