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Abstract— Routing packets is a central function of multi-hop directly in the packet header for source routing, or keptton t
wireless networks. Traditionally, there have been two pardigms nodes in a table containing next hops and distances to other
for routing, either based on the geographical coordinates fothe nodes. However, end-to-end paths are very fragile, bedhese
nodes (geographic routing), or based on the connectivity gph . . " . . !
(topology-based routing). The former implicitly assumes hat disruption of an mtermedlat_e link means that the pa_th_needs
geometry determines connectivity, whereas the latter doesot 0 be reestablished or repaired. The latter problem lintits t
exploit this inherent geometry of wireless networks, and asumes applicability of such routing algorithms to relatively shnand
a general graph instead. stable ad hoc networks. Indeed, the control overhead iedolv

In this paper, we explore ideas that attempt to bridge thesewo 1, maintain such routing tables is not sustainable in large,
paradigms. We do so by investigating routing techniques basl dynamic networks

on metric embeddings of the connectivity graph. If this gram . . . .
is closely related to the underlying geometry of the nodeshen Another way to route in networks is to first assign co-
it is possible to embed the graph in a low-dimensional normed ordinates to nodes, and then to make purely local routing

space. This keeps the overhead of the routing protocol low. decisions based on this coordinate system. More preciaely,
We specifically explore embeddings of dynamic networks pode forwards a packet to its neighbor positioned closetbteto

induced by channel fading and mobility. This motivates the ovel s . .
problem of stable embeddings, where the additional goal isot destination. Here we assume that the position of the deistina

maintain an embedding over time, such that the evolution ofie 1S known. With this strategy, all forwarding decisions aedl,
embedding faithfully captures the evolution of the underhing and there is no notion of an end-to-end route that breaks if
graph itself. This is crucial to limit the control overhead of the intermediate nodes move.
routing protocol, and to ensure that our approach is scalabé. This immediately raises the question of how nodes can
obtain their coordinates. If nodes are equipped with a Globa
Positioning System (GPS), one can use these “physical” geo-

Ad hoc networks comprise potentially mobile wirelesgraphical coordinates for routing. Unfortunately, physico-
nodes, such as sensors, laptops, cell phones, or PDAs.otdinates might not capture the topology of the network well
practice, such networks could be deployed for instance f@n a large scale, obstacles such as walls, buildings, mimsnta
environmental monitoring, when wired networks are hard aretc. could make the communication path very different from
costly to put in place, for disaster recovery if the existing straight line between the source and destination, givisey r
infrastructure was destroyed, for interactive gaming, or to dead-ends in greedy routing. A routing dead-end occurs
increase the coverage of base stations in cellular networlihen a node has no neighbor closer to the destination than
Nodes can only communicate directly over short distancéself. In Fig. 1(a) we illustrate such a dead-end due to a
because of power limitations and interferences on the @ssel large topological void. When such a situation occurs, thaten
channel. To enable long range communications, nodes att boteds to start a recovery procedure. One simple option is to
as terminals and relayse., nodes far apart communicate oveinitiate scoped floods in order to identify a suitable nexpho
multiple hops. Note that this communication model is ndthe control overhead to find a next hop with such recovery
information-theoretically optimal [1], but captures therent procedure is usually high. Thus, such dead-ends should be
technology (similar to the communication model used in.[2]avoided if possible. Furthermore, packets could even gekst
Our interest in this paper is in dynamic wireless network#cally due to the random nature of the channel (see Fig)1(b)
where the connectivity of the nodes is random and may evolveln this paper we further explore the idea studied in [5] to
over time. “embed” the connectivity graph in order to obtain coordasat

In such an environment, paths between pairs of nodesich reflect the structure of the network well. We can then
change frequently, which makes routing a challenging probse the embedded coordinates for routing. This approach
lem. In topology-based routing protocols such as [3], [4therefore bridges geographic and topological routing. The
nodes discover the shortest path to each other through figodiembedding attempts to preserve the graph distances, so that
Once a path is discovered, the path information is eithetethr nearby nodes are usually embedded close to each other and
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we add an edge between nodesnd j with probability p
if ||z; — ;]| < r for all 4,j. In this model the underlying
. assumption is that nodes can only communicate directly if
they are located physically close to each other, and that eve
o in this case, some losses can occur because of the random
d nature of wireless communications. Note that this model is
closely related to the geometric random graph model studied
in the literature [2].
¥ In the second model, we define a connectivity graph

