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Abstract

In this paper, we develop lower bounds on the achievable rate for deletion channels. Deletion channels
occur when symbols are randomly dropped, and a subsequence of the transmitted symbols is received.
In deletion channels, unlike erasure channels, there is no side-information about which subsequence is
received. We show that the achievable rate in deletion channels differs from that of erasure channels
by at most �������
	�����
	������������� bits, where ��	 is the deletion probability, � is the alphabet size and
��������� is the binary entropy function. We also develop lower bounds for the binary deletion channel that
improve the bounds reported in the literature.

1 Introduction

In a packet-switched communication network, such as the Internet, the source of a session
encodes information in a set of packets, which are transported as independent units through a
set of links to reach their destination. A packet reaches its destination if there exists a route to
the destination, and if there is buffer space available at every node along the path followed by
this packet. In this paper, we analyze the capacity of a channel that models the basic ingredients
of packet-switched networks in “normal” operation: (a) a packet either reaches its destination
or is lost completely, and (b) the original order of packets is conserved.

In previous work [4], we had modeled this channel as an erasure channel, where the des-
tination receives either the exact original packet, or an erasure symbol � . The focus in the
erasure model was on the memory of the channel. As the erasure process models packet loss,
which is due to temporary congestion at a finite-buffer queue in the network, the erasure pro-
cess can potentially possess a complex memory structure. We proved that for a very large class
of erasure processes, the channel capacity of the erasure channel is equal to  "!�#%$'&)(*$,+�-/.%01( ,
where  2!3#%$'&)( bits is the packet size (hence the alphabet size is & ) and .40 is the long-term
average of packets lost.

The main limitation of the erasure channel as a model for a finite-buffer queue (or a se-
quence thereof) is that there is no mechanism in the network to explicitly signal a dropped
packet to the destination. Rather, transport protocols such as TCP use sequence numbers in the
packet header1 to detect lost packets. Packets sent by the source are numbered sequentially.
The destination can infer the loss of one or several packets from the sequence number of the
packet following the loss. The sequence number uses up a certain number of bits (32 bits in
the case of TCP/IP) to detect lost packets and to request retransmission of those packets. We
can view it as a code that converts the deletion channel into an erasure channel. A fundamental
question therefore arises: if we do not assume a-priori the existence of sequence numbers,
what is the capacity of the resulting channel? This question naturally leads to the deletion
channel, which essentially differs from the erasure channel in that the destination receives no

1strictly speaking, in the TCP header.



explicit symbol indicating loss of a packet. Instead, the received sequence of symbols is shorter
than the original sequence, with deleted symbols simply removed.

The deletion channel is a special case of insertion/deletion/substitution channels2 which
model the effect of synchronization errors and have a long history [8, 7, 10, 5, 11, 9]. A coding
theorem for such channels in terms of maximizing mutual information over input distributions
was proved in [5]. However, even in the presence of memoryless deletions, this does not lead
to a single-letter characterization for achievable rates. Gallager, in an unpublished report [7],
analyzes the performance of convolutional codes over insertion/deletion/substitution channels.
He proposed adding a pseudo-random sequence to convolutional codes to correct such syn-
chronization errors and derived lower bounds for achievable rates using sequential decoding
for these codes. A similar idea was studied in “watermarking” codes proposed in [3], where
LDPC codes and iterative decoding were used. Zigangirov [11] studied a more general inser-
tion/deletion channel and derived improved lower bounds (compared to [7]) to the performance
of convolutional codes with sequential decoding. The bounds of [7, 11] coincide for memory-
less deletion channels and are given by� 	������ + -�� ��$".�	 (
	 . 	������� (1)

where � ��$2. 	 (�� - $,+ - .�	 (  "!3#%$ + - .�	 ( - . 	% "!�#%$". 	 ( is the binary entropy function. In Section
3.1, we provide an alternative proof for this result. Our proof also yields lower bounds for larger
(non-binary) alphabet sizes and when the deletion process is stationary and ergodic. In Section
3.2 we derive bounds that improve (1) by using codebooks with memory. Ullmann [10] pursues
a combinatorial approach to derive upper and lower bounds for the binary insertion/deletion
channel. His bounds are (see (33) and (44) in [10])

+ -).� 2!3#���� ������ .�� +��
+� �! �"�� ."�$#&%+' �! � � � + - $,+ � .%(  "!�#�� $,+ � .%( � .� "!�#(� $ � .%( (2)

where . in his notation is the fraction of total insertion/deletion errors asymptotically in the
codeword block size. The lower bound (1) in [7, 11] are sharper than (2). However, (2) appar-
ently provides the only known upper bound to insertion/deletion channels when asymptotically
(in the codeword block size) the number of synchronization errors is a non-zero fraction of the
codeword block size.

