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Abstract

Temporal point-processes are often used for
mathematical modeling of sequences of dis-
crete events with asynchronous timestamps.
We focus on a class of temporal point-process
models called multivariate Wold processes
(MWP). These processes are well suited to
model real-world communication dynamics.
Statistical inference on such processes often
requires learning their corresponding param-
eters using a set of observed timestamps. In
this work, we relax some of the restrictive
modeling assumptions made in the state-of-
the-art and introduce a Bayesian approach for
inferring the parameters of MWP. We develop
a computationally efficient variational infer-
ence algorithm that allows scaling up the ap-
proach to high-dimensional processes and long
sequences of observations. Our experimen-
tal results on both synthetic and real-world
datasets show that our proposed algorithm
outperforms existing methods.

1 INTRODUCTION

Multivariate point-processes provide powerful tools to
gain insight on the behavior of complex systems such
as social networks (Blundell et al., 2012), networks of
neurons (Monti et al., 2014), financial markets (Namaki
et al., 2011), and television records (Xu et al., 2016).

Wold processes (Daley and Jones, 2003; Wold, 1948),
akin to Hawkes processes (Hawkes, 1971), are a type
of multivariate point-process that are well suited for
modeling discrete events. They are defined in terms
of a Markovian joint distribution of inter-event times.
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Specifically, the times between consecutive events ti−1

and ti, also called inter-event times δi := ti− ti−1, form
a Markov chain such that the distribution

p(δi|δi−1, δi−2, ..., δ1) = p(δi|δi−1).

Wold processes are suitable for modeling the dynamics
of complex systems, and their inherent Markovian prop-
erty facilitates the learning task (Vaz de Melo et al.,
2013, 2015). The interactions among the processes of a
multivariate Wold process (MWP) can be visualized us-
ing a directed graph in which nodes and edges represent
processes and direct influences, respectively.

Recently, Vaz de Melo et al. (2015) showed that Wold
processes can model the dynamics of real-world commu-
nications more faithfully than the widely used Hawkes
processes. Figueiredo et al. (2018) then developed a
Markov Chain Monte Carlo (MCMC) sampling-based
algorithm, called Granger-Busca, to infer the param-
eters of a MWP. The choice of prior of the MCMC
algorithm in (Figueiredo et al., 2018) required cer-
tain restrictive assumptions on the network. For in-
stance, it required that every node in the underlying
network of MWP has at least one out-going edge, i.e.,
at least one child. Clearly, many practical systems
violate this assumption. Beside relaxing the limiting
assumptions in (Figueiredo et al., 2018), we propose
an efficient Bayesian algorithm for learning a general
class of MWPs. To achieve scalability, we propose a
variational inference (VI) approach to approximate the
high-dimensional posterior of the model parameters
given the data.

2 RELATED WORKS

The inference problem for multivariate point-process
has been mostly studied for Hawkes processes. The
main approaches for estimating the parameters of
Hawkes processes are of two flavors. Maximum
likelihood-based approaches estimate the parameters
from the likelihood of observations (Zhou et al., 2013;
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Yang et al., 2017; Trouleau et al., 2019), while cumulant-
based approaches learn the parameters of interest by
solving a set of equations obtained from various order
statistics of the Hawkes process (Hawkes, 1971; Bacry
and Muzy, 2014; Achab et al., 2017). Some studies
address the problem from a Bayesian perspective; e.g.,
in (Linderman and Adams, 2014), the authors develop
an MCMC sampling-based algorithm. Due to the long
memory of Hawkes processes, the method does not
scale well with the number of observations. To improve
the scalibility of such Bayesian methods, Linderman
and Adams (2015) proposed approximating continuous-
time Hawkes processes with a discrete-time formulation.
This led to a computationally efficient stochastic vari-
ational inference (VI) algorithm that scales well for
longer sequences of observations. More recently, Salehi
et al. (2019) proposed a black-box VI approach that
can learn the parameters of MHPs without discretizing
the process. Analogous to (Linderman and Adams,
2015), the Bayesian approach that we propose here
uses mean-field VI to learn the parameters of MWPs.

Recall that Wold processes are defined through a Marko-
vian transition probability distribution on the inter-
event times, i.e., p(δi+1|δi), which measures the prob-
ability of the next inter-event time δi+1, given the
preceding one. It turns out that for general Marko-
vian transition probabilities, this model is analytically
intractable (Guttorp and Thorarinsdottir, 2012). How-
ever, in the univariate setting, when the transition
probabilities have the exponential form p(δi+1|δi) =
f(δi) exp (−f(δi)δi+1), the process shows interesting
properties (Cox, 1955; Daley, 1982; Daley and Jones,
2003). In particular, the next inter-event time δi+1

is then exponentially distributed with rate f(δi). In
the case where f(δi) = λδ

−1/2
i , the stationary distribu-

tion of inter-event times can also be found via Mellin
transforms (Wold, 1948). Similarly, in the case where
f(δi) = β + αδi, the stationary distribution p(δi) has
the form (β +αδi)

−1 exp (−βδi). Analytical properties
of a specific type of MWP that is an infinite process
defined on the unit circle are discussed in Isham (1977).

Recent efforts consider variations of the exponential
Wold process (Vaz de Melo et al., 2013; Alves et al.,
2016). Instead of defining the Wold process in terms
of its inter-event exponential rate, these works define
the process in terms of the conditional mean of an
exponentially distributed random variable E[δi|δi−1] =
β + αδi−1. This class of point processes is called a
self-feeding process. This form of Wold process is able
to capture both exponential and power-law behavior,
which often occur simultaneously in real data. Re-
alizations of this process tend to generate bursts of
intense activity, followed by long periods of silence.
Vaz de Melo et al. (2015) use self-feeding processes

to model the time intervals between communication
events for different technologies and means of com-
munications, including short-message services (SMSs),
mobile phone-calls, and e-mail transactions. Building
on this work, Figueiredo et al. (2018) proposed a multi-
variate version of the self-feeding process and developed
an MCMC sampling-based algorithm to learn the pa-
rameters. However, the approach requires restrictive
structural assumptions on the network of the process,
which limits the applicability of the model.

3 MODEL

In this section, we describe the model and the nota-
tion used throughout the paper. We first define the
univariate Wold process, and then generalize it to the
multivariate case.

A temporal point-process P is a probability model for
a collection of times {0 ≤ t0 < t1 < t2 < · · · } that
index the occurrences of random asynchronous events.
Let N(a, b] denote the random number of events of the
process P in the interval (a, b], and let Ht denote the
history of the process P up to, but not including, time t.
The distribution of a point process is characterized by
its conditional intensity function and is defined as

λ(t|Ht)dt = p(N(t, t+ dt] > 0 | Ht)
= E[N(t, t+ dt] | Ht].