H(N, S, A\, r), where againN is the number of nodes$?
(@) Large scale void (b) Local dead-end is the number of locations nodes can occupys the number
Fig. 1. In 1(a), packets sent from the source nede the target node get of neighbors a node can pick, ands the expected communi-
stuck because of the large wall when a greedy forwardingegjyais chosen cation radius. A snapshot of H(N, S, \,r) is shown in Fig.
(26 s o). A bt cho v v el ol path Ao 2(b). Everynode randomily pcks  lcation o rid of
the channel can also lead to dead-ends (red arrow), evenfittoese impact l0Cations. Every location has a set of channels associaited w
the performance of routing less severely as it is easier cover from them. it, which are drawn a priori. More precisely, for every loicat
we draw A communication links. The probability of being
connected to another location decays exponentially witarme
nodes which are many hops apart are embedded far apart: [fith the distance (see [6] for a motivation of this model),
the embedding captures the network topology well, dead-ernghile the angle is chosen uniformly at random between
can only be local and do not lead to a severe degradatignd 2. Note that the degree of a location can be different
of the performance. It is obviously desirable that the aaintrfrom ), as the same location might be picked twice and links
overhead per node involved to embed the connectivity gragided when a node is chosen by node or when a node chooses
is low, and ideally independent of the scale of the network.another node. In this model, we focus on long term fading.
The paper is organized as follows. In Section I, we formallyhe assumption is that communication links depend on the
state the problem and the models used in the paper. We a$wironment €.g., buildings, walls, mountains etc.) and that
give the background on the ideas explored in [5]. In Sectightwo nodes are at the same physical positions they inherit
I, we make some observations on the structure of wirelegse same channels. However, with a low probability, nodes fa
connectivity graphs. We present the design criterion andapart can be connected.
gradient descent algorithm for embedding in Section IV. We
combine routing and collection of the embedded coordil
in Section V. We finally conclude with a short discussio
Section VI.

II. PROBLEM STATEMENT AND RELATED WORK

In this section we present models of wireless ad
networks, and we relate this paper to existing work.

A. Problem Satement

We model ad hoc networks as unweighted dynamic graphs. (@) G(400, —=i==0.8) (b) (400,20, 5,1)
Nodes are associated with vertices, and there exists an edge
between two vertices if the corresponding nodes can comnftl 2- I Fig. 2(a), we show an aerial view 0400, 5=, 0.8), while
nicate directly with each other over a vireless communigmi 7, 26) e et an ser iew of (100 30,51 Note bhat the
channel. The connectivity depends both on the physical pogk #(n, S, A, r)
tions of nodes as well as on the channel model. The dynamics
result from the mobility of the nodes and from the randomnessNodes move according to a random walk or a random
of the wireless medium. This level of abstraction is suffitie waypoint model. When the second connectivity graph is used,
to give us a thorough understanding of the characteristics the positions of the nodes are rounded to the closest gritt,poi
ad hoc networks, and in particular, of the applicability oAnd nodes inherit the channels of the corresponding latatio
embedding techniques for routing. We consider two parmticul The problem of routing amounts to finding a path between
models. a source node and a destination node in such a connectivity
In the first model, we define a connectivity gra@fV, r, p), graph. Obviously, we would like this path to be as short as
where N is the number of nodes; is the communication possible in order to minimize the network resources invdlve
radius, andp is a connection probability. A snapshot of an transporting the message. The main cost involved in nguti
G(N,r,p) is shown in Fig. 2(a). First, every nodes placed is the communication overhead to find and maintain such
uniformly at random at a position; on the unit square. Then, paths. In this paper, we are focusing on the characteristics



