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Abstract— Routing packets is a central function of multi-hop
wireless networks. Traditionally, there have been two paradigms
for routing, either based on the geographical coordinates of the
nodes (geographic routing), or based on the connectivity graph
(topology-based routing). The former implicitly assumes that
geometry determines connectivity, whereas the latter doesnot
exploit this inherent geometry of wireless networks, and assumes
a general graph instead.

In this paper, we explore ideas that attempt to bridge these two
paradigms. We do so by investigating routing techniques based
on metric embeddings of the connectivity graph. If this graph
is closely related to the underlying geometry of the nodes, then
it is possible to embed the graph in a low-dimensional normed
space. This keeps the overhead of the routing protocol low.

We specifically explore embeddings of dynamic networks
induced by channel fading and mobility. This motivates the novel
problem of stable embeddings, where the additional goal is to
maintain an embedding over time, such that the evolution of the
embedding faithfully captures the evolution of the underlying
graph itself. This is crucial to limit the control overhead of the
routing protocol, and to ensure that our approach is scalable.

I. I NTRODUCTION

Ad hoc networks comprise potentially mobile wireless
nodes, such as sensors, laptops, cell phones, or PDAs. In
practice, such networks could be deployed for instance for
environmental monitoring, when wired networks are hard and
costly to put in place, for disaster recovery if the existing
infrastructure was destroyed, for interactive gaming, or to
increase the coverage of base stations in cellular networks.
Nodes can only communicate directly over short distances
because of power limitations and interferences on the wireless
channel. To enable long range communications, nodes act both
as terminals and relays,i.e., nodes far apart communicate over
multiple hops. Note that this communication model is not
information-theoretically optimal [1], but captures the current
technology (similar to the communication model used in [2]).
Our interest in this paper is in dynamic wireless networks,
where the connectivity of the nodes is random and may evolve
over time.

In such an environment, paths between pairs of nodes
change frequently, which makes routing a challenging prob-
lem. In topology-based routing protocols such as [3], [4],
nodes discover the shortest path to each other through flooding.
Once a path is discovered, the path information is either carried

directly in the packet header for source routing, or kept on the
nodes in a table containing next hops and distances to other
nodes. However, end-to-end paths are very fragile, becausethe
disruption of an intermediate link means that the path needs
to be reestablished or repaired. The latter problem limits the
applicability of such routing algorithms to relatively small and
stable ad hoc networks. Indeed, the control overhead involved
to maintain such routing tables is not sustainable in large,
dynamic networks.

Another way to route in networks is to first assign co-
ordinates to nodes, and then to make purely local routing
decisions based on this coordinate system. More precisely,a
node forwards a packet to its neighbor positioned closest tothe
destination. Here we assume that the position of the destination
is known. With this strategy, all forwarding decisions are local,
and there is no notion of an end-to-end route that breaks if
intermediate nodes move.

This immediately raises the question of how nodes can
obtain their coordinates. If nodes are equipped with a Global
Positioning System (GPS), one can use these “physical” geo-
graphical coordinates for routing. Unfortunately, physical co-
ordinates might not capture the topology of the network well.
On a large scale, obstacles such as walls, buildings, mountains,
etc. could make the communication path very different from
a straight line between the source and destination, giving rise
to dead-ends in greedy routing. A routing dead-end occurs
when a node has no neighbor closer to the destination than
itself. In Fig. 1(a) we illustrate such a dead-end due to a
large topological void. When such a situation occurs, that node
needs to start a recovery procedure. One simple option is to
initiate scoped floods in order to identify a suitable next hop.
The control overhead to find a next hop with such recovery
procedure is usually high. Thus, such dead-ends should be
avoided if possible. Furthermore, packets could even get stuck
locally due to the random nature of the channel (see Fig. 1(b)).