Let D , {δi = ti − ti−1}i≥1 denote the sequence of
inter-event times. P is called a Wold process if the
distribution over the inter-events is Markovian, i.e.,

p(δi+1|δi, δi−1, · · · , δ1) = p(δi+1|δi).

The form of the transition probability specifies the
class of Wold process. For instance, in this work, we
consider the self-feeding process formulation where tran-
sition probabilities have the exponential form given by
p(δi+1|δi) = f(δi) exp(−f(δi)δi+1). In addition, we
consider f(δi) to be 1/(β + δi) so that the conditional
mean is linear (Vaz de Melo et al., 2015; Alves et al.,
2016).

Now, to define the MWP, consider a set of Wold pro-
cesses P =

⋃K
k=1 Pk that are observed simultaneously,

where Pk = {tk,0 < tk,1 < . . .} and tk,i denotes the
i-th event in the k-th process (also called dimension).
At a given time t, the conditional intensity of the
k-th process depends on the last inter-event times
{∆k′,k(t) : k′ ∈ [K]}, where [K] := {1, ...,K} and

∆k′,k(t) := sk(t)− sk′(sk(t)).

In this definition, sk(t) is the last event time of process
k before time t, i.e., sk(t) := max{tk,i : tk,i < t},



Jalal Etesami, William Trouleau, Negar Kiyavash, Matthias Grossglauser, Patrick Thiran

∆

∆

′

0

1

2

0

1

2

time

Figure 1: Illustration of the Wold process dynamics on a simple toy example with 2 processes, where process
k is influenced by process k′ and by itself, i.e., αk′,k > 0 and αk,k > 0, and process k′ also influences itself. At
the highlighted time t, the intensity in process k depends on the two highlighted inter-event times ∆k′,k(t) and
∆k,k(t), which remain constant until the next event in process k.

and sk′(sk(t)) is the last event of process k′ preceding
the event sk(t), i.e., sk′ (sk(t)) := max{tk′,j : tk′,j <
sk(t) < t}. An illustration of the process is shown in
Figure 1. The conditional intensity function of the k-th
process is then

λk(t|Ht) = µk +

K∑
k′=1

αk′,k
βk′,k + ∆k′,k(t)

, (1)

where µk ≥ 0 is its background rate, and the influence
of process k′ on process k at time t is captured by
αk′,k/(βk′,k + ∆k′,k(t)). The parameter αk′,k ≥ 0 is
the weight of the influence and βk′,k > 0 ensures the
stability of the process, i.e., that the expected number
of events stays finite in a finite time horizon (Daley
and Jones, 2003).

Unlike the Hawkes process, the Wold process has finite
memory because of its Markov property. In addition,
because ∆k′,k(t) changes only when there is an event in
dimension k, a given process k in a MWP is influenced
by other processes (including itself) only when an event
occurs in process k, as illustrated in Figure 1.

In Hawkes processes, the structure of the causal net-
work is encoded in the support of the excitation ma-
trix (Eichler et al., 2017; Etesami et al., 2016). There-
fore, learning the support of the excitation matrix is
sufficient for recovering the network structure. Anal-
ogously, one can gather the influences among dimen-
sions of a MWP in a matrix called the influence ma-
trix G(t) = [αk′,k/(βk′,k + ∆k′,k(t))]Kk′,k=1. The main
reason for this name is that the influence matrix cap-
tures the Granger causality in the network of the MWP.
Specifically, the support of G(t) is the adjacency matrix
of the corresponding Granger-causal network. Granger
(1969) introduced a notion of causal relationships in
a network of time series, which states that process X

Granger-causes another process Y , i.e., X → Y , if the
past information of X can provide statistically signif-
icant information about the future of Y . Based on
this definition, a point process k′ influences another
point process k if λk(t|Ht) 6= λk(t|Ht \Hk

′

t ), where Hk′t
denotes the history of process k′ up to time t. This
condition in the network of Wold processes is equivalent
to [G(t)]k′,k 6= 0. See Appendix A for more details.

In this work, we learn the set of parameters

µ := {µk : k ∈ [K]},
α := {αk′,k : k′, k ∈ [K]},

and β := {βk′,k : k′, k ∈ [K]}.

It is worth emphasizing that the algorithm proposed in
(Figueiredo et al., 2018) assumes that

∑K
k=1 αk′,k = 1

and βk′,k = βk for all k′ ∈ [K]. Herein, we relax all
these restrictive assumptions.

4 METHOD

4.1 Maximum Likelihood Estimation

Suppose that we observe a sequence of discrete events
P =

⋃K
k=1 Pk over an observation period [0, T ) gen-

erated by a MWP. The generic approach to infer the
parameters of the model is to use regularized maximum-
likelihood estimation. The design of regularization de-
pends on the problem at hand, as well as the necessary
conditions we are imposing, e.g., positivity or sparsity
of the parameters. The log-likelihood function of a
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multivariate point-process can be written as

log p(P|β,α,µ) =
∑
k

∑
tk,i∈Pk

log λk(tk,i|Ht)

−
∑
k

∫ T

0

λk(t|Ht)dt.
(2)

The specific form of Wold process defined in (1), makes
the log-likelihood function non-convex with respect
to β. Moreover, maximum-likelihood estimation of
point processes typically scales poorly to high dimen-
sional settings. Therefore, we use a variational inference
approach to circumvent both issues of non-convexity
and scalability.

4.2 Variational Inference

Variational inference (VI) is a method for approximat-
ing the posterior distribution over the model parame-
ters given the observations. In order to represent the
posterior in a tractable form, it is common to define an
auxiliary variable that relates the parameters and the
observations (Simma and Jordan, 2010; Linderman and
Adams, 2015; Figueiredo et al., 2018). Observing that
the conditional intensity in (1) is a summation of K+1
terms, we can use the superposition theorem of point
processes to define the parent of each event (Daley and
Jones, 2003; Linderman and Adams, 2014). More pre-
cisely, we define an auxiliary variable zk,i for each event
tk,i to be a one-hot vector that indicates the cause of
that event. This cause is either the background rate
µk or one of the processes in [K]. Specifically,

zk,i = [z
(0)
k,i , z

(1)
k,i , · · · , z

(K)
k,i ].

where z(0)
k,i is 1 if and only if tk,i was caused by the

background rate µk or z(k′)
k,i is 1 if and only if tk,i was

caused by process k′. As an event has only one cause
(or parent), zk,i is a one-hot vector, which means that∑K

k′=0 z
(k′)
k,i = 1 for all k and i.

