
Robust Geo-Routing on Embeddings of Dynamic
Wireless Networks

Dominique Tschopp, Suhas Diggavi, and Matthias Grossglauser
School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)

1015 Lausanne, Switzerland
Email: (first name.last name)@epfl.ch

Jörg Widmer
DoCoMo Euro-Labs
Landsberger Str. 312

80687 Munich, Germany
Email: (last name)@docomolab-euro.com

Abstract— Wireless routing based on an embedding of the
connectivity graph is a very promising technique to overcome
shortcomings of geographic routing and topology-based routing.
This is of particular interest when either absolute coordinates
for geographic routing are unavailable or when they poorly
reflect the underlying connectivity in the network. We focus on
dynamic networks induced by time-varying fading and mobility.
This requires that the embedding is stable over time, whereas
the focus of most existing embedding algorithms is on low
distortion of single realizations of a graph. We develop a beacon-
based distributed embedding algorithm that requires little control
overhead, produces low distortion embeddings, and is stable. We
also show that a low-dimensional embedding suffices, since at a
sufficiently large scale, wireless connectivity graphs are dictated
by geometry.

The stability of the embedding allows us to combine geo-
routing on the embedding with last encounter routing (LER)
for node lookup, further reducing the control overhead. Our
routing algorithm avoids dead ends through randomized greedy
forwarding. We demonstrate through extensive simulations that
our combined embedding and routing scheme outperforms ex-
isting algorithms.

I. INTRODUCTION

Mobile wireless networks comprise wireless devices with a
limited transmission range, such as laptop computers, personal
digital assistants (PDAs), cell phones, or embedded sensing
and actuation devices. Such networks often rely on multi-
hop communication, i.e., the forwarding of messages from a
sender to a receiver outside the sender’s radio range through
intermediate nodes. One of the fundamental problems in ad
hoc networking is thus the routing problem.

There are two approaches to the routing problem. The first
approach relies uniquely on the topology of the network.
Topology-based routing establishes an end-to-end path from
a source to a destination through flooding or partial flooding
of the network. Nodes either maintain a routing table that con-
tains next hop and distance information for each destination
[1], or the complete route can be stored in the header of all
data packets [2].

The second approach exploits the geometry of the network.
Nodes forward packets to neighbors geographically closer to
the destination, assuming that the geographic proximity is
representative of the network distance [3]–[5]. Geographic
routing protocols require a location service [6], [7], which can
be queried to obtain the location of other nodes.

Both approaches have advantages and disadvantages. The
protocol overhead of topology-based routing stems from the
flooding necessary for path establishment and maintenance. It
is therefore very sensitive to mobility and uncertain channel
environments, since even small changes in a node’s neigh-
borhood may lead to the failure of routes, which need to
be reestablished. In contrast, geographic routing does not
maintain state in the nodes, and forwarding decisions require
only local knowledge, i.e., the geographic position of a node’s
neighbors. Topology changes that do not affect this local
knowledge do not affect routing decisions, and therefore do
not have to be advertised network-wide. However, geographic
routing is inefficient when the network topology is not well
captured by the geographic coordinates of nodes (e.g., due
to a fading channel, obstacles, etc.). In such inhomogeneous
networks, greedy routing towards the destination often reaches
a local minimum, where no nodes with forward progress are
known. Here, a recovery strategy is necessary, which requires
either flooding or establishing state in nodes around the local
minimum. This, together with the overhead introduced by
the location service, may be more costly than the use of a
topology-based routing protocol.

In this paper, we investigate how to bridge the two
paradigms. More specifically, we are interested in building a
virtual coordinate system that embeds the connectivity graph
in a way that is coherent with the network topology. Nodes
which are close in the topology should also be close in the
embedding. Desirable properties of such a coordinate system
are that it allows efficient greedy routing, is robust to mobility
and channel uncertainty, and is cheap to maintain.

Embeddings of general graphs is a well studied topic, but
few algorithms specifically for wireless graphs exist. Further-
more, ad hoc networks require an efficient distributed imple-
mentation of the embedding algorithm. Our main objective
is to create embeddings which provide efficient routes when
combined with greedy routing. This also reflects on the choice
of the metric with which the wireless graph is embedded. The
intuition which drives the techniques used for our embedding
algorithm is the following. We believe that geometry plays an
important role for long paths, whereas short paths are more
subject to local perturbations.

The paper is structured as follows. Related work is discussed

in Section II, and some background on graph embeddings is
given in Section III. In Section IV, we develop a random
beacon-based embedding with the following features: (i) ap-
proximates well the single snapshot graph distances, (ii) gives
a stable coordinate system when embedding dynamic graph
topologies, and (iii) has low overhead in terms of network-wide
control traffic. This embedding algorithm is then combined
with a novel randomized greedy routing algorithm in Section
V. The idea behind the randomized routing strategy is also
independently applicable to other scenarios with uncertainties
in the topology or location. We give extensive simulation
results to validate the properties of our algorithms in Section
VI.

II. RELATED WORK

Graph embeddings are an active area of research with many
different applications [8]. Some of the concepts of this paper,
for example, are based on embedding algorithms used for the
analysis of molecular similarities [9]. For networking, embed-
dings have been studied mainly in the context of mapping
network distances in the Internet to Euclidian space [10],
[11], and relatively few embeddings exist that are specifically
designed for routing in wireless ad hoc networks. The two
schemes most closely related to the algorithms proposed in
this paper are the pioneering work presented in [12] and the
beacon vector routing (BVR) introduced in [13].