In this paper we further explore the idea studied in [5] to
“embed” the connectivity graph in order to obtain coordinates
which reflect the structure of the network well. We can then
use the embedded coordinates for routing. This approach
therefore bridges geographic and topological routing. The
embedding attempts to preserve the graph distances, so that
nearby nodes are usually embedded close to each other and



(a) Large scale void (b) Local dead-end

Fig. 1. In 1(a), packets sent from the source nodes to the target nodet get
stuck because of the large wall when a greedy forwarding strategy is chosen
(red solid arrows). A better choice would have been to followthe path along
the dashed green arrows. As shown in 1(b), on a local scale therandomness of
the channel can also lead to dead-ends (red arrow), even though these impact
the performance of routing less severely as it is easier to recover from them.

nodes which are many hops apart are embedded far apart. If
the embedding captures the network topology well, dead-ends
can only be local and do not lead to a severe degradation
of the performance. It is obviously desirable that the control
overhead per node involved to embed the connectivity graph
is low, and ideally independent of the scale of the network.

The paper is organized as follows. In Section II, we formally
state the problem and the models used in the paper. We also
give the background on the ideas explored in [5]. In Section
III, we make some observations on the structure of wireless
connectivity graphs. We present the design criterion and a
gradient descent algorithm for embedding in Section IV. We
combine routing and collection of the embedded coordinates
in Section V. We finally conclude with a short discussion in
Section VI.

II. PROBLEM STATEMENT AND RELATED WORK

In this section we present models of wireless ad hoc
networks, and we relate this paper to existing work.

A. Problem Statement

We model ad hoc networks as unweighted dynamic graphs.
Nodes are associated with vertices, and there exists an edge
between two vertices if the corresponding nodes can commu-
nicate directly with each other over a wireless communication
channel. The connectivity depends both on the physical posi-
tions of nodes as well as on the channel model. The dynamics
result from the mobility of the nodes and from the randomness
of the wireless medium. This level of abstraction is sufficient
to give us a thorough understanding of the characteristics of
ad hoc networks, and in particular, of the applicability of
embedding techniques for routing. We consider two particular
models.

In the first model, we define a connectivity graphG(N, r, p),
where N is the number of nodes,r is the communication
radius, andp is a connection probability. A snapshot of a
G(N, r, p) is shown in Fig. 2(a). First, every nodei is placed
uniformly at random at a positionxi on the unit square. Then,

we add an edge between nodesi and j with probability p

if ||xi − xj || ≤ r for all i, j. In this model the underlying
assumption is that nodes can only communicate directly if
they are located physically close to each other, and that even
in this case, some losses can occur because of the random
nature of wireless communications. Note that this model is
closely related to the geometric random graph model studied
in the literature [2].

In the second model, we define a connectivity graph
H(N, S, λ, r), where againN is the number of nodes,S2

is the number of locations nodes can occupy,λ is the number
of neighbors a node can pick, andr is the expected communi-
cation radius. A snapshot of aH(N, S, λ, r) is shown in Fig.
2(b). Every node randomly picks a location on aS×S grid of
locations. Every location has a set of channels associated with
it, which are drawn a priori. More precisely, for every location
we draw λ communication links. The probability of being
connected to another location decays exponentially with mean
r with the distance (see [6] for a motivation of this model),
while the angle is chosen uniformly at random between0
and 2π. Note that the degree of a location can be different
from λ, as the same location might be picked twice and links
added when a node is chosen by node or when a node chooses
another node. In this model, we focus on long term fading.
The assumption is that communication links depend on the
environment (e.g., buildings, walls, mountains etc.) and that
if two nodes are at the same physical positions they inherit
the same channels. However, with a low probability, nodes far
apart can be connected.

(a) G(400, 4
√

1000π
, 0.8) (b) H(400, 20, 5, 1)

Fig. 2. In Fig. 2(a), we show an aerial view of aG(400, 4
√

400π
, 0.8), while

in Fig. 2(b) we exhibit an aerial view of aH(400, 20, 5, 1). Note that the
connectivity is strictly local in theG(N, r, p), while long links can occur in
theH(N, S, λ, r)

Nodes move according to a random walk or a random
waypoint model. When the second connectivity graph is used,
the positions of the nodes are rounded to the closest grid point,
and nodes inherit the channels of the corresponding location.