Our approach is conceptually similar to the VI algo-
rithm proposed in (Linderman and Adams, 2015) for
learning Hawkes processes. However, because Hawkes
processes suffer from long memory, each preceding event
is a potential parent, so the number of auxiliary vari-
ables increases exponentially with the number of events.
To overcome this issue, Linderman and Adams (2015)
approximate the Hawkes process by discretizing time,
which has the drawback of introducing an approxima-
tion error. In contrast, as a result of the Markovian
nature of MWPs, only the preceding events of each
dimension are the potential parents. Thus, the number
of potential parents of an event remains constant.

Having defined the auxiliary variable z, we approxi-
mate the posterior distribution p (µ, z,α,β|P) with

a variational distribution q (µ, z,α,β) that minimizes
the KL-divergence between p and q. In particular, VI
solves for the optimal variational distribution that min-
imizes the KL-divergence, or equivalently it maximizes
the evidence lower bound (ELBO), given by

ELBO(q) = Eq [log p (µ, z,α,β,P)]

− Eq [log q (µ, z,α,β)] .
(3)

We consider a mean-field approximation for the vari-
ational distribution. In such an approximation, the
variational parameters are assumed to be independent.
Therefore,

q (µ, z,α,β) =

K∏
k=1

q(µk)×
K∏
k=1

|Pk|∏
i=1

q(zk,i)

×
K∏
k=1

K∏
k′=1

q (αk′,k) q (βk′,k) .

(4)

Using this approximation and coordinate ascent for
maximizing (3), we obtain the variational distributions
{q(µk), q(zk,i), q (αk′,k) , q (βk′,k)} by selecting appro-
priate prior distributions over the parameters. Coordi-
nate ascent is a commonly used optimization method in
VI. It iteratively updates each factor of the mean-field
variational density while holding the others unchanged
(Wang and Blei, 2013). Next, we give the variational
updates. Derivation of these updates can be found in
Appendix B.

Variational update of the auxiliary parent vari-
able zk,i. The definition of the auxiliary variable zk,i
implies that

∑K
k′=0 z

(k′)
k,i = 1. As shown in Appendix

B, this results in

q(zk,i) = Categorical (K + 1; p
(0)
k,i , ..., p

(K)
k,i ), (5)

where the probabilities

p
(0)
k,i ∝ exp

(
Eq(µk)[logµk]

)
and p(k′)

k,i ∝ exp
(
Eq(αk′,k)[log(αk′,k)]

− Eq(βk′,k)[log
(
βk′,k + ∆k′,k(tk,i)

)
]
)
,

∀k′ ∈ [K]

are normalized such that
∑K
k′=0 p

(k′)
k,i = 1. In the above

equations, the expectations are over the variational
distributions.

Variational update of αk′,k. Selecting a Gamma
distribution with shape ak′,k and rate bk′,k for prior of
αk′,k results in a Gamma mean-field approximation of
the posterior, given by

q(αk′,k) = Gamma (Ak′,k;Bk′,k) , (6)
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where

Ak′,k := ak′,k +

|Pk|∑
i=1

E
q(z

(k′)
k,i )

[z
(k′)
k,i ],

Bk′,k := bk′,k +

|Pk|∑
i=1

Eq(βk′,k)

[ tk,i − tk,i−1

βk′,k + ∆k′,k(tk,i)

]
.

Variational update of µk. Similar to α, we use the
Gamma distribution as the prior of µk with shape ck
and rate dk resulting in the posterior

q(µk) = Gamma (Ck;Dk) , (7)

where

Ck := ck +

|Pk|∑
i=1

E
q(z

(0)
k,i)

[z
(0)
k,i ],

Dk := dk +

|Pk|∑
i=1

(tk,i − tk,i−1).

Variational update of βk′,k. For this parameter,
we select the prior distribution to be Inverse-Gamma
with shape φk′,k and scale ψk′,k. This choice of prior
results in a variational distribution of βk′,k proportional
to

(βk′,k)−φk′,k−1e

(
−
ψ
k′,k
β
k′,k

)
|Pk|∏
i=1

[
(βk′,k + ∆k′,k(tk,i))

−E
[
z
(k′)
k,i

]

exp

(
− E[αk′,k](tk,i − tk,i−1)

βk′,k + ∆k′,k(tk,i)

)]
.

(8)

This form of the density function is not straightfor-
ward to work with as we need to compute E[log(βk′,k +
∆k′,k(t))] and E[1/(βk′,k + ∆k′,k(t))]. On the other
hand, the form of this distribution suggests that it can
be well-approximated by an inverse-Gamma distribu-
tion. Hence, we approximate this distribution with
an Inverse-Gamma and use the following variational
update

q(βk′,k) = Inverse-Gamma(Φk′,k; Ψk′,k), (9)

where Φk′,k and Ψk′,k are selected so that its moments
coincide with the moments of the distribution in (8).
This leads to the following form of the parameters

Φk′,k :=
wxw − vxv
xw − xv

− 1,

Ψk′,k :=
(w − v)xvxw
xw − xv

.

In these equations, w ≥ 1, w > v ∈ R+ and xw denotes
the smallest positive real root of equation gw(x) = 0,
where

gw(x) :=
φk′,k + 1− w

x
+

|Pk|∑
i=1

E
q(z

(k′)
k,i )

[z
(k′)
k,i ]

x+ ∆k′,k(tk,i)
− ψk′,k

x2

−
|Pk|∑
i=1

Eq(αk′,k)[αk′,k](tk,i − tk,i−1)

(x+ ∆k′,k(tk,i))2
.

(10)

The following lemma guarantees the existence of such
an inverse-Gamma distribution.

Lemma 1. If 0 < φk′,k + 1 − w < φk′,k + 1 − v and
w ≥ 1, then Φk′,k and Ψk′,k exist and are positive.

Proof. Let gu(x) denote the function in (10). We have
limx→0+

gu(x) = −∞ and limx→∞ gu(x) = 0+ for
u = v, w. Thus, gu(x) has at least one positive real root.
Without loss of generality, let xv and xw be the small-
est positive real roots of gv(x) and gw(x), respectively.
Given the assumption in the lemma, it is clear that
gv(x) > gw(x) for x > 0. Hence, 0 = gv(xv) > gw(xv)
and gv(xw) > gw(xw) = 0. Since xw is the small-
est positive root of gw(x), limx→0+

gu(x) = −∞, and
gw(xv) < 0, then xw > xv. Now, using the facts that
w > v and w ≥ 1, and the equations of Φk′,k and Ψk′,k,
we conclude the proof.