In [12], a routing scheme (NoGeo) with a distributed
relaxation algorithm is presented. It iteratively builds a virtual
coordinate system. The algorithm assumes that a number of so-
called perimeter nodes (located on the border of the network)
know their real coordinates in advance. Starting from random
virtual coordinates, at every iteration, non-perimeter nodes
update their coordinates by averaging the coordinates of their
neighbors, while the coordinates of perimeter nodes remain
fixed. The scheme also includes a flooding-based mechanism
to determine identity and/or coordinates of the perimeter nodes
if they are not known in advance. The protocol performs well
in terms of success rate of greedy routing, but the overhead to
maintain perimeter nodes is very high when the topology is
dynamic. The overhead also grows superlinearly with the size
of the network due to the increased length of the perimeter.
The algorithm critically depends on correct perimeter node
information and at lower overhead may lead to a completely
distorted coordinate system.

BVR [13] is intended for routing in sensor networks. Here,
the hop distances to beacon nodes directly form the virtual
coordinates of a node, and the dimensionality of the coordinate
space corresponds to the number of beacons. The set of
beacons is randomly chosen and does not change unless a
beacon fails. As in [12], greedy forwarding over the virtual
coordinates is used as routing scheme. A distance metric is
defined that takes into account that greedy routing in the
direction of a beacon is more likely to lead to the destination
than routing away from a beacon (explained in more detail in
the simulation section). In case of a dead-end, a small scope
flooding is initiated to find a node that again provides greedy

progress. The scheme is very sensitive to a bad inital choice of
beacons. It also does not cope well with mobility of beacons
or an uncertain channel environment, both of which lead to
large shifts in the virtual coordinates. This not only results
in unstable routes, but also incurs a high cost for updating a
location service with the changing positions of the nodes.

There are a number of further embedding algorithms for
routing in sensor networks. In [14], a ringed tree graph is built
for data-centric information processing with coordinates that
are similar to polar coordinates. Both MAP [15] and Glider
[16] build a virtual coordinate system based on a tiling of
the network area. The former builds a backbone structure
adapted to the shape of the network topology and connects
sensor nodes to the nearest backbone node through shortest
paths. The latter uses Delaunay triangulation to form Voronoi
cells and routes toward a so-called landmark node of the
adjacent Voronoi cell that lies in the right direction. Finally,
some schemes use multidimensional scaling techniques to
build a coordinate system from connectivity information (e.g.,
[17]). All of these systems have in common that they are
not designed to cope well with mobility or varying channel
conditions. While the former may be less important for sensor
systems (but is very important for example for vehicular ad
hoc communication), the latter is an inherent property of all
wireless networks.

III. LOW-DIMENSIONAL EMBEDDINGS

In this section, we review recent results in embedding theory
that motivate the beacon-based embedding algorithm presented
in the next section, and provide some intuition for its design.
Over the past decade, significant progress has been made
in both algorithms and bounds for embeddings of (finite)
metric spaces (see for example [8] and references therein).
Given the distances D(·, ·) between n points in a metric space
(X,D), the goal of the embedding is to find a mapping
x

′
= f(x), x ∈ X,x

′ ∈ X
′

from X to another space X
′

such
that for the metric D

′
(·, ·) in X

′
, for all points x, y ∈ X , the

distances D
′
(f(x), f(y)) do not distort D(x, y) very much.

More precisely, the embedding f(·) is said to have distortion
at most c if there is a r ∈ (0,∞) such that for all x, y ∈ X ,
rD(x, y) ≤ D

′
(f(x), f(y)) ≤ crD(x, y). For c = 1, the

embedding is called non-contracting. Also, typically the target
space X

′
is a Euclidean space with D

′
being the l2 norm. In

such cases we can talk about the dimension of the embedding
to be the dimension of X

′
.

In the aforementioned framework, many graphs1 do not
admit low-distortion and low-dimensional embeddings simul-
taneously. There has been a significant amount of effort in
classifying the distortion and dimension of specific classes
of graphs (see Table 8.5.1 in [8]). This leads to the notion
that in general graphs are not “embeddable”, i.e., do not
admit low-distortion embeddings in low-dimensional spaces.
More recently, an alternate question was posed in [18], which
introduced the notion of slack in embeddings. Slack allows a

1We interchangeably use the term graph for a finite metric space.

small fraction of the distances to be arbitrarily distorted, while
the others are guaranteed to have a much smaller distortion.
In particular, [19] showed that every finite metric space can be
embedded into a lp space with constant dimension O(log2(1

ε))
with constant distortion O(log(1

ε)), if a fraction ε of the
distances in the original space can be arbitrarily distorted.
However, the distortion may not be uniform across nodes.
Therefore we need a stronger notion of slack called uniform
slack which means that for every point u ∈ X , at most
fraction ε of its pairwise distances can be arbitrarily distorted.
Embeddings with uniform slack is also explored in [19].

One of the main techniques in embeddings with slack is the
use of a constant number of beacons for the embedding. Such
an embedding is based on triangulation, i.e., reconstructing
the distance between two non-beacon points from their known
distances to a set of beacons. Clearly, for points that are close
to each other, this can cause arbitrarily large distortion. Hence,
these pairs of points are counted towards the uniform ε slack.

The notion of slack is inherently useful for embeddings of
wireless network graphs. This is because a small number of
edges suffice to transform a graph admitting a low-dimensional
embedding into a graph that does not. The randomness in node
locations as well as mobility and channel uncertainty (fading)
can easily perturb the original geometry enough to make the
graph difficult to embed completely. However, our intuition is
that for wireless graphs, even though local geometry is easily
perturbed through these sources of randomness, at large scales
this would matter much less. Therefore, slack eliminates some
of the local behavior, and allows to embed the larger-scale
distances into a low-dimensional space with low-distortion.
We also use this principle of slack in Section V, where we
develop routing algorithms.

We also note that graphs that do not possess low-
dimensional embeddings can arise even without channel uncer-
tainty. Specifically, it is possible to construct unit-disk graphs
(UDG), where an edge between two nodes u and v exists if
and only if ||Xu−Xv|| < 1, for which no low-distortion, low-
dimensional embeddings exist [20]. However, these require
specific node constellations that occur only with very low
probability in a random realization of node locations. Hence,
these constructions are mostly of theoretical interest.