The problem of routing amounts to finding a path between
a source node and a destination node in such a connectivity
graph. Obviously, we would like this path to be as short as
possible in order to minimize the network resources involved
in transporting the message. The main cost involved in routing
is the communication overhead to find and maintain such
paths. In this paper, we are focusing on the characteristics



of such connectivity graphs and explain why they are well
embeddable even under mobility. In particular, we highlight
the inherently low dimensional structure of these graphs and
their relatively slowly evolving nature. We then design an
embedding algorithm which exploits these specificities to
maintain a stable embedding with low distortion at a low
overhead rate per node. We also present local mechanisms
which in turn enhance the routability of such low-distortion
embeddings.

B. Related Work

This paper relates directly to [5]. In [5] we introduced
probabilistic beaconing (PB), a novel embedding algorithm
tailored to dynamic connectivity graphs defined by mobile
wireless ad hoc networks. The design of the algorithm exploits
the fact that connectivity and mobility are local, and that at
large scale, geometry plays a role. In the proposed approach,
the overhead per node to build the embedding is independent
of the number of nodes and remains constant when we
increase the size of the network. Further, a sliding window
mechanism is introduced, which helps maintaining a stable
embedding in the face of mobility and channel uncertainty.
The simulation results show that this approach outperforms
other embedding schemes developed for such networks both
in terms of packet delivery ratio and in terms of overhead to
maintain the embedding. It is also shown that embedding large
scale distances is easier than to embed small scale distances.
This is problematic in the sense that forwarding decisions are
local. In order to by-pass this issue, we propose the use of
local routing tables to “see further” ahead and consequently
avoid this local uncertainty area. Alternatively, we propose a
randomized forwarding scheme to achieve the same purpose.
We refer the reader to [5] and references therein for a survey
of the related work, notably on the specifics of geographic
routing. In this paper, we clarify, generalize, and extend the
notions presented in [5]. In particular, we make observations
on why the proposed embedding algorithm is efficient, and we
provide a better understanding of the underlying optimization
problem. Several other papers in the literature study the use of
virtual coordinates or embeddings forstatic wireless networks
(see references in [5] for more details).

III. OBSERVATIONS ONWIRELESSCONNECTIVITY GRAPH

The formal problem of representing a connectivity graph in
a metric space is calledgraph embedding, and has received
significant recent attention in the computer science literature
(see for example [7] and references therein). The goal of
the general graph embedding problem is to take as an input
a graph with n vertices V = {v1, . . . , vn}, and a metric
D(x, y) between verticesx, y ∈ V . The output is then an
embedding functionf : V → X

′

where X
′

is a metric
space endowed with metricD

′

(·, ·). The goal of designing
f is that the distances of the vertices in the metric space are
“close” to the distances on the original graph. That is, we want
to ensure that there exist constantsc, r such thatx, y ∈ V ,
rD(x, y) ≤ D

′

(f(x), f(y)) ≤ crD(x, y). For this paper, we

focus our attention to the case whenX
′

is the normed space
Rm, i.e., a m-dimensional Euclidean space. The metric used is
D

′

(x′, y′) = ||x′− y′|| for the norm defined onRm. The goal
of the embedding is to compactly (and as faithfully as possible)
represent the graph in an alternate, hopefully low-dimensional
space. More concretely, in our problem, we use the shortest
path distances for the metric on the connectivity graph. We
want to find an embedding ontoRm, for small m, such that
for x, y ∈ V , rD(x, y) ≤ ||f(x) − f(y)||2 ≤ crD(x, y). The
norm used in our numerical results is the2-norm.