In Section 5.3, we provide an example of realizations
of the distribution in (8) to illustrate the goodness of
this approximation.

5 EXPERIMENTAL RESULTS

We now provide a comparison of our VI approach with
state-of-the-art approaches in two sets of experiments.
We first simulate synthetic realizations of MWPs, where
the ground-truth parameters are known, to measure the
performance and efficiency of each approach to recover
the influence matrix. Subsequently, we evaluate our ap-
proach on two real-world datasets of multivariate asyn-
chronous time series. For reproducibility, we provide
a detailed description of the setup of each experiment
in Appendix E and make the code publicly available
online at https://github.com/trouleau/var-wold.

5.1 Experiments on Synthetic Data

To simulate MWPs, we generated Erdös–Rényi random
graphs with K nodes. We sampled background rates
{µ∗k} from Uniform[0, 0.05], edge weights {α∗k′,k} from
Uniform[0.1, 0.2] for all edges, and parameters {β∗k′,k}
from Uniform[1, 2], all independently. To evaluate the
scalability of an approach with respect to the number

https://github.com/trouleau/var-wold
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of dimensions, we varied the number of dimensions K
between 5 and 50 nodes. The results are averaged over
5 graphs with 4 realizations of MWPs for each graph,
with an average of 10 000 training events per dimension.
We compared the performance of our approach, denoted
as VI, with three other methods:

GB. The MCMC sampling-based approach Granger-
Busca from (Figueiredo et al., 2018) is the
only other approach designed for MWPs.
Note that GB does not estimate a posterior
for {βk′,k}, but instead uses the data-driven
heuristic βk′,k = median({tk,i+1 − tk,i|tk,i ∈
Pk})/ exp(1), referred to as Busca, as advised
by the authors.

BBVI. To compare with another method based on
VI, we adapted the approach in (Salehi et al.,
2019), originally designed for Hawkes processes,
for learning MWPs. The approach is based on
black-box VI and the variational EM algorithm.
Details of the adaptation are provided in Ap-
pendix E.1.

MLE. For a simple baseline, we also compared
with maximum-likelihood estimation with a
Tikhonov regularizer.

Note that the three Bayesian approaches VI, BBVI, and
GB estimate a posterior over the parameters rather than
a point-estimate as done in MLE. Therefore, we use the
mean of the posteriors to evaluate the performance of
the estimated influence weights {α̂k′,k}.

To evaluate the performance of each approach in learn-
ing the influence matrix of the processes, we compared
the estimated {α̂k′,k} with the ground-truth {α∗k′,k}
using three metrics common in the literature (Xu et al.,
2016; Figueiredo et al., 2018; Salehi et al., 2019):

• Relative error. To evaluate the distance of
the estimated weights to the ground-truth ones,
we computed the averaged relative error defined
as |α̂k′,k − α∗k′,k|/α∗k′,k when α∗k′,k 6= 0, and
α̂k′,k/(minα∗n,m>0 α

∗
n,m) when α∗k′,k = 0 (Xu et al.,

2016; Salehi et al., 2019).

• Precision@n. To assess the performance of the
approaches at recovering the top edges, we used
precision@n, which is defined as the average frac-
tion of correctly identified edges in the top n largest
estimated weights (Figueiredo et al., 2018).

• PR-AUC. Considering that an edge exists in the
influence matrix if the learned value α̂k′,k > η, we
evaluate the performance of the resulting binary
edge classification problem using the area under
the precision-recall curve over all thresholds η > 0.

Our results are depicted in Figure 2. As shown in
Figure 2a-2c, both VI and BBVI outperform GB and
MLE on all metrics. Despite the non-convexity of
the problem, both methods achieve an almost perfect
precision@10 and PR-AUC for all numbers of dimen-
sions. On the other hand, MLE showed a large variance
in the estimated parameters1.

The computational complexity per iteration is of order
O(|P|K) for our VI algorithm and O(|P| logK) for GB,
where |P| is the total number of events and K is the
number of dimensions. However, note that each update
of our VI approach is easily parallelizable over each of
the K2 edges, while GB can only be parallelized over
each of the K nodes. We also observed that VI empir-
ically requires fewer iterations to converge compared
to GB. To show this, we compared the runtime of each
method in Figure 2d. Note that all methods were imple-
mented in Python, GB was compiled in Cython, and VI
used just-in-time compilation with the library Numba.
To make runtime comparison fair, all methods were run
on a single core on the same machine. Although both
VI and BBVI perform well, the runtime of VI is about
one order of magnitude faster than BBVI and is similar
to GB. More details are available in Appendix C.

5.2 Experiments on Real Datasets

We evaluated the approaches on two datasets from
the Snap Network Repository2: (1) the email-Eu-core
dataset that contains emails sent between collaborators
from a large European research institution (Paranjape
et al., 2017; Figueiredo et al., 2018), and (2) the Meme-
tracker dataset containing online blog posts (Leskovec
et al., 2009; Achab et al., 2017; Figueiredo et al., 2018).
We compare our VI approach on these datasets with
GB, which currently is the most scalable approach.
In (Figueiredo et al., 2018), the authors showed that
MWPs are better suited than Hawkes processes for
these two datasets.

Email-EU-core. The dataset consists of source
nodes (senders) that send events to destination nodes
(receivers) at some time. Each event is represented as
a triplet (source, destination, timestamp). Following
the same preprocessing as (Figueiredo et al., 2018),
we aggregated the events by receiver and considered
the top 100 receivers, i.e., those with the most events,
resulting in a total of 92 924 events. We hypothesize
that the ground-truth influence matrix is determined

1To highlight that the discrepancy of performance does
not come from the particular experimental setup, we present
additional results in Appendix C for an alternative exper-
imental setup matching the structural assumption of GB,
i.e., where

∑
k αk′,k = 1.