of such connectivity graphs and explain why they are welbcus our attention to the case whéh is the normed space
embeddable even under mobility. In particular, we highlighR™, i.e., am-dimensional Euclidean space. The metric used is
the inherently low dimensional structure of these graphs ab' («/,y') = |2/ — /|| for the norm defined ok™. The goal
their relatively slowly evolving nature. We then design anfthe embeddingis to compactly (and as faithfully as pdesib
embedding algorithm which exploits these specificities t@present the graph in an alternate, hopefully low-dimemesi
maintain a stable embedding with low distortion at a lowpace. More concretely, in our problem, we use the shortest
overhead rate per node. We also present local mechanigmath distances for the metric on the connectivity graph. We
which in turn enhance the routability of such low-distontio want to find an embedding ont8™, for smallm, such that
embeddings. for x,y € V, rD(z,y) < ||f(z) = f(y)|l2 < erD(z,y). The
norm used in our numerical results is thenorm.
B. Related Work For arbitrary graphs, it is known that one cannot hope
This paper relates directly to [5]. In [5] we introducedo get good low-distortion and low-dimensional embeddings
probabilistic beaconing (PB), a novel embedding algorithfi@]. However, we believe that connectivity graphs that eris
tailored to dynamic connectivity graphs defined by mobilfom wireless networks are special, because there is some
wireless ad hoc networks. The design of the algorithm explounderlying geometry associated with such graphs. On the one
the fact that connectivity and mobility are local, and that &and, channel fading might destroy some local geometry as-
large scale, geometry plays a role. In the proposed approasbciated with connectivity. On the other hand, nodes oaigin
the overhead per node to build the embedding is independ&oin a 2-dimensional world, and connectivity is mostly Ibca
of the number of nodes and remains constant when wikence, we suspect that geometry will play a large role in
increase the size of the network. Further, a sliding windowonnectivity over larger distances. That is, nodes pasiibfar
mechanism is introduced, which helps maintaining a statagart in the real world are bound to communicate over matipl
embedding in the face of mobility and channel uncertaintiiops. Therefore, even though one could still constructles®
The simulation results show that this approach outperforraennectivity graphs which do not have such properties, our
other embedding schemes developed for such networks bexperiments and intuition suggest that such configurations
in terms of packet delivery ratio and in terms of overhead toccur relatively rarely.
maintain the embedding. It is also shown that embeddinglarg In order to understand some of these issues, we examine
scale distances is easier than to embed small scale distanttee problem usingmulti-dimensional scaling (MDS) which
This is problematic in the sense that forwarding decisiaes as another technique for extracting coordinates from pisiew
local. In order to by-pass this issue, we propose the use diftances widely used in statistics literature [8]. Cleakscal-
local routing tables to “see further” ahead and conseqyenihg, [8], is a technique used in statistics to obtain (emleegid
avoid this local uncertainty area. Alternatively, we prep@a coordinatesX in Euclidean space ofi. points given only a
randomized forwarding scheme to achieve the same purpastrix of pairwise distances. Coordinates obtained wiils th
We refer the reader to [5] and references therein for a survagproach minimize the sum of squared errors between the
of the related work, notably on the specifics of geographariginal distances and the Euclidean distances betweerttsoi
routing. In this paper, we clarify, generalize, and extehe t (which is also called thetress function [8]), i.e,
notions presented in [5]. In particular, we make observegio n  n 5
on why the proposed embedding algorithm is efficient, and we minz Z [D(% v;) — D'(f(vi), f(vj))} .
provide a better understanding of the underlying optinizat U e
problem. Several other papers in the literature study tleeofis
virtual coordinates or embeddings feiatic wireless networks
(see references in [5] for more details).

Therefore, the criterion used to evaluate the embedding in
MDS is different from that of the relative distortion criten
introduced earlier. The stretch criterion used in computer

1. OBSERVATIONS ONWIRELESSCONNECTIVITY GRAPH Science [7] is a worst case distortion, in contrast to theaye

The formal problem of representing a connectivity graph i(rJI]istortion used in MDS.
P p 9 y grap A nice property of X is that it is a principal axes solu-

a metric space is calledraph embedding, and has received tion, i.e, the variance along axes is maximized [8]. We are

significant recent attention in the computer science litee . . . )
) interested in this variance as we want to show that the error
(see for example [7] and references therein). The goal O . . = .
|n(furred by representing wireless connectivity graphsoin-|

the genera! graph e_mbeddlng problem is to take as an NRfHhensional Euclidean space is small. In other words, in an
a graph withn verticesV = {vy,...,v,}, and a metric

D(z,y) between vertices;,y € V. The output is then an optimal least square err_1bedd|ng in Euclidean space, only a
. . / i . small number of dimensions are necessary to capture most of
embedding functionf : ¥V — X where X is a metric

. - ..~ the variance.
space endowed with metrid (-, ). The goal of designing " ;o 'a S 1) matrix DO where the(i, j)-th entry inD(?)
f is that the distances of the vertices in the metric space are en b D2(vi,0,), for vs,v; € V, we define a matriB
“close” to the distances on the original graph. That is, walwaasg y v v '
to ensure that there exist constamts such thatz,y € V, '