For arbitrary graphs, it is known that one cannot hope
to get good low-distortion and low-dimensional embeddings
[7]. However, we believe that connectivity graphs that arise
from wireless networks are special, because there is some
underlying geometry associated with such graphs. On the one
hand, channel fading might destroy some local geometry as-
sociated with connectivity. On the other hand, nodes originate
from a 2-dimensional world, and connectivity is mostly local.
Hence, we suspect that geometry will play a large role in
connectivity over larger distances. That is, nodes positioned far
apart in the real world are bound to communicate over multiple
hops. Therefore, even though one could still construct wireless
connectivity graphs which do not have such properties, our
experiments and intuition suggest that such configurations
occur relatively rarely.

In order to understand some of these issues, we examine
the problem usingmulti-dimensional scaling (MDS) which
is another technique for extracting coordinates from pairwise
distances widely used in statistics literature [8]. Classical scal-
ing, [8], is a technique used in statistics to obtain (embedded)
coordinatesX in Euclidean space ofn points given only a
matrix of pairwise distances. Coordinates obtained with this
approach minimize the sum of squared errors between the
original distances and the Euclidean distances between points
(which is also called thestress function [8]), i.e.,

min
f

n
∑

i=1

n
∑

j=i+1

[

D(vi, vj) − D
′

(f(vi), f(vj))
]2

.

Therefore, the criterion used to evaluate the embedding in
MDS is different from that of the relative distortion criterion
introduced earlier. The stretch criterion used in computer
science [7] is a worst case distortion, in contrast to the average
distortion used in MDS.

A nice property ofX is that it is a principal axes solu-
tion, i.e., the variance along axes is maximized [8]. We are
interested in this variance as we want to show that the error
incurred by representing wireless connectivity graphs in low-
dimensional Euclidean space is small. In other words, in an
optimal least square embedding in Euclidean space, only a
small number of dimensions are necessary to capture most of
the variance.

Given an×n matrix D(2) where the(i, j)-th entry inD(2)

is given byD2(vi, vj), for vi, vj ∈ V , we define a matrixB
as,

B = −
1

2
JD(2)J, (1)



where J = I − n−111T and 1 = [1, . . . , 1]T . The m-
dimensional coordinate matrix of classical scaling is given by

X = Q+Λ
1
2
+, whereΛ+ is the matrix containing them largest

eigenvalues andQ+ the corresponding eigenvectors. Note that
dimensions are nested so that them − 1 first dimensions
of a m-dimensional embedding are the same as them − 1
dimensions of anm − 1-dimensional embedding

In Figure 3 we show how geometry plays a role in the
dimensionality of connectivity graphs. We generate1 several
G(2000, r, p) with varying average node degrees and forp =
0.6 and p = 1 (see Fig. 3(a) and 3(b) respectively). Note
that since the node density isN1 = N , the average node
degree isp(N − 1)πr2. We then use (1) to find them-
dimensional coordinate matrix associated with this topology.
Assume that the eigenvalues[θ1, θ2, ...] in Λ are in decreasing
order. In particular, we are interested in the spectrum of the
re-centered squared distance matrixB and how variance is
distributed in the different dimensions. In Fig. 3, we plot

v(d) =
Pd

i=1 θi
P

D
i=1 θi

, where D is such thatθD is the smallest
positive eigenvalue. This random experiment is repeated, and
the cumulative results are presented in Figure 3. It can be
observed that there is a considerable gap between the first
and second dimensions, while there are only small increments
for subsequent dimensions. This indicates that most of the
variance is captured by the two first dimensions. Further,
this gap diminishes as we increase the communication radius.
These experiments seem to suggest that wireless connectiv-
ity graphs are well representable using a small number of
dimensions. Not surprisingly, when we increase the average
degree and consequently the communication radius, geometry
progressively plays a smaller role and the fraction of the total
variance in the two first dimensions is reduced. For a very large
average degree, the variance appears to be equally distributed
in all dimensions. Interestingly, when we make connectivity
random by settingp = 0.6, we reduce the variance in the two
first dimensions. Intuitively, adding complexity to the channel
also decreases the embeddability of the connectivity graphin
a low dimensional space.