2https://snap.stanford.edu/data/

https://cython.org/
http://numba.pydata.org/
https://snap.stanford.edu/data/
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Figure 2: Results on synthetic data for varying number of dimensions K. Panels (a) (log-scale) relative error, (b)
precision@10, (c) PR-AUC and panel (d) (log-scale) empirical runtime of each approach in minutes.

by the number of emails sent by a sender to a receiver.
More precisely, the ground-truth was defined as a graph
whose nodes are both senders and receivers and whose
directed edges captured the flow of communication
from sender to receiver, weighted by fraction of re-
ceived emails. We used the first 75% of the dataset for
training and the remaining 25% for testing. We evalu-
ated the results for two tasks: (1) An edge-estimation
task where we evaluated the performance of each ap-
proach to recover the ground-truth influence matrix
of the training set, and (2) an event-prediction task
where we measured the predictive log-likelihood of the
two approaches on the held-out test set. Because both
approaches estimate the posterior distribution over the
parameters (in contrast with single point-estimators),
we characterized the uncertainty using Monte Carlo
samples of the parameters from the learned posterior
distributions, and we reported the mean and standard
deviations among these samples for all the reported
metrics.

The results on the Email-EU-core dataset are shown
in Table 1. VI outperfoms GB on all metrics. The
improvement can be explained by the fact that VI
relaxes the restrictive assumptions in GB, i.e., that∑K
k=1 αk′,k = 1 and βk′,k = βk ∀k ∈ [K], which we

discussed in Section 3.

MemeTracker. The dataset consists of the times
of publication of online blog posts along with the hy-
perlinks within. The dataset was originally collected
to analyze the propagation of short phrases, called
memes, and is often modeled as a multivariate point-
process (Rodriguez et al., 2014; Achab et al., 2017;
Figueiredo et al., 2018). To evaluate the performance
of their algorithms, (Achab et al., 2017) and (Figueiredo
et al., 2018) extracted a ground-truth influence matrix
based on hyperlink references among the websites and
reported the precision of their methods, which were
low. This could be explained by the presence of noise
in the dataset3, as well as by non-stationarity, (i.e.,
varying dynamics of the data over time), which were
reported in (Rodriguez et al., 2014). Therefore, for the
MemeTracker dataset, we focused on the predictive ca-
pability of our algorithm compared to GB by evaluating
the predictive log-likelihood on held-out data. More
precisely, we split the data into observation windows
of about 12 days, trained on each window and tested
on the following one. The log-likelihood values were

3The assumption that a hyperlink (source) appearing in
another blog (destination) implies a causal influence might
not be accurate. For example, a hyperlink can appear in
comments of a blog, unrelated from its main content.



A Variational Inference Approach to Learning Multivariate Wold Processes

Table 1: Results on the EU-email-core dataset.

PR-AUC Precision@10 Precision@50 Precision@200 Pred. log-likelihood

VI 0.33 (±0.00) 0.40 (±0.00) 0.40 (±0.00) 0.47 (±0.00) −5.64 (±1.16e−2)
GB 0.32 (±0.00) 0.20 (±0.00) 0.35 (±0.07) 0.43 (±0.03) −11.56 (±1.78e−2)
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Figure 3: Held-out predictive log-likelihood on the
MemeTracker dataset.

normalized by number of events4.

Figure 3 depicts the results on the MemeTracker
dataset. Again, to account for uncertainty in the esti-
mation, we also reported the mean and standard de-
viations of the predictive log-likelihood among Monte
Carlo samples of the parameters. We see that VI out-
performs GB for all observation windows. Moreover,
the values are not stable over time, confirming the find-
ings of Rodriguez et al. (2014) that the dynamics of
the data are indeed non-stationary.

5.3 Example of the q(βk′,k) Approximation

Next, we evaluate the goodness of the approximation
proposed in (9) for the update of βk′,k. To do so, we
considered two realizations of the distribution in (8),
given by

f1(β) ∝ β−1−1 · e−1/β · (β + 2.9)−0.2 · e−
0.6

β+2.9 ·

(β + 1.7)−0.8 · e
−1.6
β+1.7 , (11)

f2(β) ∝ β−3−1 · e−1/β · (β + 0.3)−0.3 · e
−1.6
β+0.3 ·

(β + 1.1)−1.8 · e
−0.4
β+1.1 · (β + 2)−0.1 · e

−.8
β+2 ,
(12)

and we computed their approximated Inverse-Gamma
distribution using (9). We display the resulting distri-
butions in Figure 4. The approximated Inverse-Gamma
distributions are denoted by f̃ and are obtained by se-
lecting v = 0 and w ∈ {1, 1.7}.

4For reproducibility, we provide the detailed preprocess-
ing steps in Appendix E.3.
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̃𝑓(1.7)

2 (𝛽)

Figure 4: Two examples of the distribution in (8)
and their corresponding Inverse-Gamma approximation
in (9). The Inverse-Gamma are denoted by tilde and
they are obtained by selecting v = 0 and w ∈ {1, 1.7}.

In order to measure the goodness of the approxima-
tion, we also present in Table 2 the KL-divergence
between (11) and (12) and their approximated Inverse-
Gamma distributions for several choices of w.

Table 2: KL-divergences between the distributions
in (11) and (12) and their approximations.

f̃ (1) f̃ (1.3) f̃ (1.7) f̃ (1.9) f̃ (2.5)

f1 0.0370 0.0272 0.0126 0.0070 –
f2 0.0296 0.0222 0.0151 0.0119 0.0062

6 CONCLUSION

We have addressed the problem of learning the param-
eters of multivariate temporal point-processes. This
problem has been widely studied for the multivariate
Hawkes process, but the long memory of such processes
makes Bayesian inference difficult. Due to its Marko-
vian intensity function, the Multivariate Wold process
does not suffer from the same shortcomings and has
therefore recently gained popularity in the literature.
We relaxed the limiting structural assumptions of the
only available state-of-the-art method and proposed
an efficient Bayesian algorithm based on variational
inference for multivariate Wold processes with expo-
nential transition probabilities. Our experiments on
both synthetic and real-world datasets show that our
approach outperforms the state-of-the art and is able to
accurately and efficiently recover the influence matrix
of the process.
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A Granger Causality in Multivariate Wold Processes

As we discussed, X Granger-causes Y if knowing the past of X improves our prediction of the future of Y given the
past of the remainder of the processes in the network. (Quinn et al., 2015) showed that directed information (DI)
(or transfer entropy) captures Granger causality in a network of stochastic processes. More precisely, X Granger-
causes Y iff H(Y |X,Z) 6= H(Y |Z), where H denotes the Shanon entropy and Z represents all the variables in the
network apart from X and Y . Using this notation and following the steps in (Etesami et al., 2016) and (Eichler
et al., 2017) that relate Granger causality and the intensity function of multivariate Hawkes processes. It can be
shown that in MWPs, dimension k′ causes dimension k at time t, if H(λk(t|Ht)|Ht) 6= H(λk(t|Ht)|Ht \ Hk

′

t ).