1
rD(z,y) < D'(f(x), f(y)) < erD(x,y). For this paper, we B = —iJD(Q)Jv 1)



whereJ = I —n'11T and1 = [1,...,1]7. The m-
dimensionial coordinate matrix of classical scaling is giby
X = Q4 Az, whereA, is the matrix containing the: largest
eigenvalues an@) . the corresponding eigenvectors. Note the
dimensions are nested so that the— 1 first dimensions
of a m-dimensional embedding are the same ashe 1
dimensions of anmm — 1-dimensional embedding

In Figure 3 we show how geometry plays a role in th
dimensionality of connectivity graphs. We genetaseveral
G(2000, 7, p) with varying average node degrees and jioe
0.6 andp = 1 (see Fig. 3(a) and 3(b) respectively). Nott
that since the node density l.ﬁfr = N, the average node
degree isp(N — 1)7r?. We then use (1) to find then-
dimensional coordinate matrix associated with this togglo
Assume that the eigenvalugg, 6>, ...] in A are in decreasing
order. In particular, we are interested in the spectrum ef tfyig. 4. Cumulative distribution of variance in dimensiors &(N,r, 1).
re-centered squared distance matBxand how variance is The average degreeldg) is 16 ¢ = FOv-yz) and probabilityp = 1 of

s . . . . . ink connectivity. We vary the networks sizZ€. One can observe that the low
dlsmbUtegdme_the different dimensions. In Flg' 3, we pIO!ﬁmensional structure of wireless connectivity graphsnidependent ofV
v(d) = &, where D is such thatfp is the smallest

.. i=1 "7 . . .
positive eigenvalue. This random experiment is repeated, a

the cumulative results are presented in Figure 3. It can gad distribute the information. If one is counting contraiftic

observed that there is a considerable gap between the fuerhead, this would also need to be taken into account. In

and second dimensions, while there are only small incresneHl€ Presence of significant mobility, such updates might be
for subsequent dimensions. This indicates that most of tfg/@yed, and hence we may only have access to “outdated”
variance is captured by the two first dimensions. Funhéﬂformatlon about a destination node. In orde_r to unded;ta_n
this gap diminishes as we increase the communication radif]W much such a delay would affect our techniques, we define
These experiments seem to suggest that wireless connedfi. notion ofstability of the embeddings. , _

ity graphs are well representable using a small number OfSuppoge the.connect|V|ty graph IS time-varying, with the
dimensions. Not surprisingly, when we increase the avera@gPh at time given byg;, and the distances b (v;, v;) =
degree and consequently the communication radius, gepmetid: (Vi v), vi,v; € V, where= Dg,(-,-) is the shortest-
progressively plays a smaller role and the fraction of ttalto Path distance between;, v; in the graphG,. We define an
variance in the two first dimensions is reduced. For a verydar€Mpedding for each timethrough the mapping; : V — X',
average degree, the variance appears to be equally disgibfVhich tries to capture the distances in the gragh Let

in all dimensions. Interestingly, when we make connegtivit!S defined, (vi,v;) = D (fi(vi), fi(vs)),vi,v; € V as the
distance between the vertices in the embedded space at.time

random by setting = 0.6, we reduce the variance in the two ' )
first dimensions. Intuitively, adding complexity to the cinel If we have access to outdated information about the embedded
’ pcoordinates of vertex; from time¢ — A, we would only be

also decreases the embeddability of the connectivity gnap ,
a low dimensional space. able to computeD (ft_(vi)a fth(”j))-_

In Fig. 4, we show that remarkably this low dimensionality A notion of stability can be defined through tetreich
is always present, independently of the size of the netwo stweend, (vi, v;) and D (fi(vi), fi-a(v;)). Let
This suggests that a smart design for a distributed embgddin def 1
algorithm should exploit this property and be highly scéab g(v) = max{v, 5}
In other words, it seems that the communication overhedagien we define stretcB (A, 7, j) (distortion) when we exam-
necessary to capture this low dimensional structure shbeld ine an outdated destination position as
of O(1) per node, as adding new nodes does not change the / _ _

D'(fi(vi), fi(v))) >

properties of the connectivity graph. S(Ai,j) =g <D’(f 0 fon(v:))
t\Vi )y Jt—A\Uj

