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ABSTRACT
In opportunistic routing, each node maintains a group of can-
didate relays to reach a particular destination, and transmits
packets to any node in this group. If a single candidate re-
lay receives the packet, it becomes the effective relay to for-
ward the packet further. If no candidate receives the packet,
then the current sender re-transmits. If multiple candidates
receive the packet, then the link layer chooses a single re-
ceiver to be the relay. This choice could be made at random,
or it could be driven by information coming from the routing
layer, for example to use the best receiver as the relay.

This paper addresses the least-cost opportunistic rout-
ing (LCOR) problem: how to assign and prioritize the set
of candidate relays at each node for a given destination such
that the expected cost of forwarding a packet to the destina-
tion is minimized. We solve this problem with a distributed
algorithm that provably computes the optimal assignment
of candidate relays that each node should allow to reach a
particular destination. Prior proposals based on single-path
routing metrics or geographic coordinates do not explicitly
consider this tradeoff, and as a result make choices which
are not always optimal.

1. INTRODUCTION
In wireless networks, it is often less costly to trans-

mit a packet to any node in a set of neighbors than to
one specific neighbor, using a link-layer primitive known
as “anycasting”. For example, with unreliable wireless
links, the probability of a packet being successfully re-
ceived by at least one node in a set of neighbors is usu-
ally greater than the probability of one specific node
receiving it. This observation motivates the idea of op-
portunistic routing (OR) [1–4]. In OR, the next-hop
relay decision is made after a packet has been transmit-
ted, allowing a sender to opportunistically take advan-
tage of outcomes that are inherently random and un-
predictable. A key question is then to decide, at each
node, which neighbors should be candidate relays to
reach a destination, and how to prioritize and select the
effective relay when multiple candidates have received
a transmission.

Previous work has focused on mechanisms for link-

layer anycasting, and on devising robust, low-overhead
coordination protocols for receivers of a packet to agree
upon a next-hop relay [1–6] when multiple candidates
receive a packet. At the same time, comparatively little
attention has been given to the problem of how to best
select and prioritize candidate relays so as to minimize
end-to-end forwarding costs.

The starting point of this work is the question: with
OR, are there practical and general ways to a) compute
the optimal candidate relays that can be used at each
node to reach a given destination, and b) prioritize these
relays in order to optimally select the effective forwarder
when multiple candidates have received a packet? Of
course, the notion of optimality is here relative to the
model of a network, and any routing algorithm can only
be as good as the model and input metrics that drive it.
This point is particularly relevant in the context of wire-
less networks, where link statistics are hard to estimate
and often must be paired with simplifying assumptions
(e.g., independence).

The optimal selection of candidate relays must take
into account the following tradeoff. On the one hand,
taking many candidate relays often decreases the for-
warding cost (i.e., the cost to send to any of these can-
didates). On the other hand, each neighbor does not
make as much progress as the next hop in the shortest
path to the destination. Therefore employing too many
candidates may increase the likelihood of a packet veer-
ing away from the shortest route (and ultimately even
introduce loops in the routing topology).

To solve the problem of finding optimal candidate re-
lay sets and prioritizing the candidate relays, we use
a generalization of single-path routing, where the next
hop to reach a destination is explicitly treated as a set
of neighbors rather than a single neighbor. The notion
of single-path route is generalized to that of opportunis-
tic route, which is the union of all possible packet tra-
jectories induced by an assignment of candidate relays.
Within this framework, we formulate a distributed algo-
rithm for least-cost opportunistic routing (LCOR), that
computes the optimal choices of candidate relays. The
LCOR algorithm is operationally similar to the classi-
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Notation and Acronyms
N(i) Neighbors of node i
pij Packet reception prob. from i to j
J(i) (or J) Candidate relay set (CRS) at node i
diJ Anycast link cost (ALC) from i to J
RiJ Remaining path cost (RPC) from J to

the destination

cal distributed Bellman-Ford, but is driven by different
metrics that generalize unicast link and path costs re-
spectively.