The insertion/deletion/substitution channel was also pioneered by Levenshtein [8], where
asymptotic bounds in the number of codewords capable of correcting up to a finite number of
synchronization errors was studied. He also provided number-theoretic constructions for such
codes and motivated a large body of literature on this topic (see [9] for a recent survey of such
code constructions). Our focus in this paper is asymptotic information-theoretic bounds when
the number of deletions is a non-zero fraction of the codeword block size and not on code
constructions.

The remainder of this paper is structured as follows. Section 2 formally states the problem.
In Section 3, we present the main results of the paper, which are lower bounds on the transmis-
sion rates over deletion channels. Section 4 concludes the paper with numerical results and a
discussion of several open issues.

2 Problem Statement

In this paper, we consider the capacity of the & -ary deletion channel, which is defined as
follows. Let )*� $+) � 	��'�'�,	-)(. ( be a codeword, where )0/2143
+5	'�'���'	 &�6 . A deletion pattern 7 is
a binary vector $+7 � 	'���'�8	
7 . ( , where 7 / � + indicates that the 9 -th symbol of ) is deleted, and75/:�� indicates that the 9 -th symbol is received at the output. We are mainly interested in i.i.d.
distributions (with ;<3>= / � +?6@� .�	 ) for the binary sequence = / , but results in Section 3.1 also
apply when = is stationary and ergodic.

2In an insertion channel, additional symbols can randomly be inserted into the codeword. Substitutions are the
familiar symbol errors for noisy channels.



Given an input sequence ) � $+) � 	��'�'�,	-) . ( and a deletion sequence 7"� $+7 � 	��'�'�,	-7 . ( , the
output sequence � � 7�� ) is formally defined as follows. Let � be the total number of + ’s in7 , i.e., the number of deletions. We define 9,$�� ( as the position of the � -th  in the sequence 7 ;
clearly �������� -�� . Then the received sequence is � � $ � � 	'�'���8	 � . � � ( , with ��� � ) /
	 ��� ,+*��� ��� - � . In other words, � is a sequence of length � - � containing the non-deleted
symbols in ) . Note that the deletion channel has memory in that . $ �� ) ( does not become
a product distribution even for a i.i.d. deletion process. Intuitively, this is because the � -th
output symbol ��� depends on the entire history of the deletion process up to 9 $�� ( .

We define a $  �� 	�� ( code as a set of  �� codewords � � 3 ) $,+ (
	'�'�'�,	-) $  �� ( 6 of length � .
The encoding function results in a codeword ) $ 9'( to be sent when a message 9 1�3
+ 	'�'�'�,	  �� 6
is drawn. The deletion process = causes the random sequence � � � of length at most � to be
received. We also define a decoding function �� ����� 3
+5	'�'���8	  �� 6 , where

�
is the set of all& -ary sequences of length of at most � . The average probability of error for a given codebook� and decoding function �� is defined as

� ��$ � 	 �� ( � + ��
� ���� /! � ;#" �� $�� (%$��9  & ��) $ 9'((' � (3)

We define a rate ) to be achievable if there exists a sequence of $+* � .-,/. 	0� ( codes and a decoding
rule �� such that the average probability of error

� � $ � 	1�� ( tends to  as � � 2
.

We introduce the following notation. We denote by  )  the length of a sequence ) . We call
the weight of a binary sequence the number of + ’s in that sequence. For a codeword ) and a
deletion pattern 7 , we denote the output symbol � as � � 7�� ) . We define the derivative 3 )
of a sequence ) as a sequence of length  )  - + , whose 46587 component is + if ) �:9 � $�$)0� , and 
otherwise.

3 Bounds on the deletion channel

In this section, we develop lower bounds for the deletion channel formulated in Section 2.
In Section 3.1, we develop a simple lower bound based on i.i.d. codebooks. This bound is
valid even when there is memory in the deletion process, i.e., when the deletion process is
just assumed to be stationary and ergodic. We refine the lower bound in Section 3.2 using
input codebooks with memory. This improved bound is valid only for i.i.d. deletion patterns.
However, a bound using this approach can also be worked out when the deletion patterns are
Markovian.