A. Stable Embedding of Connectivity Graph

We have discussed above the classical embedding problem
of a metric space (X,D) into another (usually normed) space
(X ′,D′) through an embedding function f : X → X ′,
and the associated metrics for the quality of the embedding
(stretch, slack).2 We now introduce a novel aspect of the
embedding problem discussed in this paper: maintaining a
stable embeddings of a dynamic graph.

Indeed, the connectivity graph of a mobile wireless network
changes over time because of node mobility and channel
uncertainty. We can view this as a dynamic metric space

2We discuss other metrics from the field of multidimensional scaling in
[21].

(X,Dt), for which we would like to maintain an embedding
ft(.). We define the embedded distance between x1 and x2 at
time t as d′t = D′(ft(x1), ft(x2)).

What is a good dynamic embedding? For obvious reasons,
we would like the dynamic embedding ft(.) to be a faithful
representation of (X,Dt) for every time t. However, this is not
sufficient for our purposes, because it does not say anything
about the evolution of the embedding over time. For example,
even if the metric space (X,Dt) were fixed over time, the
embedded coordinates might fluctuate, provided the distances
d′t(., .) remain stable. This is undesirable, for the following
reason.

In our setting, although the graph changes over time, it
tends to change slowly. For example, two nodes that are far
apart at time t are unlikely to be very close a short time after
t, and vice versa. This is a result of physical constraints on
node mobility processes (nodes cannot jump from one place
to another), and the fact that channels between nodes strongly
depend on geography, as explained above.

Therefore, the distances Dt change slowly over time, with
the largest relative changes concentrated on short distances.
The stable embedding problem amounts to maintaining a
dynamic embedding such that (a) the instantaneous distances
d′t(., .) are close to the real distances Dt(., .) for every t, and
(b) the coordinates ft(.) of the embedded space changes as
slowly as possible.

A stable embedding in our context is important for the
following reasons. A geo-routing algorithm has to be paired
with a location service in order to be able to deliver messages
to particular nodes (or information items), rather than to par-
ticular locations. A location service is essentially a distributed
database that maintains the location of every node in the
network. The database has to be updated when the location
of a node changes. Suppose we have a node x that does not
move, but whose coordinates in the embedding f(x) change
over time; then updates would have to be generated continually
for this node, resulting in overhead. A stable embedding
minimizes this overhead.

A slightly different approach eliminates the need for loca-
tion updates by merging the location service into the routing
protocol. In this approach, a message starts out with an
imprecise estimate of the destination’s location. It then refines
this estimate as it travels through the network. It has been
shown that it is sufficient (depending on the mobility process)
that each node remembers when and at what location it was
last a neighbor of every other node. This approach, called Last
Encounter Routing (LER), amounts to the message traveling
towards past locations of the destination. If LER operates on
embedded coordinates, then a stable embedding ensures that
these past locations are close to the current location of the
destination. Even though there is no need for location updates
in LER, an unstable embedding would manifest itself through
increased route cost, as the message would frequently move
“in the wrong direction”.

This illustrates that stable embeddings are important to
minimize overhead in the context of geo-routing. Therefore, in

this paper, our goal is to develop a distributed algorithm that
computes faithful and stable embeddings for slowly changing
graphs.

In summary, the results on graph embeddings provide
important insights for the design of the algorithms in IV and V.
In the presence of mobility, designing a beacon management
method that produces stable embeddings is challenging. Slack
is an important concept for embeddings of wireless graphs
since there are low probability events that can significantly
deteriorate embedding performance. In Section IV we explore
methods that do local operations to account for such inaccura-
cies. There is always some degree of distortion in embeddings
and routing protocols need to take this into account. To this
end, we propose a randomized algorithm scheme in Section
V.

IV. EMBEDDING ALGORITHM

In this section, we describe our distributed probabilistic
beaconing (PB) algorithm. We first provide some intuition on
the design of the algorithm, motivated by the discussion in the
previous section. We then formally define the algorithm and
explain its operation through an example.

A. Embedding Heuristic

The basic idea of our algorithm is to use random beacons
as anchors of an embedding. The algorithm is specifically
designed to maintain a stable embedding when the graph
changes over time, and to combine global beaconing with
local correction operations to restore local geometry as far
as possible.

We now describe the heuristic for a node i to compute
its current embedded position xi for an embedding in M
dimensions. We assume that a node i has information from
a set B of beacons for which it knows both its graph distance
hBl

, Bl ∈ B and xBl
, the embedded coordinates of the beacon

Bl ∈ B. From this, the node attempts to find its embedded
coordinates xi using the following criterion.

min
xi

∑
Bl∈B

[hBl
− ||xi − xBl

||]2 def
= min

xi

h(xi). (1)

We use a heuristic to solve this optimization problem because
h(·) is a non-convex function. Suppose node i knows its graph
distance to a set of beacon nodes B = {B1, . . . , Bb}. An
iterative heuristic to solve (1) will update the position xi of
node i by moving it towards or away from the beacons. This
is reminiscent of stochastic proximity embedding (SPE) [22].

If the wireless connectivity graph G were perfectly em-
beddable in two dimensions, and given the positions and
the shortest path distances to at least three beacons, the
positions of all other nodes would be uniquely determined.
In reality, we expect G to be low dimensional only within
some slack ε. Therefore, G requires an embedding dimension
of at least M = 2, with a small incremental benefit for higher-
dimensional embeddings (M > 2). In the PB algorithm, after
the flooding of the third beacon, this manifests itself by the
nodes clustering close to a two-dimensional hyperplane in

Fig. 1. Nodes a and b are neighbors, while node c is far away from both. The
two optimal positions of node a and b are close. In the worst case, a and b are
placed on opposite sides of the plane and the relative error is approximately
1 over the distance between these optimal positions. c being placed further
apart, the relative error in the distance is small. B1,B2 and B3 are beacons.

the M -dimensional space. The relative error in the distances
between non-beacon nodes is bounded by the variance in
higher dimensions for nearby nodes, and becomes negligible
for nodes far apart. An illustrative example where G is inher-
ently 2-dimensional with low variance in the third dimension
is shown in Figure 1.