A. Stability of Embeddings In order to isolate the effect of topology changes and the em-
One of the main concerns in this paper is to hamijteamic  bedding errors we examine just the changes in the embedded

wireless networks, where the connectivity changes ovee tindistances without using outdated information througyl, ;)

either due to node mobility or channel fading. In this case, a . dy(v;, ;)

important concern is how to find out the path to (or the logatio S(i,5) =g (D’(f ( _)’ Jﬁ( _))>

of) a destination. The traditional method (as explained in t\Vi), JeiUs

Section V) is to use a separate service to handle these spdfRé the updated embedding. We have suppressed the depen-
dence on time since we expect this to be stationairg,, not

1See Section II-A for notation. to depend on the time-instant chosen.
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Fig. 3. Cumulative distribution of variance in dimensioos (2000, r, p) for various average degree and probabijity= 0.6 andp = 1 of link connectivity.

In Fig. 5 we examingé the stability of an d, . (v;,v;)|, for some constant. In order to understand
H(1500,30,10,1.5). We use probabilistic beaconing with athe overall impact of outdated information, we might also
square window of length 10, and embed in 20 dimensioreok for another characterization. For small changes in the
Nodes move according to the random walk model with spegdaph distance between timeés- A and ¢, we would like
1. It is interesting that the mean distortion to an outdatétle difference betwee®' (f;(v;), f;—a(v;)) and the correct
embedded distanag (v;, v;) to be small as well. That is, we
would like |d, (v;, v;) = D' (fi(vi), fr—a(v;))| < 8|di(vi,v;)—

6/ [~ outdated position of destination ] d—a(vi, v;)|, for some constang. This captures both the
- updated embedding vs shortest path embedding error as well as the changes in topology. These
at forms might be useful in other contexts of embedding dynamic
Tl | e TR T graphs.

IV. PROBABILISTIC BEACONING

As seen in Section lll, if the distances between vertices
on a graph are known, then one can use many embedding
techniques in order to fing’(-) and hence the coordinates
for the verticesV in X'. However, one of the reasons to

20 40 60 80 100 attempt embedding is to reduce the amount of control traffic
iterations being sent over the network. Therefore, we would like only
a constantoverhead rate per-node in the network, which
means that the control traffic rate can only grow linearly
Fig. 5. Stability of the PB embedding of (1500, 30, 10, 1.5) subject to IN the network size. Therefore, any technique that attempts
random walk mobility of nodes. to discover the distances between every pair of nodes in
the network would entaif2(n?) rate and hence a growing
embedded position grows very slowly and sublinearly witbverhead. In order to get a constant overhead, we develop a
time while the standard deviation grows linearly with timemethod where only a constant number of nodes act as beacons
Hence, even when we update the embedding in a laayany time, and thereby at every time we only know the exact
way, the embedding remains a good approximation of thistances of all the nodes in the network to this small set of
underlying communication graph for several iterations. beacons. Hence at every time stepa new beacon nodBy

There can be several alternate notions of stability. F@ randomly selected. This beacon floods the network with a
example, we might want that when there are small changaantrol message, through which each node learns its shortes
in the embedded distance between tintes A and ¢, the path distance in the connectivity graph to this beacon. We
difference betwee'(f;(v:), fi_a(v;)) and the correct em- need to infer or estimate the other distances only from these
bedded distancé, (v;,v;) to be small as well. That is, we measurements to a constant number of such beacons.
would like |d; (vi,v;) =D (fi (i), fi_a(vj))| < yld;(vi,v;)— We do this inference by utilizing the coordinates of the

neighborhood of each node in the wireless network. The
2See Section II-A for notation. intuition behind this is that the embedded coordinates ohea

distortion




node should be close to that of its neighbors. Therefore, W¢gorithm 1 Probabilistic beaconing

do a local averaging step which moves the hop-distance DfAt time & calculate distancé; (k) of vertexv; to beaconBy,

a nodev; € V to a beaconB, towards the average of its 2. Adjust distances to beacons,

neighborhood (see Algorithm 1). We then iteratively solve averaged over one-hop neighborhood

a problem which tries to minimize an appropriately defined Foru =01to b — 1

least-squares criterion to reconcile the embedded coatekn 7 1 s i

of the ?/ertex and those of the beacons. An alternate method dSeth (k) = Wil+1 (ZJEN Filk —u) + Rilk u))