3.1 First lower bound
We assume a stationary and ergodic model for the deletion process = . Therefore, for large� , the fraction of deleted packets is close to $,+ -<; ( 	 �>=� . 	 with high probability. Note that,
as mentioned in Section 1, if the deletion patterns were known (through sequence numbers
for example) then the channel would be equivalent to an erasure channel, whose capacity is;  2!3#%$'&)( . Clearly, conveying the deletion pattern to the receiver constitutes side-information
and therefore this rate is an upper bound to the deletion channel capacity.

To study this problem we use the following lemma proved in [1] for longest common sub-
sequences of random sequences.

Lemma 3.1 [1] For a given & -ary sequence ? of length  ?  , the number @ $�� 	�? 	 &)( of & -ary
sequences of length � which contain sequence ? as a subsequence is given by:

@ $A� 	  ?  	 &)( � .�
B  � CD�

� �E ! $'& - + ( . � B (4)



Note that the function @ $ � ( depends on ? only through its length  ?  . Note that Lemma 3.1
implies that if & is an i.i.d. sequence with uniform distribution over its & -ary alphabet then,

;<3 ? subsequence of & 6 � @ $A� 	  ?  	 &)(
& . (5)

as all sequences are equally likely. Given this result, we prove the following lower bound on
the capacity of the deletion channel.

Theorem 3.2 Given a stationary and ergodic deletion channel with long-term deletion proba-
bility given by .4	 � + - ; (with .�	 � + - + � & ), and an input alphabet size & , the capacity of
this channel is lower bounded as� 	 � �:�  2!3# � &

& - +(!�� ;� 2!3#%$'& - + ( -�� ��$A; (
	 (6)

where � ��$A; (�� - $ + - ; (  2!3#%$ + - ; ( - ;  "!�#%$�; ( is the binary entropy function.

Proof: Let us generate a random codebook of
� .-, i.i.d. codewords chosen uniformly from

a & -ary alphabet. As the channel randomly deletes symbols from a codeword, the length of
the received sequence � �  �  is a random variable. Assuming that the deletion process is
stationary and ergodic, it follows that

 ����.	��
 ; �� � � - ; ������ � �� (7)

We use the following decoding rule. If the received sequence � has fewer than � � $A; - � ( �
symbols, we declare an error. Because of (7), the probability of this error goes to zero. If
the received sequence � has at least � symbols, we check the number of codewords in the
codebook that could have produced � under any deletion pattern, i.e., the codewords that
contain � as a subsequence. If there is more than one possible codeword, then we declare a
collision error. If there is no collision, we are certain that the unique candidate codeword is
the correct one (as the channel is not noisy), and the transmission is successful.

We now compute the asymptotic probability of collision error. We first consider the pair-
wise probability of collision error between two codewords ) � and ) � from the codebook, aver-
aged over all the codebooks. A collision error occurs between two codewords ) � and ) � if the
received sequence � � = � � ) � generated by a random deletion pattern = � is a subsequence
of ) � (because this implies that there exists a deletion pattern 7 � such that 7 � � ) � � � .)

Consider the error probability conditional on the number of received symbols � . This
probability obviously decreases with � , because the probability of a common subsequence
decreases with its length. Therefore, an upper bound for the collision probability can be ob-
tained by setting � ��� $�; - � ( ��� and assuming � ��� . For computational reasons, we set� � $�; - � ( � - + , which is conservative. Therefore, we can write the pairwise error probability
that ) � collides with the transmitted codeword ) � averaged over random codebooks as,�� � � � ��� ;<3��! " ,!#  ) � 	$�*6!%:� �&$' � & �  )( ;<3 � is a subsequence of & �  & � 6�;@3 � � = � & � 6 (8)

	+* �� @ $�� 	$��	 &)(
& . �&$' � & �  )( ; 3 � � = ��) � 6 	-, �� @ $�� 	$��	 &)(

& .	+. �� +
& . � � �� ! $'& - + ( . � ( 	 	 �� +

& . � � .0/�1 	32 4 � $'& - + ( . � (
where $654( follows by using (5) and the fact that & � and & � are independent of each other; $67 (
follows because 8 &$' � & �  9( ; 3 � � = ��) � 6 � + , as the probability summed over all deletion



patterns (conditioned on the weight of the deletion pattern) is unity; $ � ( follows from the in-

equality (which can be easily verified [1]) that @ $�� 	 �"	 &)( � � � �� ! $ & - +�( . � ( ; and $ 7�(
follows from the inequality

� �� ! � � .0/�10	 2 4 � (see [2], Chapter 12, pp 284).