In Fig. 4, we show that remarkably this low dimensionality
is always present, independently of the size of the network.
This suggests that a smart design for a distributed embedding
algorithm should exploit this property and be highly scalable.
In other words, it seems that the communication overhead
necessary to capture this low dimensional structure shouldbe
of O(1) per node, as adding new nodes does not change the
properties of the connectivity graph.

A. Stability of Embeddings

One of the main concerns in this paper is to handledynamic
wireless networks, where the connectivity changes over time
either due to node mobility or channel fading. In this case, an
important concern is how to find out the path to (or the location
of) a destination. The traditional method (as explained in
Section V) is to use a separate service to handle these updates

1See Section II-A for notation.
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The average degree (deg) is 16 (r =
q

deg

p(N−1)π
) and probabilityp = 1 of

link connectivity. We vary the networks sizeN . One can observe that the low
dimensional structure of wireless connectivity graphs is independent ofN

and distribute the information. If one is counting control traffic
overhead, this would also need to be taken into account. In
the presence of significant mobility, such updates might be
delayed, and hence we may only have access to “outdated”
information about a destination node. In order to understand
how much such a delay would affect our techniques, we define
the notion ofstability of the embeddings.

Suppose the connectivity graph is time-varying, with the
graph at timet given byGt, and the distances bydt(vi, vj) =
DGt

(vi, vj), vi, vj ∈ V , where = DGt
(·, ·) is the shortest-

path distance betweenvi, vj in the graphGt. We define an
embedding for each timet through the mappingft : V → X

′

,
which tries to capture the distances in the graphGt. Let
us defined

′

t(vi, vj) = D
′

(ft(vi), ft(vj)), vi, vj ∈ V as the
distance between the vertices in the embedded space at timet.
If we have access to outdated information about the embedded
coordinates of vertexvj from time t − ∆, we would only be
able to computeD

′

(ft(vi), ft−∆(vj)).
A notion of stability can be defined through thestretch

betweend
′

t(vi, vj) andD
′

(ft(vi), ft−∆(vj)). Let

g(v)
def
= max{v,

1

v
}

Then we define stretchS(∆, i, j) (distortion) when we exam-
ine an outdated destination position as

S(∆, i, j) = g

(

D′(ft(vi), ft(vj))

D′(ft(vi), ft−∆(vj))

)

In order to isolate the effect of topology changes and the em-
bedding errors we examine just the changes in the embedded
distances without using outdated information throughS̃(i, j)

S̃(i, j) = g

(

dt(vi, vj)

D′(ft(vi), ft(vj))

)

for the updated embedding. We have suppressed the depen-
dence on timet since we expect this to be stationary,i.e., not
to depend on the time-instant chosen.
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In Fig. 5, we examine2 the stability of an
H(1500, 30, 10, 1.5). We use probabilistic beaconing with a
square window of length 10, and embed in 20 dimensions.
Nodes move according to the random walk model with speed
1. It is interesting that the mean distortion to an outdated
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Fig. 5. Stability of the PB embedding of aH(1500, 30, 10, 1.5) subject to
random walk mobility of nodes.

embedded position grows very slowly and sublinearly with
time while the standard deviation grows linearly with time.
Hence, even when we update the embedding in a lazy
way, the embedding remains a good approximation of the
underlying communication graph for several iterations.