could have been to choose to do local averaging on tgeL?)cal optimization

coordinatesz; € X' of a nodev;, € V by moving towards Starti P i N f f nod iahb

the center of its neighborhoo;. arting point is cen e(:r)o m(i;ss of node neighbors
Working with average hop counts ensures that nodes in® ‘= Wﬁ (de/\/ +; )

the same neighborhood do not get embedded to distant lo-RepeatiV times

cations. Additionally, it also tends to place a node betwieen 1 b1 . (k—u) ap

neighbors. This property is useful for greedy routing asigei R POy (hu(k) = [le - ka u ||) W

placed in the center of its neighborhood augments the clsanceegng

of finding next hops in every directions, and consequently Update position

reduces the risk of dead-ends. Another reason to work with gt . k+1)

average hop counts is that the distance measurements can

be noisy. This is particularly true in mobile environments

or in environments where channels are fluctuating rapidly.

In this perspective, a node can view its outdated distance

measuremenpP; (k) and the outdated distance measurements

P;j(k), for v; € N;, to a beaconB, as a series of noisy

distance measurements. Given these noisy measurements, a

node can now try to estimate its hop distance to a beacon by

the average of the distance measurements of its neighbdrhoo

as,

(=)

N 1
hu(k) = ] v;{ P;(k) | + Pi(k) (2

In particular, given this average hop-coﬂm(k) of its neigh-
borhood, node); attempts to solve the following least-squares

problem:
Fig. 6. lllustration of an iteration (from step to j + 1) of the gradient-
mln Z _ ||—*_ b ||] 3 mlnh( ) (3) descent algorithm in 2 dimensions with three beacons. Thpatiposition
x; is projected on 3 hyperspheres of radii, ho and h3 around beacons
Bi1, B> and B3 respectively, to obtaim;(1),p;(2) andp;(3). The output
. i of this iteration isz ;1 = % [p;(1) +p;(2) +p; (3
where b, = z{;~") is the coordinate of the window of s+1.= 3P0 +2i2) + 5 0)
beacons under consideration. Therefore, the grad|em(b)‘
with respect tor is 2Zu 1 Hz—b[Hx bu|| = hy]. Hence,

the iterative method proposed in Algorithm 1 is therefore As mentioned in Section Ill, one of the important issues
just a gradient-descent method. This iterative method gadat we are concerned with is the stability of the embeddings
to a local minimum and therefore converges. This iteratiiRecall that we have access to only a partial distance matrix
gradient-descent technique is illustrated in Figure 6tead at any time (through measurements of a constant number of
of stopping after a fixed number of steps, we can also beacons). Therefore, when the topology changes, we need to
choose a stopping criterion the such that the gradient isl smensure the stability of the embedding (as defined in Section
enough. [l1). In our algorithm 1, this is accomplished by retaining
There are flavors of the gradient descent algorithm whighe distances to a fixed window size of the past beacons and
take a variable step-size instead of the constant step s#gempting to solve the least-squares problem given inf{3s
chosen in Algorithm 1. Such a variable step size could depengtans that we are using a “rectangular windowing” of dize
on the gradient itself, taking larger steps when the gradgen on the past beacon data. This naturally leads to the question
large and smaller ones when the gradient is small to ensurefavhether we can modify the algorithm and retain weighted
smoother descent. One can incorporate the many ideas usddrmation from a larger set of beacons. For example, we
in gradient-descent techniques into this problem. can modify the criterion in (3) to incorporate an expondhtia