Now, we use a union bound over all codewords ) � to bound the error probability
�� � (aver-

aged over codebooks) as,

�� � � � . , � ��� ;<3��! " ,!#  ) � 	0� � � 6	% � ; 3 � � �*6 �<� � $ & - +�( � , � /�1 	 2 4 �
&/$'& - + ( 2 4 � . ��� . � (9)

Therefore, if the first term decreases exponentially with � , the probability of error goes to zero
asymptotically in � as � . �  from (7). This happens when

) �  "!�# � &
& - + ! � ;� "!3#%$ & - +�( -�� ��$�; ( (10)

Therefore, by using the well-known random coding argument [2], there exists a deterministic
codebook which has an achievable rate given by ) . Note that this is in the regime where ; is
such that  2!3#%$ ���� � ( � ;  "!3#%$ & - +�(�-�� ��$A; ( �  , which occurs for .4	 � + - + � & . �

Therefore, as the capacity of the deletion channel is upper bounded by that of the erasure
channel, we obtain the following double inequality,

 "!�# � &
& - + ! � ;  2!3#%$'& - + ( - � ��$�; (�� � 	 � ��� ;  2!3#%$ &)( (11)

For the binary case ( & � �
), Theorem 3.2 coincides with [7, 11].

Corollary 3.3 Given a stationary and ergodic deletion channel with long term deletion prob-
ability given by +1- ; (with ; � + � � ), and a binary input alphabet, the capacity of this channel
is lower bounded as � 	 � ��� + -�� ��$A; (-	 (12)
where � ��$ � ( is the binary entropy function.

3.2 Markov lower bound
In Section 3.1, the codewords were i.i.d. However, we believe that the optimal codebook
construction has memory, because the deletion channel has memory. In this section, we sharpen
the result in Section 3.1 by using input codebooks which are generated from a Markov process.
For simplicity, we consider only first-order Markov chains.

In analogy with the analysis for i.i.d. codewords in the previous section, we need to find the
probability that two independent Markov chains of length � have a common subsequence of
length greater than � . In order to simplify the analysis, we assume that the deletion sequences
are i.i.d. processes3. Moreover, in this section, we focus on the binary alphabet case; extending
the technique to larger alphabets is straightforward.

Theorem 3.4 Given an i.i.d. deletion channel with deletion probability given by . 	 � + - ; ,
and a binary input alphabet, the capacity of this channel is lower bounded as� 	 � �:� ���
	�� 1������ �

� -%;  "!�#(3
$,+ -�� (�� � ��� 6 -���%������� (13)

where � ��� $".�	�� ( � 	 � � � � � � �	 � � �
� � � � , � ��� $". 	!� ( � 	 � � � �#" �$� " �	 � � �
� � � � � . ����% and � ����$2. ( � + -
� � �� 9 	 � �'& � 	 � � � � � .

3The technique developed here can be easily extended to the case where the deletion sequences are finite state
Markov processes as well.
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Figure 1: Markov chain generating codebook.

Proof: We generate a random codebook � of � .-, codewords, with each codeword an indepen-
dent sequence generated using the first-order Markov chain illustrated in Figure 1. We use the
same decoding rule as the one used in the proof of Theorem 3.2, i.e., we declare an error either
when the received sequence � has fewer than � � $A; - � ( � symbols, or when there is more
than one codeword in � that contains � as a subsequence. In order to compute the asymptotic
collision error probability, we again consider the pairwise probability of error

�� � between two
codewords ) � and ) � averaged over random codebooks. As in (8) this can be written as,�� � � � � � ;<3!�	  ,!#  & � 	$�*6�%�� �&$' � & �  )( ;@3 � is a subsequence of & �  ) � 62;<3 � � = � & � 6 (14)

The central difference between the calculation done in (8) and here is that when the input
codebook has memory, the term ;<3 � is a subsequence of & �  ) � 6 depends explicitly on the
subsequence � not just through its length � as was the case in (8). Moreover, this implies that
we need to also explicitly calculate the term ;@3 � ��= � ) � 6 when the deletion process is i.i.d.
and ) � is a Markov process. For both these calculations, the weight of the derivative 3 � of �
becomes important. Note that the number