B. Dealing with Dynamic Graphs

Under mobility and channel uncertainty, large scale dis-
tances remain relatively unaffected over short time scales. We
exploit this slow evolution by updating the embedding in a
lazy manner, but giving up on short distances. Specifically,
we propose to use a sliding window mechanism to update
the embedding in the face of graph dynamics. Every time the
distance to a new beacon is learned, the oldest distance is
thrown away. By only changing one of the beacons at a time,
the coordinate system cannot change drastically as the other
beacons remain fixed. Always choosing new random beacons
ensures that we are not dependent on the initial choice of
beacons. A new random choice at every iteration guarantees
a good performance on average.

We include an additional mechanism to stabilize the em-
bedding. To make the embedding locally consistent, nodes
estimate their distances to the beacons as the average of their
observed distance and the observed distances of their one-hop
neighbors. The underlying idea is that when a node moves into
a new neighborhood, its distance estimate should be close to
the distance estimates of its new neighbors. Local coherence
is especially important for geographic routing, where all
forwarding decisions are local.

C. Formal Description of PB Algorithm

At every time step k, a new beacon node is randomly se-
lected. This beacon floods the network with a control message,
through which each node learns its shortest-path distance in
G to the new beacon.

Our heuristic updates node i’s embedded position xi, by it-
eratively minimizing the criterion given in (1) using a gradient-
descent technique. Nodes know their Euclidean distance and
graph distance to beacons and consequently new beacons
can be chosen with a higher probability if they are well
embedded with respect to already existing beacons. Adding
new beacons will push nodes out of local minima. To increase
the probability that neighbors have similar coordinates (e.g.,to

move to the same side of the plane in Figure 1), the input
hop-distance to the algorithm is the average of a node’s and
its neighbors’ hop-distances.

At every time k, a randomly selected beacon Bk floods the
network with its virtual position x

(k)
Bk

, where the superscript
indicates the time-index of the coordinate. All other nodes
in the network obtain their hop distance, or proximity, Pi(k)
to Bk in this way. We initialize x

(0)
B0

with a random M -
dimensional vector.

Nodes have a buffer in which they store their proximities
(hop-distances) to the b last beacons as well as the virtual
positions of these beacons. Let us call B(k) the set of the b
last beacons at time k, and Pi(k − l) the proximity of node i
and beacon Bk−l at time k − l. Let Eij = ||xi − xj || denote
the Euclidean distance between nodes i and j with positions
xi and xj (in the virtual/embedded space) and Ni the one-hop
neighbors of i. The probabilistic beaconing algorithm is shown
in Algorithm 1. Nodes temporarily store a vector containing
the average of their distances to the beacons and the distance of
their one-hop neighbors to the beacons. Then, nodes iteratively
project their position on a hypersphere around every beacon
of radius equivalent to the previously estimated distance ĥ
to that beacon. The input to the next iteration is the average
of the projections. Figure 2 illustrates two iterations of the
gradient-descent algorithm in a two dimensional space with
three beacons.

Algorithm 1 Probabilistic beaconing

1 At time k obtain distance Pj(k) of vertex vj to beacon Bk

2. Adjust distances to beacons, averaged over neighborhood
For u = 0 to b − 1

Set ĥu(k) = 1
|Ni|+1

(∑
j∈Ni

Pj(k − u) + Pi(k − u)
)

end
3. Local optimization

Starting point is center of mass of node i + neighbors

x := 1
|Ni|+1

(∑
j∈Ni

x
(k)
j + x

(k)
i

)

Repeat W times

x := 1
b

∑b−1
u=0 x +

(
ĥu(k) − ||x − x

(k−u)
Bk−u

||
) x−x

(k−u)
Bk−u

||x−x
(k−u)
Bk−u

||
end

4. Update position

Set x
(k+1)
i := x

V. ROUTING ALGORITHM

As we have explained, geometry plays a role for large
distances, such that a small number of beacons are sufficient
to embed at a low distortion and roughly place nodes at the
correct location. To accurately embed short distances, practi-
cally every node would have to be a beacon and the dimension
of the embedding would be much higher, which is not a
desirable property for an embedding algorithm. We propose
two local mechanisms to cope with these inconsistencies in
the coordinate system.

Fig. 2. Two iterations of the PB algorithm in 2 dimensions. The node
projects itself on a hypersphere of radius hu around every beacon Bu. The
input to the next iteration is the average of these projections. This implements
a gradient-descent minimization of h(·) defined in (1).

The first mechanism is based on the principle of slack
introduced in Section III, which showed that the largest
distortion of the distances occured in the local neighborhood.
To overcome these errors, the idea is that every node can build
a local routing table that is sufficiently large to overcome this
local inaccuracy of the coordinate system. Therefore, the size
of the slack is related to the size of such a local routing table.

Alternatively one can use Biased Random Walk (BRWalk)
explained below. BRWalk is designed for coordinate system
which are slightly inaccurate, such as the one obtained with
PB or noisy samples of real coordinates in a dense network
(without large voids). It trades off path length for robustness
by not trusting the coordinate system completely. In BR-
Walk, the next hop is chosen randomly among all neighbors.
By introducing randomness into the routing decisions, we
tolerate some “wrong” forwarding decisions which on one
hand increase the path length but on the other hand allow to
transparently avoid getting stuck in a dead-end. Nodes which
are geographically closer to the destination than the current
node have a higher probability of being selected as next hop,
but going “backward” and loops are not excluded. In order to
reduce the probability of visiting the same node several times,
one can store a constant size list of the last visited nodes and
reduce the probability of returning to these nodes.