There can be several alternate notions of stability. For
example, we might want that when there are small changes
in the embedded distance between timest − ∆ and t, the
difference betweenD

′

(ft(vi), ft−∆(vj)) and the correct em-
bedded distanced

′

t(vi, vj) to be small as well. That is, we
would like |d

′

t(vi, vj)−D
′

(ft(vi), ft−∆(vj))| ≤ γ|d
′

t(vi, vj)−

2See Section II-A for notation.

d
′

t−∆(vi, vj)|, for some constantγ. In order to understand
the overall impact of outdated information, we might also
look for another characterization. For small changes in the
graph distance between timest − ∆ and t, we would like
the difference betweenD

′

(ft(vi), ft−∆(vj)) and the correct
embedded distanced

′

t(vi, vj) to be small as well. That is, we
would like |d

′

t(vi, vj)−D
′

(ft(vi), ft−∆(vj))| ≤ δ|dt(vi, vj)−
dt−∆(vi, vj)|, for some constantδ. This captures both the
embedding error as well as the changes in topology. These
forms might be useful in other contexts of embedding dynamic
graphs.

IV. PROBABILISTIC BEACONING

As seen in Section III, if the distances between vertices
on a graph are known, then one can use many embedding
techniques in order to findf(·) and hence the coordinates
for the verticesV in X

′

. However, one of the reasons to
attempt embedding is to reduce the amount of control traffic
being sent over the network. Therefore, we would like only
a constantoverhead rate per-node in the network, which
means that the control traffic rate can only grow linearly
in the network size. Therefore, any technique that attempts
to discover the distances between every pair of nodes in
the network would entailΩ(n2) rate and hence a growing
overhead. In order to get a constant overhead, we develop a
method where only a constant number of nodes act as beacons
at any time, and thereby at every time we only know the exact
distances of all the nodes in the network to this small set of
beacons. Hence at every time stepk, a new beacon nodeBk

is randomly selected. This beacon floods the network with a
control message, through which each node learns its shortest-
path distance in the connectivity graph to this beacon. We
need to infer or estimate the other distances only from these
measurements to a constant number of such beacons.

We do this inference by utilizing the coordinates of the
neighborhood of each node in the wireless network. The
intuition behind this is that the embedded coordinates of each



node should be close to that of its neighbors. Therefore, we
do a local averaging step which moves the hop-distance of
a nodevi ∈ V to a beaconBu towards the average of its
neighborhood (see Algorithm 1). We then iteratively solve
a problem which tries to minimize an appropriately defined
least-squares criterion to reconcile the embedded coordinates
of the vertex and those of the beacons. An alternate method
could have been to choose to do local averaging on the
coordinatesxi ∈ X

′

of a nodevi ∈ V by moving towards
the center of its neighborhoodNi.

Working with average hop counts ensures that nodes in
the same neighborhood do not get embedded to distant lo-
cations. Additionally, it also tends to place a node betweenits
neighbors. This property is useful for greedy routing as being
placed in the center of its neighborhood augments the chances
of finding next hops in every directions, and consequently
reduces the risk of dead-ends. Another reason to work with
average hop counts is that the distance measurements can
be noisy. This is particularly true in mobile environments
or in environments where channels are fluctuating rapidly.
In this perspective, a nodevi can view its outdated distance
measurementPi(k) and the outdated distance measurements
Pj(k), for vj ∈ Ni, to a beaconBu as a series of noisy
distance measurements. Given these noisy measurements, a
node can now try to estimate its hop distance to a beacon by
the average of the distance measurements of its neighborhood
as,

ĥu(k) =
1

|Nj + 1|









∑

vj∈Ni

Pj(k)



 + Pi(k)



 (2)

In particular, given this average hop-countĥu(k) of its neigh-
borhood, nodevi attempts to solve the following least-squares
problem:

min
~x

B−1
∑

u=0

[ĥu(k) − ||~x −~bu||]
2 def

= min
~x

h(~x), (3)

where bu = x
(k−u)
Bk−u

is the coordinate of the window of
beacons under consideration. Therefore, the gradient ofh(~x)
with respect to~x is 2

∑B
u=1

~x−bu

||~x−bu||
[||~x − bu|| − ĥu]. Hence,

the iterative method proposed in Algorithm 1 is therefore
just a gradient-descent method. This iterative method goes
to a local minimum and therefore converges. This iterative
gradient-descent technique is illustrated in Figure 6. Instead
of stopping after a fixed number of stepsW , we can also
choose a stopping criterion the such that the gradient is small
enough.