� / of binary sequences ? of length  ?  � � with 3 ?
having weight 9 is given by

� / � � � � - +9 ! (15)

Therefore, to calculate the pairwise error probability expression in (14) we prove the following
results:

Result 1: The probability of a given subsequence � occurring through an i.i.d. deletion process= in & is given by ; 3 � � = � & 6 � +� $ + - � ( / � ( � � � / 	 (16)

where 9 is the weight of 3 � , and � � + - �'� �� 9 	 � �'& � 	 � � � � � .
Result 2: Probability of a given subsequence � occurring in a Markov sequence & � generated

by the transition probability illustrated in Figure 1 is bounded by,; 3 � is a subsequence of & � 6 � � ���%�� � @@� % . � / � ( � � � / 	 (17)

where � � 	 � � � � � � �	 � � �
� � � � , � � 	 � � � � " � � " �	 � � �
� � � � � . ����% , and @ � �� ����% �
+ � 	 � � � � � � �	 � � �
� � � ��� . Again, in

(17) 9 denotes the weight of 3 � , and  �� � � .

We use these results to prove the claim in (13). The proofs of the above results are given in
the Appendix. Using (15), (16) and (17) in (14) we obtain,

�� � � ( � �� /! � � / � ���%�� �
� @@� % . � / � ( � � � / +� $,+ - � ( / � ( ���'� / � (18)



� � � �%�� �
�
@@� % . ( � �� /! � � � - +9 ! $ $,+ - � ($� ( / 3 � �>6 ( � � � /��

	+* �� @ � ���%�� ��� � % . 3
$,+ - � ($� � � � 6 ( � ��� 	
where $ 5 ( follows by using the binomial expansion of $65 � 7 ( ( � � .

As in the proof of Theorem 3.2, we use a union bound over all codewords ) � , if ) � was the
transmitted codeword to obtain,�� � � � .-, � ��� ; 3��!  !   ) � 	0� � �*6!% � ;<3 � � �*6 (19)� � .-, @ � � �%�� � � � % . 3
$,+ -�� (�� � ��� 6 ( � � � (20)

� @ � � �%�� �
� +
$,+ - � ($� � � ��� � , � % � $ + - � (�� � ��� % 2 4
	 . � � � .

Therefore the probability of error goes to zero asymptotically in � if,

) � � � 	�� 1������ �
� -%;  "!�#(3
$,+ -�� ($� � � � 6 -���% nats (21)

giving us the desired result. �
Note that for . � �� , it can be shown that the result in Theorem 3.4 reduces to that in

Corollary 3.3. Also note that the optimization of (13) for a given . can be accomplished in
closed form as it results in a simple quadratic equation in � .

4 Discussion

In this paper we have developed lower bounds for the capacity of deletion channels. In order
to gain insight into the behavior of deletion channels we start with some numerical examples.

In Figure 2, we plot the achievable rates derived in Sections 3.1 and 3.2. along with the
upper bound derived by Ullman [10] given in (2). Note that the lower bound derived in 3.2
(labeled as the Markov bound) is non-zero up to . 	 � ����5 and in particular improves the
previously known lower bound given in (1) [7, 11]. In Figure 3, we illustrate that for non-binary
alphabet sizes, the difference between the deletion channel and the erasure channel rates can be
quite small. In particular, we have compared the lower bound (6) derived in Theorem 3.2 to the
erasure channel rate. As can be seen from (6) , the difference is at most � ��$".�	 ( - .�	  2!3# ���� �bits, which is at most + bit. This is true with i.i.d. codebooks, and the bound becomes sharper
with Markovian codebooks. This suggests that the use of sequence numbers to detect deletions
is quite inefficient. For example, in TCP, 32 bits per packet are sacrificed for the sequence
number, while our result shows that at most one bit of redundancy per packet is necessary to
convert a deletion channel into an erasure channel.