Assume a source s has a packet for a destination t. For every
node j ∈ Ns, s computes the difference between its Euclidean
distance to the destination and the Euclidean distance of node
j to the destination ∆j = Est −Ejt. Then, the probability of
choosing node j as a next hop is given as pj = f(∆j)∑

k∈Ns
f(∆k) .

Additionally, if the packet can hold the identifier of the last
n hops in a variable path, one can modify the probability of
visiting a node which occurs several times in the path i.e.,

pj =
f(∆j , path)∑

k∈Ns
f(∆k, path)

(2)

One possibility is to set f(∆j , path) = eα∆

2m where α is a
parameter determining the “greediness” of the routing and m
is the number of times node j appears in path. Note that
when α → 0, the routing algorithm simply performs a random
walk and that when α becomes large enough, BRWalk routing
is equivalent to greedy routing (in this case the path is not
taken into account). The next hop is a sample drawn according
to the distribution given in (2). Note that in this routing
algorithm, packets need to have a time to live (TTL) field,
as in the worst case, with low probability they might never
reach the destination. We consider that a small percentage of
lost packets is acceptable if it allows us to considerably reduce
the overhead.

VI. SIMULATION RESULTS

In this section we evaluate our algorithms through a series
of simulations using a custom discrete time simulator. In every
round, nodes first move, then update their positions, and then
communicate. A node can communicate with any other node
in the network during such a round, potentially over multiple
hops. We assume for simplicity that there is no packet loss at
the MAC layer.

A. Experiment Design

Our embedding algorithm is designed to cope with long
term fading rather than with short term fading. Consequently,
we consider that nodes can move but that the channels, which
are determined by the environment, do not change over time.
The network model we use therefore consists of an S × S
grid of locations. Every location can be occupied by none, one
or several nodes. The channel existing between the locations
is drawn a priori. Hence, if a node i occupies a location l1
and another node j occupies a location l2, these nodes will
be directly connected through an edge (i, j) if a link exists
between the two locations l1 and l2. In our simulation we
consider that every location picks λ other locations according
to an exponential distribution with mean r for the distance
and at angles chosen uniformly at random around itself to
connect to.3 Note that this is not a unit disk graph model
(UDG)4, and consequently routing algorithms tailored for this
particular class of graph are not applicable (e.g., planarization
in [3]–[5]). To simulate node mobility, we use the random walk
(RW) model and the random waypoint (RWP) model. When
a node moves, its coordinates are rounded to the closest grid
location. We compare our approach with BVR [13] and with
the averaging (NoGeo) approach proposed in [12]. For NoGeo,
unless stated otherwise, we consider that the perimeter nodes
as well as their positions are known. We made that choice
as applying the “perimeter node” criteria described in [12]
led to a very large amount of falsely detected perimeter nodes

3Channels are considered to be bidirectional, so that a location which is
“chosen” by another node can have a degree higher than λ, while a node that
randomly picks several times the same location might have a degree lower
than λ. We bound connectivity to λ locations for simplicity, and verified that
the results are equivalent to an exponential distribution over all points.

4In a UDG model, nodes i and j with positions xi and xj respectively are
connected if and only if ||xi −xj || ≤ r, for a fixed communication radius r.

and in turn to very poor performance with the random channel
model, especially in mobile scenarios. By default, we consider
20 perimeter nodes. Unless stated otherwise, we consider a
network of size S = 30 with N = 1500 nodes with λ = 10
and an expected communication range of r = 1.5. As a general
rule, we allow an overhead of 10 messages per node to build
the embeddings per round (10 averaging steps for NoGeo, 10
beacons can flood for BVR and PB). In BVR the dimension
of the embedding is equivalent to the number of beacons. To
make the comparison with PB meaningful, we use the same
dimension of embedding for PB and BVR and 2 for NoGeo.
We also use b = 20 for PB. The dimension of embedding M
can be considered low if it is constant and M � N , where
N is the number of nodes. The dimension M set to 20 by
default for PB and BVR.

B. Performance Metrics

We evaluate embedding algorithms according to the follow-
ing criteria:

1) Distortion: Given two nodes i and j with virtual coor-
dinates xi and xj , we define the multiplicative distortion as
||xi−xj ||

rij
where rij denotes the shortest path distance in the

connectivity graph between i and j.
2) Greedy Routing Success Rate (GSR): The fraction of

packets that reach their destination by making only local
forwarding decisions based on the coordinates of the nodes
in the neighborhood and the position of the destination. For
PB and NoGeo, we use classic greedy routing which forwards
a packet to the neighbor closest in Euclidean distance to the
destination. For BVR, we use both greedy routing and the
routing algorithm proposed in [13], here called “BVR greedy”
and “BVR”, respectively. For the latter, the distance between
two nodes p and d is given by Aδ+ + δ−, where δ+(p, d) =∑

max(pi − di, 0) and δ−(p, d) =
∑

max(di − pi, 0). Index
i corresponds to the ist coordinate. As in [13], we set weight
A = 10 and take all beacons into account. The neighbor that
minimizes this distance function is chosen as a next hop.

3) Path Stretch: The path stretch is the ratio between the
actual number of hops a data packet traveled from a source to
the destination and the shortest path distance in hops between
these two nodes. We only consider successful communication.

4) Communication Overhead: We consider as overhead all
packets that are not data packets. This includes the packets
flooded by beacon nodes as well as the packets used to build
local routing tables and the packets used in ring search.

5) Virtual speed: This metric captures how fast nodes move
in the virtual coordinate space, i.e.,the average Euclidean
distance between the virtual coordinates of nodes from one
round to the next.

C. Static Networks

In this section, we investigate the performance of PB in
static networks both in terms of embedding quality and routing
efficiency.