decaying window on the previous beacons as, However, it was shown that for some mobility processes, the
. routes are asymptotically competitive, i.e., the averagech
min Z Wl (k) — || = by|[]? (4) is asmall constant, independent of the size of the netwdrk [9
N — One drawback of LER (and of all geo-routing approaches)
(heu) _ is that nodes must be embedded in a low-dimensional normed
where as beforé, = x5’ is the coordinate of the beaconspace, which can be either the physical coordinate system
By, used at timek — v and w, is a forgetting factor. (gptained through a positioning system such as GPS), or a
For example, for a rectangular window,, = 1,0 < v < vyjrtual coordinate system such as one obtained through our
B —1 and is zero otherwise. We can also use an exponenighbedding algorithm. Here, we are interested in the perfor-
forgetting factor withw, = a",0 < a < 1. These windowing mance of LER based on an embedded rather than an absolute
schemes attempt to ensure stability of the embeddings dordinate system. While this is conceptually straighvfand,
variations in the topology. it is not a priori clear to what extent the performance of LER
will decrease.
As we had pointed out earlier, an embedded coordinate
The main application of our embedding algorithm, asystem will not be perfectly stable. Given that the message i
pointed out earlier, is as a coordinate system for geogcaplbuted based on past locations of the destination, an uastab
routing in wireless networks. For a geo-routing algorithmn tembedding adds noise to the position estimate carried by the
be able to forward a message to a destination node (or a da@ssage, which in turn may lead to a more circuitous route
item identified by some key), it must first be able to determine the destination.
the coordinates of that destination. This is achieved tincal  In Fig. 7(a) and 7(b), we show how LER routing performs
location service, essentially a distributed database that keepghen used in conjunction with PB. In our simulations, N
track of the locations of all the nodes in the network. Everyodes move on af(1V, 20, 10, 1.5). The connectivity graph
time the location of a node changes, it generates an updatéstembedded using PB with 20 beacons, while the embedding
the location service; a node sending a message first looksdimension is 20. We send 1000 packets between random
the location of the destination through a query, and thedsersource destination pairs. With LER, all simulations resilin
the message towards that location using geo-routing. a delivery ratio of 100% and we therefore analyze the rasyilti
A problematic aspect of location services is that the ovesverhead. Figure 7(a) shows the total overhead for LER with
head due to control traffic (updates and queries) may becoreal coordinates and for LER with PB (which also includes
prohibitive in large and highly mobile networks. In a recenthe overhead for building the embedding) in a setting withou
approach called Last Encounter Routing (LER), this problesbstacles. The performance of LER with real and inferred
is addressed by merging the location service with the geesordinates is very similar. In a second experiment, we add
routing protocol [9]. The idea is that a message starts oud randomly placed “walls” of length 4. Walls are modeled
with only an imprecise estimate of the destination’s lamati by straight lines through which communication is impossibl
While the message advances through the network towards theerestingly, once we add obstacles to the scenario in this
destination’s estimated location, the message can imghise way, PB has a significantly lower total overhead than real
estimate progressively. This process continues until ties-mcoordinates, despite the beacon messages required totteild
sage arrives at the destination. The route taken by the messambedding and despite the additional information that LER
is not necessarily the shortest path, given that the messagwith real coordinates possesses.
not always moving in the optimal direction. However, if the This can be explained by the fact that adding obstacles
precision of the location estimate increases quickly ehcag) makes the topology inhomogeneous and consequently real
the message moves through the network, then the route cesdrdinates do not capture the structure of the network well
remains small, and ideally comparable to the shortest pathymore, leading to a large number of dead-ends. Recovering
route cost. from such dead-ends is in turn more costly in terms of
The key advantage of LER is that nodes only need to collesterhead than to build and maintain a virtual coordinate
local information about changes in the network topology dusystem which captures the topology more faithfully.
to mobility. Specifically, each node maintains a last enteun
table, in which it remembers the time and location when it
has last been a directly connected neighbor of every othern this paper, we further explored the ideas presented in
node. Collecting this last encounter history does not inc{8] for routing on dynamic wireless networks. The notion of
overhead, in that each node can derive it simply from locatability in embeddings was introduced, which becomes impo
discovery messages (HELLOs) that are necessary to e$tabtent when combined with a distributed location service such
connectivity anyway. Therefore, there is no control traffic as LER. We explored the structure of wireless connectivity
update the location service every time a node moves, whighaphs both in terms of inherent dimensionality and stighbili
makes LER inherently scalable. through numerical simulations. These explorations leatbus
Of course, the main question concerns the penalty in routenjecture that wireless connectivity graphs could be eepr
cost due to the uncertainty of the destination’s locatiosented well in a low-dimensional Euclidean space. Moreover

V. COMBINATION WITH LER

VI. DISCUSSION
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Fig. 7. Last Encounter Routing with PB and real coordinates mobile network.

our numerical results indicate that we have representstion
which provide stable embeddings. Future work includes the
following. The theoretical questions include a formal groo
of the above conjectures as well as development and analysis
of algorithms with provable properties. The practical digs
include performance evaluation on real wireless networke.
benefits of routing using embedded coordinates is also an
interesting question to be addressed. In summary, we leeliev
that this is a rich topic for future research.
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