There are several open questions that are still unresolved in this problem. Of course, the
central question is the single-letter characterization of the capacity of the deletion channel.
Even in the absence of such a characterization, it would be important to develop tighter upper
and lower bounds for achievable rates. In particular, good upper bounds for small alphabet
sizes will be useful gaining insight into the behavior of deletion channels. The problem of
code construction has a long history and still has a vast number of unresolved problems (see
[9] for example). If there is one message that we can give from this paper, it is that for small
deletion probabilities, random i.i.d. codebooks can have good performance, but for higher
deletion probabilities one needs to introduce memory into the codebook design. One way to
think of Markov distributions on the codebook is to associate it with larger run-lengths in the
codewords. This would also lead us to conjecture that coding in run-lengths might be a useful
design technique for deletion channel codes.
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Figure 2: Achievable rates versus deletion probability for binary alphabet size.
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A Proofs of (16) and (17)
In this section we provide the details of the proof for two results used in the proof of Theorem
3.4.

A.1 Proof of (16)
In order to prove (16), we need to look at the joint process of the i.i.d. binary deletion process= and the first order Markov chain & generating the random codebook. This can be done
by extending the state space of the Markov process of Figure 1 to include the state of the
deletion process. This yields a four-state Markov process, $ & 	8= ( , with each state being the
concatenation of the state of the Markov process and the deletion process. The process � � = �& is generated by observing only the states where the deletion process is  , i.e., the sequence
generated through the deletion channel. These states constitute a subset of the extended Markov
chain state space, and by the Strong Markov Property [6], this randomly sampled Markov chain
is itself a Markov chain. The transition probability

��
of the Markov chain generated by the

“watched” set is given by, �� �<; � ��� - $,+ - ; ( � % � � 	 (22)

where
�

is the transition matrix of the Markov chain shown in Figure 1. It can be easily shown
that the Markov chain corresponding to

��
is also symmetric (just as the Markov chain in Figure

1) with parameter � � + - � � �� 9 	 � �'& � 	 � � � � � . Therefore, the subsequence � is obtained by running
this Markov chain for � steps. This yields

; 3 � with 3 � of weight 9 6 � +� $,+ - � ( / � ( � � � / (23)
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A.2 Proof of (17)
To obtain (17), we examine the probability of a sequence � of length � occurring in a two-state
Markov chain & of length � , given in Figure 1. We will consider the number of transitions

�
of the Markov chain needed to sequentially match every symbol of � .

As & is symmetric, the stationary probabilities for both states are identical. Thus, we
can assume � � �  w.l.g. We first compute

�
� , the number of transitions to match � � . Its

distribution is given by

;@3 � � ��9�6 � � �� 9 � +
�� $,+ -).%( . / � � 9�� � � (24)

Now assume we have matched � � � � in & , and let us consider how many transitions are
needed to match � � . We have to distinguish two cases: (a) � � � � � � � , and (b) � � $� � � � � . Let

� *
and

� , denote the number of transitions up to the next match for case (a) and (b), respectively.
To this end, note that because of the symmetry of & , case (a) corresponds to the number of
transitions to reach state  starting from state  (c.f. Fig. 1). For this we obtain

;<3 � * ��9 6@� � . 9 � +
$ + -).%( � . / � � 9 � � � (25)

Similarly, case (b) corresponds to the number of transitions to reach state + starting from
state  . Therefore we obtain;@3 � , ��9 6 � . / � � $,+ -).%( 9�� +5� (26)

We calculate the moment generating functions for
� * and

� , as

����� $ � ( 	��>=� � � ��% ��� � $,+ -).%(
� ����%
+ -). � ��% � (27)

where it is inherently assumed that  . ��� %  � + , which is always true because, .�� + � ��% for� �  . Similarly, we can calculate the following,

����� $ � ( 	��>=� � � ��% ��� � $ + -).%( � � � � � %
+ -).0� � % � � . � ��% � (28)



Let
� � denote the number of transitions to match � � . Then

� � � � �
� 4 � +� * ' � $A3 � ( �(� +� , ' � $A3 � ( �(�� 	 (29)

where
� * ' � and

� , ' � are independent and distributed like
� * and

� , . The total number of
iterations to match � is

� � 8 ( �  � � � . Therefore we have;<3 � with 3 � of weight 9 occurs in $ & � 	'�'�'��	 & . ( 6@� ;<3 � �<� 6 (30)

Using the Chernoff bound we can upper bound this probability as;@3 � � � 6 � � � �%�� � � % . � � ��%�� 2����� � � (31)	+* �� � � �%�� � � % . � � � � % � � % 3#� � ��% ��� 6 / 3#� � � % � � 6 ( � � � / 	
where $ 5 ( is obtained by the definition of

� � in (29) and the fact that the
� � are independent of

each other, giving us the desired result.
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