By the definition of the conditional intensity function of MWP, if αk′,k/(βk′,k + ∆k′,k(t)) = 0, then
H(λk(t|Ht)|Ht) = H(λk(t|Ht)|Ht \ Hk

′

t ). In other words, dimension k′ does not Granger cause dimension
k. As a result, the support of the influence matrix encodes the Granger-causal networkstructure of a MWP.

B Derivations of the Variational Inference Updates

In this section, we present the derivations of variational updates for the MWP parameters. From (Blei et al.,
2017), we know that maximizing the ELBO with the mean-field assumption implies that the variational update of
a parameter xj from the parameter set x given the observation set d has the following form

q(xj) = exp
(
E−xj [log p(x,d)]

)
+ const. (13)

In the above expression, p(x,d) denotes the joint distribution of the parameters and the observations. The
expectation is taken with respect to the variational density of all the parameters except xj . Using this update
rule, we can explicitly derive all the variational updates of interest. For notational simplicity, we use the following
definitions throughout the appendix.

αk := {αk′,k}Kk′=1 , α := {αk}Kk=1,

βk := {βk′,k}Kk′=1 , β := {βk}Kk=1,

z := {zk,i : i ∈ [|Pk|]}Kk=1 , µ := {µk}Kk=1 .

B.1 Variational update for the auxiliary parent variables zk,i

Let −zk,i denote the set of all parameters except zk,i. From (13), we obtain

log (q (zk,i)) = E−zk,i [log p(µ, z,α,β|P)] + const. = E−zk,i
[
log p

(
zk,i
∣∣µk,αk,βk,P)]+ const.

The last equality holds because of the mean-field assumption. In order to obtain the conditional distribution of
the parent variable given the rest of the parameters, we use the fact that the number of events in a given interval
is distributed according to Poisson distribution. Hence,

p
(
zk,i
∣∣µk,αk,βk,P) = Poisson

(
z

(0)
k,i ;µk(tk,i − tk,i−1)

)
(14)

×
K∏
k′=1

Poisson
(
z

(k′)
k,i ;

αk′,k(tk,i − tk,i−1)

βk′,k + ∆k′,k(tk,i)

)
I{∑k′ z

(k′)
k,i =1},

where I denotes the indicator function. The product form in (14) results again the mean-field assumption, and
the indicator enforces that

∑K
k′=0 z

(k′)
k,i = 1. Substituting the above conditional distribution into the variational

update equation, we obtain

log (q (zk,i)) =Eµk
[
log (µk(tk,i − tk,i−1))

z
(0)
k,i

]
+ Eαk,βk

log

K∏
k′=1

(
αk′,k(tk,i − tk,i−1)

βk′,k + ∆k′,k(tk,i)

)z(k′)
k,i


+ log I{∑k′ z

(k′)
k,i =1} + const.

=z
(0)
k,iEµk [log (µk(tk,i − tk,i−1))]

+

K∑
k′=0

z
(k′)
k,i Eαk,βk

[
log

(
αk′,k(tk,i − tk,i−1)

βk′,k + ∆k′,k(tk,i)

)]
+ log I{∑k′ z

(k′)
k,i =1} + const.
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Therefore, q(zk,i) is Categorical, i.e.,

q(zk,i) = Categorical (K + 1; p
(0)
k,i , ..., p

(K)
k,i ), (15)

where p(k′)
k,i is the probability that z(k′)

k,i is one and the others are zero. Therefore, {p(k′)
k,i } is a valid probability

distribution, i.e.,
∑
k′ p

(k′)
k,i = 1.

B.2 Variational update for αk′,k

From (13), we have

log (q (αk′,k)) = E−αk′,k [log p(µ, z,α,β|P)] + const.

= E−αk′,k [log p(z|µ,α,β,P) + log p(α|P)] + const.

=

|Pk|∑
i=1

E−αk′,k
[
log p

(
zk,i

∣∣∣µk,αk,βk,P)]+ log p(αk′,k) + const.

=

|Pk|∑
i=1

E−αk′,k

[
z

(k′)
k,i log

(
αk′,k(tk,i − tk,i−1)

βk′,k + ∆k′,k(tk,i)

)
−
(
αk′,k(tk,i − tk,i−1)

βk′,k + ∆k′,k(tk,i)

)]
+ log p(αk′,k) + const.

=

|Pk|∑
i=1

E
z

(k′)
k,i

[z
(k′)
k,i ] log(αk′,k)− αk′,k

|Pk|∑
i=1

Eβk′,k

[
tk,i − tk,i−1

βk′,k + ∆k′,k(tk,i)

]
+ log p(αk′,k) + const.

If we select the prior distribution of αk′,k to be Gamma with with shape ak′,k and rate bk′,k, the variational
posterior remains Gamma, i.e.,

q(αk′,k) = Gamma (Ak′,k;Bk′,k) , (16)

where the shape and rate parameters are respectively given by

Ak′,k := ak′,k +

|Pk|∑
i=1

E
z

(k′)
k,i

[z
(k′)
k,i ], Bk′,k := bk′,k +

|Pk|∑
i=1

Eβk′,k
[ tk,i − tk,i−1

βk′,k + ∆k′,k(tk,i)

]
.

B.3 Variational update for µk

The update rule for µk is similar to the one of αk′,k.

log (q (µk)) = E−µk [log p(µ, z,α,β|P)] + const. = E−µk [log p(z|µ,α,β,P) + log p(µ|P)] + const.

=

|Pk|∑
i=1

E−µk
[
log p

(
zk,i

∣∣∣µk,αk,βk,P)]+ log p(µk) + const.

=

|Pk|∑
i=1

E−µk
[
z

(0)
k,i log (µk(tk,i − tk,i−1))− µk(tk,i − tk,i−1)

]
+ log p(µk) + const.

=

|Pk|∑
i=1

E
z

(0)
k,i

[z
(0)
k,i ] log(µk)− µk

|Pk|∑
i=1

(tk,i − tk,i−1) + log p(µk) + const.

Selecting a Gamma prior with shape ck and rate dk implies the result.
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B.4 Variational update for βk′,k

Note that βk′,k is defined for k′, k in [K] := {1, ...,K}. Similar to the update rule for αk′,k, we have

log (q (βk′,k)) = E−βk′,k [log p(µ, z,α,β|P)] + const.

= E−βk′,k [log p(z|µ,α,β,P) + log p(β|P)] + const.

=

|Pk|∑
i=1

E−βk′,k

[
z

(k′)
k,i log

(
αk′,k(tk,i − tk,i−1)

βk′,k + ∆k′,k(tk,i)

)
−
(
αk′,k(tk,i − tk,i−1)

βk′,k + ∆k′,k(tk,i)

)]
+ log p(βk′,k) + const.