There are flavors of the gradient descent algorithm which
take a variable step-size instead of the constant step size
chosen in Algorithm 1. Such a variable step size could depend
on the gradient itself, taking larger steps when the gradient is
large and smaller ones when the gradient is small to ensure a
smoother descent. One can incorporate the many ideas used
in gradient-descent techniques into this problem.

Algorithm 1 Probabilistic beaconing

1 At time k calculate distancePj(k) of vertexvj to beaconBk

2. Adjust distances to beacons,
averaged over one-hop neighborhood
For u = 0 to b − 1

Set ĥu(k) = 1
|Ni|+1

(

∑

j∈Ni
Pj(k − u) + Pi(k − u)

)

end
3. Local optimization

Starting point is center of mass of nodei + neighbors

x := 1
|Ni|+1

(

∑

j∈Ni
x

(k)
j + x

(k)
i

)

RepeatW times

x := 1
b

∑b−1
u=0 x +

(

ĥu(k) − ||x − x
(k−u)
Bk−u

||
) x−x

(k−u)
Bk−u

||x−x
(k−u)
Bk−u

||

end
4. Update position

Setx(k+1)
i := x

Fig. 6. Illustration of an iteration (from stepj to j + 1) of the gradient-
descent algorithm in 2 dimensions with three beacons. The input position
xj is projected on 3 hyperspheres of radiîh1, ĥ2 and ĥ3 around beacons
B1, B2 and B3 respectively, to obtainpj(1), pj(2) and pj(3). The output
of this iteration isxj+1 = 1

3
[pj(1) + pj(2) + pj(3)]

As mentioned in Section III, one of the important issues
that we are concerned with is the stability of the embeddings.
Recall that we have access to only a partial distance matrix
at any time (through measurements of a constant number of
beacons). Therefore, when the topology changes, we need to
ensure the stability of the embedding (as defined in Section
III). In our algorithm 1, this is accomplished by retaining
the distances to a fixed window size of the past beacons and
attempting to solve the least-squares problem given in (3).This
means that we are using a “rectangular windowing” of sizeb

on the past beacon data. This naturally leads to the question
of whether we can modify the algorithm and retain weighted
information from a larger set of beacons. For example, we
can modify the criterion in (3) to incorporate an exponentially



decaying window on the previous beacons as,

min
~x

∞
∑

u=0

wu[ĥu(k) − ||~x −~bu||]
2 (4)

where as beforebu = x
(k−u)
Bk−u

is the coordinate of the beacon
Bk−u used at timek − u and wu is a forgetting factor.
For example, for a rectangular window,wu = 1, 0 ≤ u ≤
B − 1 and is zero otherwise. We can also use an exponential
forgetting factor withwu = au, 0 < a < 1. These windowing
schemes attempt to ensure stability of the embeddings to
variations in the topology.

V. COMBINATION WITH LER

The main application of our embedding algorithm, as
pointed out earlier, is as a coordinate system for geographic
routing in wireless networks. For a geo-routing algorithm to
be able to forward a message to a destination node (or a data
item identified by some key), it must first be able to determine
the coordinates of that destination. This is achieved through a
location service, essentially a distributed database that keeps
track of the locations of all the nodes in the network. Every
time the location of a node changes, it generates an update to
the location service; a node sending a message first looks up
the location of the destination through a query, and then sends
the message towards that location using geo-routing.

A problematic aspect of location services is that the over-
head due to control traffic (updates and queries) may become
prohibitive in large and highly mobile networks. In a recent
approach called Last Encounter Routing (LER), this problem
is addressed by merging the location service with the geo-
routing protocol [9]. The idea is that a message starts out
with only an imprecise estimate of the destination’s location.
While the message advances through the network towards the
destination’s estimated location, the message can improvethis
estimate progressively. This process continues until the mes-
sage arrives at the destination. The route taken by the message
is not necessarily the shortest path, given that the messageis
not always moving in the optimal direction. However, if the
precision of the location estimate increases quickly enough as
the message moves through the network, then the route cost
remains small, and ideally comparable to the shortest path
route cost.