1) Quality of Embedding: In Figure 3(a), we show the
empirical cumulative distribution function (ecdf) of the multi-
plicative distortion in a fixed network size. It can be seen that
it is low with PB is low. This indicates that PB can efficiently
capture the inherently low dimensional structure of wireless
connectivity graphs. Further, a small number of beacons suffice
to this end. One can also point out the fact that the slope
of the cumulative distortion curve with PB is almost vertical
which indicates a lower variance. It is interesting to note that
the distortion of BVR is high, since nodes are spread out in
all dimensions. Due to the randomness of the channel, there
can also be highly distorted distances with the real coordinate
system (e.g.,if nodes located in neighboring locations are not
connected directly). With NoGeo, the averaging procedure can
place nodes arbitrarily close or far apart so that a fraction
of distances are highly distorted. As shown in Fig. 3(b),
the mean multiplicative distortion does not appear to grow
considerably with the size of the network. In addition, it stays
very close to 1 with PB, which tends to indicate that even the
additive distortion is small. A direct consequence will be that
geographic routing performs well on top of a virtual coordinate
system built with PB, independently of the size of the network.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

x

P
(m

ul
tip

lic
at

iv
e

di
st

or
tio

n<
x)

PB

NoGeo
BVR

REAL

(a) Multiplicative distortion

0 1000 2000 3000 4000 5000
0.5

1

1.5

2

2.5

3

3.5

Number of nodes

M
ul

tip
lic

at
iv

e
D

is
to

rt
io

n

PB
NoGeo
BVR
real

(b) Mean multiplicative distortion ver-
sus network size

Fig. 3. Cumulative distribution function of multiplicative distortion for 2000
nodes and mean distortion as a function of number of nodes. When we
increase the number of nodes, we maintain a constant density of 2 nodes
per grid location.

2) Quality of Routing: We will first investigate the per-
formance of greedy routing on top of virtual coordinate
systems in a static setting. In particular, we will focus on the
performance of the algorithms in networks of increasing size,
networks of increasing node density and in inhomogeneous
network topologies. We will also investigate local optimization
mechanisms to improve the quality of routing.

a) Scalability, Density, and Inhomogeneity: Increasing
the size of the network while maintaining a constant density of
2 nodes per grid location has the effect of introducing larger
distances in the topology. The overhead per node allowed to
build the embedding is kept constant. A consequence is that in
PB and BVR, the beacons are spread out. We show in Figure
4(a) that this affects the GSR of PB only marginally. On the
other hand, a clear effect can be seen with NoGeo as the node
positions depend on the position of perimeter nodes and the
averaging takes more time to reach the center of the network.
A direct consequence of the way the BVR embedding is built
is that is is easier to route toward beacons. Indeed, one can
observe that the GSR decreases remarkably with this approach

when we increase the network size. A similar phenomenon
can be observed when the network area is reduced and the
number of nodes is kept constant. Figure 4(b) shows that
NoGeo and also BVR are severely affected by changes in the
network diameter, while PB is relatively unaffected. Increasing
the network size also creates voids in the topology as not all
grid locations are occupied anymore, which reduces the GSR
of real coordinates. This effect can also be seen in topologies
with obstacles (see Figure 4(c)). Note that the GSRs of NoGeo
and BVR are fairly low since we limit all approaches to the
same overhead to build the embedding and the convergence
speed of PB is higher. Our simulations have shown that in
order to reach the same GSR as PB, NoGeo and BVR need
an overhead of up to 100 messages per node in this setting.

b) Local Optimizations: As explained in III, small dis-
tances are hard to embed. As explained in Section V, allowing
nodes to build local routing table of growing scope can
increase the GSR and reduce the path stretch remarkably as
shown in Fig. 5(b) and 5(a), but the overhead to build the
routing tables increases likewise.

BRWalk allows to trade path length for overhead. In Figure
5, we show that for a sufficiently high value of the parameter α
(see Section V), the stretch can be as low as 2 while the GSR
reaches 100%, which is similar to the one obtained with local
routing tables at no cost in terms of overhead. This shows
that when a good next hop is available that is much closer
to the destination than the current node, this node should be
chosen. In other words, if we make a big progress in Euclidean
space, we should trust the embedding. On the other hand, when
no such node exists, a next hop should be chosen randomly.
This result also suggests that there are small errors in the
embedding. The ordering with respect to a target node of nodes
embedded nearby can be perturbed. In turn, this phenomenon
leads to wrong forwarding decision. Introducing randomness
in the forwarding decisions appears to be an efficient way to
mitigate the effects of such disorderings.

D. Mobile Networks

Here, we study the behavior of embedding algorithms when
the wireless connectivity graph is dynamic because of node
mobility.

1) Quality of Embedding: In mobile networks, we measure
the quality of embedding by looking at the average virtual
speed of nodes in the virtual coordinate system. Only a certain
amount of “fresh” distance information is injected per round.
In this case, the embedding is partly built based on outdated
distance information. The virtual speed with PB is of the same
order as the real speed of the nodes. The sliding window
mechanism mitigates the effect of injecting new distances
while the averaging mechanism mitigates the local incoherence
in the coordinate system. Again, we assume that for NoGeo
perimeter nodes are given, since the perimeter node detection
procedure in [12] (a node is a perimeter node if it is further
away from a beacon node than all of its two hop neighbors)
leads to a large number of false positives and ultimately to the
collapse of the coordinate system. In Figure 6(a), we show the

0.5 1 1.5 2
x 10

4

0

0.2

0.4

0.6

0.8

1

network size in nodes

su
cc

es
s

ra
te

 o
f g

re
ed

y
ro

ut
in

g

PB
NoGeo
BVR greedy
BVR
real

(a) Scalability

10
1

10
20

0.2

0.4

0.6

0.8

1

Average degree

su
cc

es
s

ra
te

 o
f g

re
ed

y
ro

ut
in

g

PB
NoGeo
BVR greedy
BVR
real

(b) Density

0 5 10 15 20
0.2

0.4

0.6

0.8

1

number of randomy placed walls

su
cc

es
s

ra
te

 o
f g

re
ed

y
ro

ut
in

g

PB
AVG
BVR greedy
BVR
real

(c) Inhomogeneity

Fig. 4. GSR as a function of network size, node density and number of obstacles (randomly placed straight walls of length 6). The overhead allowed to
build the embedding is set to 20 messages per node.