= −
|Pk|∑
i=1

E
z

(k′)
k,i

[z
(k′)
k,i ] log(βk′,k + ∆k′,k(tk,i))− Eαk′,k [αk′,k]

|Pk|∑
i=1

tk,i − tk,i−1

βk′,k + ∆k′,k(tk,i)
+ log p(βk′,k) + const.

If we select an Inverse-Gamma prior for βk′,k with shape φk′,k and scale ψk′,k, q(βk′,k) will be proportional to

(βk′,k)−φk′,k−1e

(
−
ψ
k′,k
β
k′,k

)
|Pk|∏
i=1

(βk′,k + ∆k′,k(tk,i))
−E

z
(k′)
k,i

[z
(k′)
k,i

]

e

(
−

Eα
k′,k

[α
k′,k](tk,i−tk,i−1)

β
k′,k+∆

k′,k(tk,i)

)
, for k′, k ∈ [K]. (17)

This distribution is not analytically tractable, but it can be well-approximated by an inverse-Gamma distribution.
Therefore, we approximate the variational update for βk′,k as an Inverse-Gamma(Φk′,k,Ψk′,k). We choose its
parameters Φk′,k and Ψk′,k such that its resulting moments coincide with the moments of the distribution in (17).
Finding the moments of the distribution in (17) tends to be quite challenging. Instead, we use the following
observation to obtain our approximation.
Remark 1. Let f(x; a, b) be the p.d.f. of the Inverse-Gamma distribution with shape a and rate b. The Function
xuf(x; a, b) has a global maximum that occurs at b/(a+ 1− u) for u ∈ R+.

We argue that if the u-th moment of a Inverse-Gamma variable, with shape Φk′,k and rate Ψk′,k, coincides with
the u-th moment of the distribution in (17), denoted by h(x), then we should have∫

R+

xuf(x; Φk′,k,Ψk′,k)dx =

∫
R+

xuh(x)dx.

A sufficient condition for the above equality is that the points that maximize xuf(x; Φk′,k,Ψk′,k) and xuh(x)
should coincide. This happens if

Ψk′,k

Φk′,k + 1− u
= xu, (18)

where xu is the point that maximizes xuh(x). By equating the derivative of log(xuh(x)) to zero, it is easy to see
that xu is the real root of the following equation

φk′,k + 1− u
x

+

|Pk|∑
i=1

E
q(z

(k′)
k,i )

[z
(k′)
k,i ]

x+ ∆k′,k(tk,i)
− ψk′,k

x2
−
|Pk|∑
i=1

Eq(αk′,k)[αk′,k](tk,i − tk,i−1)

(x+ ∆k′,k(tk,i))2
= 0.

Since the above function has continuous derivatives, we can use, for example, Halley’s method to find its root.
Equation (18) alone cannot specify both Ψk′,k and Φk′,k. Thus, by selecting two different u, say u = v and u = w,
we obtain

Ψk′,k

Φk′,k + 1− v
= xv,

Ψk′,k

Φk′,k + 1− w
= xw.

Solving for Ψk′,k and Φk′,k, we obtain

Φk′,k =
wxw − vxv
xw − xv

− 1, Ψk′,k =
(w − v)xwxv
xw − xv

.

Lemma 1 implies that such xv and xw exist and the above shape and scale are positive for appropriate choices of
v, w, and φk′,k.
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B.5 Computing the required statistics

Note that the variational updates introduced in Section B depend on each others through some common statistics.
For instance, the variational update for the auxiliary variable zk,i in (15) requires computing Eαk′,k [logαk′,k]. In
this section, we provide analytical expressions of such statistics.

Since q(zk,i) is Categorical, for k ∈ [K], i ∈ Pk, k′ ∈ [K] ∪ {0}, we have

E
z

(k′)
k,i

[z
(k′)
k,i ] = p

(k′)
k,i , (19)

where p(k′)
k,i is the probability that z(k′)

k,i = 1 and z(l)
k,i = 0 for l 6= k′.

Given that αk′,k has a Gamma (Ak′,k;Bk′,k) distribution, we have for k ∈ [K], k′ ∈ [K],

Eαk′,k [αk′,k] =
Ak′,k
Bk′,k

, (20)

Eαk′,k [log(αk′,k)] = Υ(Ak′,k)− log(Bk′,k), (21)

where Υ(·) denotes the digamma function. Similarly, we can obtain the required statistics of µk.

Because we use an inverse-Gamma distribution for the variational update of βk′,k,

Eβk′,k
[ 1

βk′,k + ∆k′,k(tk,j)

]
=

∫
R+

1

y + ∆k′,k(tk,j)
y−Φk′,k−1 exp (−Ψk′,k/y)

dy

Z
,

Eβk′,k
[

log(βk′,k + ∆k′,k(tk,j))
]

=

∫
R+

log(y + ∆k′,k(tk,j))y
−Φk′,k−1 exp (−Ψk′,k/y)

dy

Z
,

where Z denotes the normalization factor of the inverse-Gamma(Φk′,k,Ψk′,k). The above expressions can be
approximated as follows

E
[ 1

βk′,k + ∆k′,k(tk,j)

]
≈ 1

Ψk′,k
Φk′,k−1 + ∆k′,k(tk,j)

, (22)

E
[

log
(
βk′,k + ∆k′,k(tk,j)

)]
≈ log

( Ψk′,k

Φk′,k − 1
+ ∆k′,k(tk,j)

)
. (23)

C Additional Experimental Results

In this section, we present some additional experimental results.

Analysis of performance w.r.t. number of training events. To evaluate the number of training samples
required to achieve a good performance for each approach, we ran the experiments with the same synthetic
simulation setup, fixed the number of dimensions K = 10, and varied the number of training events. We present
these results in Figure 5. Although BBVI was originally designed to train on small observations sequences, our VI
approach does as well or outperforms BBVI.

Alternative simulation setup. To further investigate the effect of the structural constraint required by GB,
i.e.,

∑
k αk′,k = 1 for all k′, k ∈ [K], we ran additional experiments on synthetic data where we normalized the

ground-truth {αk′,k} such that
∑
k αk′,k = 1. The results are shown in Figure 6. We see that, even if GB performs

better than in Figure 2, our VI approach still outperforms GB on all metrics.