The key advantage of LER is that nodes only need to collect
local information about changes in the network topology due
to mobility. Specifically, each node maintains a last encounter
table, in which it remembers the time and location when it
has last been a directly connected neighbor of every other
node. Collecting this last encounter history does not incur
overhead, in that each node can derive it simply from local
discovery messages (HELLOs) that are necessary to establish
connectivity anyway. Therefore, there is no control trafficto
update the location service every time a node moves, which
makes LER inherently scalable.

Of course, the main question concerns the penalty in route
cost due to the uncertainty of the destination’s location.

However, it was shown that for some mobility processes, the
routes are asymptotically competitive, i.e., the average stretch
is a small constant, independent of the size of the network [9].

One drawback of LER (and of all geo-routing approaches)
is that nodes must be embedded in a low-dimensional normed
space, which can be either the physical coordinate system
(obtained through a positioning system such as GPS), or a
virtual coordinate system such as one obtained through our
embedding algorithm. Here, we are interested in the perfor-
mance of LER based on an embedded rather than an absolute
coordinate system. While this is conceptually straightforward,
it is not a priori clear to what extent the performance of LER
will decrease.

As we had pointed out earlier, an embedded coordinate
system will not be perfectly stable. Given that the message is
routed based on past locations of the destination, an unstable
embedding adds noise to the position estimate carried by the
message, which in turn may lead to a more circuitous route
to the destination.

In Fig. 7(a) and 7(b), we show how LER routing performs
when used in conjunction with PB. In our simulations, N
nodes move on anH(N, 20, 10, 1.5). The connectivity graph
is embedded using PB with 20 beacons, while the embedding
dimension is 20. We send 1000 packets between random
source destination pairs. With LER, all simulations resulted in
a delivery ratio of 100% and we therefore analyze the resulting
overhead. Figure 7(a) shows the total overhead for LER with
real coordinates and for LER with PB (which also includes
the overhead for building the embedding) in a setting without
obstacles. The performance of LER with real and inferred
coordinates is very similar. In a second experiment, we add
10 randomly placed “walls” of length 4. Walls are modeled
by straight lines through which communication is impossible.
Interestingly, once we add obstacles to the scenario in this
way, PB has a significantly lower total overhead than real
coordinates, despite the beacon messages required to buildthe
embedding and despite the additional information that LER
with real coordinates possesses.

This can be explained by the fact that adding obstacles
makes the topology inhomogeneous and consequently real
coordinates do not capture the structure of the network well
anymore, leading to a large number of dead-ends. Recovering
from such dead-ends is in turn more costly in terms of
overhead than to build and maintain a virtual coordinate
system which captures the topology more faithfully.

VI. D ISCUSSION

In this paper, we further explored the ideas presented in
[5] for routing on dynamic wireless networks. The notion of
stability in embeddings was introduced, which becomes impor-
tant when combined with a distributed location service such
as LER. We explored the structure of wireless connectivity
graphs both in terms of inherent dimensionality and stability
through numerical simulations. These explorations lead usto
conjecture that wireless connectivity graphs could be repre-
sented well in a low-dimensional Euclidean space. Moreover,
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Fig. 7. Last Encounter Routing with PB and real coordinates in a mobile network.

our numerical results indicate that we have representations
which provide stable embeddings. Future work includes the
following. The theoretical questions include a formal proof
of the above conjectures as well as development and analysis
of algorithms with provable properties. The practical questions
include performance evaluation on real wireless networks.The
benefits of routing using embedded coordinates is also an
interesting question to be addressed. In summary, we believe
that this is a rich topic for future research.
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