1 1.5 2 2.5 3 3.5 4
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

radius of routing table

pa
th

 s
tr

et
ch

PB
NoGeo
BVR
BVR greedy
real

(a) Path stretch

1 1.5 2 2.5 3 3.5 4
0.2

0.4

0.6

0.8

1

radius of routing table

G
re

ed
y

R
ou

tin
g

S
uc

ce
ss

 R
at

e

PB
NoGeo
BVR
BVR greedy
real

(b) Greedy success rate

0 2 4 6 8
0

5

10

15

20

alpha

pa
th

 s
tr

et
ch

PB
NoGeo
BVR
real

(c) Path stretch

0 2 4 6 8
0.4

0.5

0.6

0.7

0.8

0.9

1

alpha

G
re

ed
y

R
ou

tin
g

S
uc

ce
ss

 R
at

e

PB
NoGeo
BVR
real

(d) Greedy success rate

Fig. 5. GSR and path stretch for BRWalk routing and forwarding with local
routing tables. α captures the randomness of the forwarding in BRWalk. A
greater value for α means less randomness. In this experiment, packets have
a memory of 20 hops, as explained in Section V.

average virtual speed of nodes when the nodes move according
to the RW and RWP model with a speed of 1.

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

iterations

vi
rt

ua
l s

pe
ed

PB RW
NoGeo RW
BVR RW
PB RWP
NoGeo RWP
BVR RWP

(a) Virtual Speed

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

iterations

In
st

an
te

ne
ou

s
G

S
R

PB RWP
NoGeo RWP
BVR greedy RWP
BVR RWP
real RWP

(b) Greedy Success Rate

Fig. 6. Virtual Speed and GSR under mobility as a function of the allowed
number of iterations to update the coordinate system between every move

2) Quality of Routing: Second, we analyze the quality of
routing in a dynamic setting.

a) Instantaneous GSR: We investigate the performance
of PB when we limit the number of iterations to update the
algorithm in every round. Figure 6(b) shows that as few as 5
iterations are sufficient to obtain a high GSR. For the sake of
clarity we only show the results for the RWP as the RW results
are very close. It is remarkable that even under mobility a

higher GSR than with real coordinates can be obtained. There
is an interesting trade-off between stability and GSR. The more
fresh information is added to the embedding, the more it moves
but the better the GSR. In a static environment, BVR is more
stable since the beacon nodes never change, but the GSR of PB
can still be up to two to three times higher than that of BVR,
depending on the number of beacons. In a mobile environment,
however, PB is both more stable and more efficient in terms
of GSR. Note that the GSR of NoGeo decreases because new
perimeter nodes are selected continuously, and the coordinate
averaging does not manage to propagate through the network
sufficiently fast to keep up with the new information.

b) Reliable routing: We now investigate reliable routing
under mobility. When a packet is stuck with greedy for-
warding, a ring search is started until a node closer to the
destination is found for NoGeo and PB. For BVR, we use
the recovery strategy proposed in [13] which routes a packet
toward the beacon closest to the destination. If along the way,
the packet reaches a node which is closer to the destination
than the dead-end, greedy mode is resumed. Otherwise, a
ring search is started from the beacon. In Fig. 7, we are
interested in how the communication overhead to achieve
reliable communication scales with the size of the network. We
allow only a fixed overhead per node to update the embedding
in every round, and consequently the embeddings will be
based on outdated distance information. In Fig. 7(a), it can
be seen that reliable communications are less costly in terms
of overhead with PB than with the other approaches. Note that
the overhead with real coordinates remains low as there is no
additional cost to update the real coordinate system. The gap
between the different schemes grows as the size of the network
increases. Fig. 7(b) and Fig. 7(c) give us some insight. In the
former, it can be seen that the number of dead-ends per packet
sent remains very low with PB. In the latter, it is shown that
when such a dead-end occurs recovery is cheap. Indeed, on
average a node only needs to search its two hop neighborhood
to find a suitable next hop. With the other approaches, the
number of dead-ends per packet increases with network size
as well as the search radius necessary to find a next hop. It is
also worthwhile to note that the path stretch with PB remains
more or less constant. These are indicators that the quality of
the embedding and its stability do only scale well with PB.

0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000

10000

12000

Number of nodes

O
ve

rh
ea

d/
m

es
sa

ge

PB
NoGeo
BVR greedy
BVR
real

(a) Overhead per packet

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

3

3.5

Number of nodes

de
ad

−
en

ds
/m

es
sa

ge

PB
NoGeo
BVR greedy
BVR
real

(b) Dead-ends per packet

0 2000 4000 6000 8000 10000
2

2.5

3

3.5

4

4.5

5

5.5

Number of nodes

flo
od

in
g

ra
di

us
/d

ea
d−

en
d

PB
NoGeo
BVR greedy
BVR
real

(c) Flooding radius per dead-end

0 2000 4000 6000 8000 10000
1

1.5

2

2.5

Number of nodes

pa
th

 s
tr

et
ch

PB
NoGeo
BVR greedy
BVR
real

(d) Path stretch

Fig. 7. Reliable routing under mobility. Nodes move according to the RWP
model with speed 1 and pause time 0. The are on average 2 nodes per grid
location and we maintain this density fixed while we increase the number of
nodes. Nodes are allowed an overhead of 5 messages to update the embedding
before they move again (5 iterations). The dimension of embedding is 20 for
BVR and PB and 2 for NoGeo

c) Location service: Overall, our simulations show that
the embeddings built with PB are sufficiently stable to be used
with Last Encounter Routing (LER), resulting in a complete
solution for routing in dynamic wireless ad hoc networks
with low overhead. As expected, PB is particularly efficient
compared to real coordinates in inhomogeneous topologies.
Indeed, our experiments have shown that in settings with
obstacles the overhead to route a packet with a PB embedding
and LER (including the overhead to build the embedding)
remains lower than the overhead necessary to route a packet
with LER on top of real coordinates. This remains true when
we increase the network size. We refer the reader to [21]
for a more in depth explanation of LER on top of PB. Note
that when the topology is fixed, all embeddings oscillate very
little and are consequently also adapted for classical location
services (LS). Indeed, location services updates are in general
triggered when a node has moved a certain distance.