Robustness to the choice of prior. To investigate the sensitivity of VI to choice of the prior, we ran
additional experiments on synthetic data. For K = 10 dimensions, we fixed the mean as in the experiments of
Section 5.1, and evaluated the performance for variance of the priors of {αk′,k} and {βk′,k} ranging between
10−2 and 102. As seen in Figure 7, for a large range of priors, VI remains stable. For all values tested, both the
PR-AUC and Precision@10 remained at 1.0.
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Figure 5: Results on synthetic data for varying numbers of training events. Panel (a) (log-scale) relative error,
(b) precision@10, (c) PR-AUC, and panel (d) (log-scale) empirical runtime of each approach in minutes.
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Figure 6: Results on synthetic data for the alternative synthetic simulation setup where we normalize the {αk′,k}
such that

∑
k αk′,k = 1. Panel (a) (log-scale) relative error, (b) precision@10, (c) PR-AUC, and panel (d)

(log-scale) empirical runtime of each approach in minutes.
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Figure 7: Analysis of the robustness of VI to the choice of prior. We report the relative error for a wide range of
variances for both {αk′, k}, {βk′,k}, keeping their mean fixed to the same value used in the experiments.
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Figure 8: Number of iterations performed in the experiments on synthetic data.

Analysis of the number of iterations. In Figure 2, we discussed the runtime of each algorithm on synthetic
data. To make the comparison fair, we also report the number of iterations performed in Figure 8. As stated in
Appendix E, we ran VI, BBVI and MLE until convergence or up to maximum 10 000 iterations. As the number of
dimensions increases, the number of iterations needed for VI to converge becomes sub-linear. BBVI almost always
ran to the cap on the maximum number of iterations because it uses Monte Carlos samples of the posterior at
each iteration and hence exhibit a larger variance between iterations. We ran GB for 3000 iterations, which was
found to be enough to reach convergence5.

D Computational Complexity

We report the computational complexity of GB to be O(|P| logK), while the authors of the method originally
report O(|P|(log |P|+logK)) in (Figueiredo et al., 2018). The difference lies in the computation of the inter-event
times {∆k′,k(tk,i)}, where the authors consider the computation of each inter-event time as O(log |P|) at each
iteration. However, it suffices to compute these values once and cache them. Therefore, this step is O(1), which
reduces the computational complexity of GB to O(|P| logK).

E Reproducibility

E.1 Simulation setup for synthetic data

We generated Erdös–Rényi random graphs withK nodes. We sampled background rates {µ∗k} from Uniform[0, 0.05],
edge weights {α∗k′,k} from Uniform[0.1, 0.2] for all edges, and parameters {β∗k′,k} from Uniform[1, 2], all indepen-
dently. Each algorithm was then run as follows.

VI. We ran the algorithm for a maximum of 10 000 iterations or until convergence. We defined convergence
5Note that (Figueiredo et al., 2018) used 300 iterations without further justification.
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when the maximum absolut difference of any parameter between two consecutive iterations is less than 10−4.
We used priors p(µk) = Gamma(0.1, 1), p(αk′,k) = Gamma(0.1, 1) and p(βk′,k) = InverseGamma(100, 100).

GB. We used the implementation released in (Figueiredo et al., 2018). We used 3000 iterations in all experiments.
As advised by the authors, we used the same Dirichlet prior with uniform parameters 1/K, and set the
parameters {βk′,k} to the data-driven heuristic βk′,k = median({tk,i+1 − tk,i|tk,i ∈ Pk})/ exp(1).

BBVI. We adapted the implementation released in (Salehi et al., 2019). More details are provided in E.2.
Analogous to VI, we ran the method for a maximum of 10 000 iterations or until convergence. As in (Salehi
et al., 2019), we used Log-Normal posterior distributions, Laplacian priors {αk′,k}, and Gaussian priors
for {µk} and {βk′,k} with the same parameters released in the code of (Salehi et al., 2019).

MLE. Analogous to VI, we ran the method for a maximum of 10 000 iterations or until convergence.

All experiments were run on a single-core, on the same machine with a processor Intel(R) Xeon(R) CPU E5-2680
v3 @ 2.50GHz and 256GB of RAM.

E.2 Adaptation of the BBVI approach for Wold processes

BBVI was introduced in (Salehi et al., 2019) to learn the parameters of a Hawkes process. They maximized the
ELBO

ELBO(q) = Eq [log p (P|θ)] + Eq [log p (θ)]− Eq [log q (θ)] (24)

over the parameters θ of Hawkes process, using gradient descent with black-box VI. Specifically, a posterior q(θ)
was first postulated (chosen to be Log-Normal), and Monte Carlo samples was used to evalue the expecations
in (24). In addition, the variational EM algorithm was used to update the parameters of the prior p(θ) based on
the current estimate of the posterior.

To adapt the approach for MWPs, we only needed to replace the log-likelihood term log p (P|µ,α,β) in (24) by
the likelihood defined in (2).

E.3 Experiments on Real Datasets

E.3.1 Email-EU-core dataset

As explained in Section 5, the Email-EU-core dataset is composed of emails between researchers from a European
research institution. Each email in the dataset is a tuple (sender, receiver, timestamp). To build each process
from the dataset, we used the same preprocessing steps as Figueiredo et al. (2018). More precisely, we excluded
users with no sent email and defined the set of processes as the top-100 users with the most received emails. We
then aggregated the timestamps by receivers. The entries in the ground-truth influence matrix are defined by
counting the number of emails sent from each sender to each receiver (a weight zero indicates the absence of an
edge). The preprocessing code is made available publicly.

For the hyper-parameters, we ran a sweep over the Dirichlet prior of GB over [0.01, 0.1, 1.0, 10.0, 100.0] and
reported the best results obtained with 10.0. For VI, we ran a sweep over the of parameters of the priors
over [0.01, 0.1, 1.0, 10.0, 100.0] and used p(µk) = Gamma(1.0, 1.0), p(αk′,k) = Gamma(1.0, 1.0) and p(βk′,k) =
InverseGamma(100.0, 100.0).

E.3.2 MemeTracker dataset.

The MemeTracker dataset is composed of online blog posts. We used the top-100 blogs with the highest number
of published posts and built the processes by aggregating the sequences of published timestamps, resulting
in 15 168 774 events in 100 dimensions. The preprocessing code is made available publicly. We ran a sweep
over the Dirichlet prior of GB over [0.01, 0.1, 1.0, 10.0], and did not observe a significant difference between
the different values and reported the results obtained for 0.01. For VI, we used priors p(µk) = Gamma(0.1, 1),
p(αk′,k) = Gamma(0.1, 1) and p(βk′,k) = InverseGamma(104, 104).
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