VII. CONCLUSIONS

In this work we present a novel embedding algorithm for
greedy routing on virtual coordinates that is robust to network
dynamics and random channel conditions. Its key feature is
the intricate combination of local information (averaging) and
global information (probabilistic beaconing) in an iterative,
distributed manner. We give some intuition why these connec-
tivity graphs are inherently well embeddable even in the face
of mobility. The proposed algorithm significantly outperforms
existing embeddings in terms of success rate of greedy routing,
convergence and distortion of the embedding, and overhead in
static as well as dynamic environments. We further show that
some degree of randomness in the routing decisions alleviates
the effects of local inaccuracies in the positions of the nodes.

REFERENCES

[1] C. E. Perkins and E. M. Royer, “Ad hoc on-demand distance vector
routing,” in Proc. of 2nd IEEE Workshop on Mobile Computing Systems
and Applications, Feb. 1999.

[2] D. B. Johnson, D. A. Maltz, and J. Broch, Ad Hoc Networking.
Addison-Wesley, 2001, ch. DSR: The Dynamic Source Routing Protocol
for Multi-Hop Wireless Ad Hoc Networks, pp. 139–172.

[3] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing with
guaranteed delivery in ad hoc wireless networks,” in Proc. of 3rd ACM
DIALM, Seattle, US, 1999.

[4] B. Karp and H. T. Kung, “GPSR: Greedy perimeter stateless routing for
wireless networks,” in Proc. ACM Mobicom, Aug. 2000.

[5] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger, “Geometric ad-hoc
routing: Of theory and practice,” in Proc. ACM PODC, July 2003.

[6] S. M. Das, H. Pucha, and Y. C. Hu, “Performance comparison of scalable
location services for geographic ad hoc routing,” in Proc. IEEE Infocom,
Mar. 2005.

[7] M. Grossglauser and M. Vetterli, “Locating Mobile Nodes with EASE:
Learning Efficient Routes from Encounter Histories Alone,” IEEE/ACM
Trans. on Networking, vol. 14, no. 3, June 2006.

[8] P. Indyk and J. Matousek, “Low-distortion embeddings of finite metric
spaces,” in CRC Handbook of Discrete and Computational Geometry,
2004, chapter 8.

[9] D. K. Agrafiotis and H. Xu, “A geodesic framework for analyzing
molecular similarities,” J. Chem. Info. Comput. Sci., vol. 43, pp. 475–
484, 2003.

[10] L. Tang and M. Crovella, “Virtual landmarks for the internet,” in Proc.
ACM Sigcomm, 2003, pp. 143–152.

[11] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentral-
ized network coordinate system,” in Computer Communication Review,
vol. 34, 2004, pp. 15–26.

[12] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica, “Ge-
ographic routing without location information,” in Proc. ACM Mobicom,
2003, pp. 96–108.

[13] R. Fonseca, S. Ratnasamy, J. Zhao, C. T. Ee, D. Culler, S. Shenker, and
I. a. Stoica, “Beacon-vector routing: Scalable point-to-point routing in
wireless sensor networks,” in NSDI, 2005.

[14] J. Newsome and D. Song, “Gem: graph embedding for routing and data-
centric storage in sensor networks without geographic information,” in
Proc. ACM SenSys’03, Los Angeles, USA, 2003.

[15] J. Bruck, J. Gao, and A. Jiang, “MAP: Medial axis based geometric
routing in sensor networks,” in Proc. ACM Mobicom, Koeln, Germany,
2005, pp. 88 – 102.

[16] Q. Fang, J. Gao, L. J. Guibas, V. de Silva, and L. Zhang, “Glider:
gradient landmark-based distributed routing for sensor networks,” in
IEEE Infocom, Miami, FL, Mar. 2005.

[17] Y. Shang, W. Ruml, Y. Zhang, and M. Fromherz, “Localization from
connectivity in sensor networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 15, no. 11, p. 961, 2004.

[18] J. Kleinberg, A. Slivkins, and T. Wexler, “Triangulation and embedding
using small sets of beacons,” in FOCS, 2004, pp. 444–453.

[19] I. Abraham, Y. Bartal, T.-H. Chan, K. Dhamdhere, A. Gupta, J. Klein-
berg, O. Neiman, and A. Slivkins, “Metric embeddings with relaxed
guarantees,” in 46th IEEE Symposium on Foundations of Computer
Science, 2005.

[20] T. Moscibroda, R. O’Dell, M. Wattenhofer, and R. Wattenhofer, “Virtual
coordinates for ad hoc and sensor networks,” in Proc. DIALM-POMC,
Philadelphia, PA, USA, Oct. 2004.

[21] D. Tschopp, S. Diggavi, M. Grossglauser, and J. Widmer, “Robust
Routing for Dynamic Wireless Networks Based on Stable Embeddings,”
in Proc. Information Theory and Applications workshop (ITA), San
Diego, CA, January 2007.

[22] K. A. Dimitris, “Stochastic proximity embedding,” Journal of
Computational Chemistry, vol. 24, no. 10, pp. 1215–1221, 2003,
10.1002/jcc.10234.