The rest of this paper proceeds as follows. Section 2
defines and motivates LCOR, Section 3 introduces the
LCOR algorithm, and Section 4 gives properties and
some insights into least-cost opportunistic routes. Sec-
tion 5 describes related work, and Section 6 concludes.

2. PROBLEM OUTLINE
This section defines the least-cost opportunistic rout-

ing (LCOR) problem. The underlying communication
primitive used by opportunistic routing (OR) is link-
layer anycast, whereby a node transmits a packet to
any node among a set of its neighbors. We call this set
the candidate relay set (CRS), denoted J(i) (or J ,
when i can be omitted without ambiguity); it contains
all the nodes which may be used as next-hop relays for
packets forwarded by i toward the destination1.

With anycast transmission, a packet may travel ac-
cording to a number of different paths from a source
to a destination. We call opportunistic route (opp.
route) the union of all possible paths between a source
and destination, arising from a given assignment of CRS
at each node. An opportunistic route R from a source
to a destination is an acyclic directed graph where ev-
ery node (but the source) is a successor of the source,
and every node (but the destination) is a predecessor of
the destination. Figure 1 shows an example of an opp.
route. Each opp. route can be specified equivalently
by the list of CRS J(n1), J(n2), . . . J(nk) of the nodes
n1, n2, . . . nk it contains, or by the list of paths that can
be used to traverse it.

2.1 Cost of opportunistic routes

2.1.1 Anycast link cost

In single-path routing, the overall cost of a route is
the sum of underlying costs of the unicast links it tra-
verses. With OR, we must generalize the notion of link
cost from single-path routing, to account for anycast
forwarding rather than unicast. We define the anycast
link cost (ALC) diJ as the cost to send a packet from
i to any node in the set J , where J ⊆ N(i) is a subset

1In the remainder of this paper, it shall be implicit when
referring to a CRS that it is relative to one particular desti-
nation, which can be any node in the network.

Dest.

Source

Figure 1: An opportunistic route is the union of all

possible paths from a source to a destination that

are induced by a given choice of candidate relays at

each node. Each node has arrows pointing to its can-

didate relays to reach the destination, and a possible

trajectory through the opp. route is highlighted in

bold.

of i’s neighbors. As an example of ALC, we can gener-
alize the expected transmission count (ETX) [7] metric
for unicast transmission2. This metric counts the ex-
pected number of transmissions to successfully deliver
a packet across an unreliable unicast link. With link-
layer anycast, the ETX becomes the expected number
of transmissions until any node in J receives the packet.
Its expression is:

dETX
iJ =

1

piJ
, (1)

where piJ is the probability that a packet from i is re-
ceived by at least one node in the set of nodes J :

piJ = 1 −
∏

j∈J

(1 − pij). (2)

Note that this metric generalizes the unicast ETX, that
is, for a singleton CRS with |J | = 1, the anycast ETX
reduces to the unicast expression. Of course, it assumes
spatial independence, such that i’s transmission is re-
ceived independently (or not) by node in J . This as-
sumption is reasonable when fading and noise are the
main source of channel errors; it may not hold when in-
terference from other transmissions is a frequent source
of errors. While our choice of metric is intentionally
simple, other metrics that capture spatial loss correla-
tions could be used in the LCOR framework.

2.1.2 Cost of a trajectory in an anypath route

A trajectory T in an opportunistic route R is a se-
quence of nodes (s, n1, n2, . . . nk, 1) between a source
s and the destination 1 such that each of the pairs
(s, n1), (n1, n2), . . . (nk, 1) are links in R. In other words,
a trajectory is a possible path that a packet can take
across an opp. route. We now define the cost of a tra-
jectory relative to the opp. route it traverses.

Definition 1. Let T = (s, n1, n2, . . . nk, 1) be a tra-
jectory in R. The cost of T relative to R, denoted
c(T |R), is the sum of the anycast link costs in R of the

2Other examples of anycast link costs are developed in [8].
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nodes in T :

c(T |R) =
∑

i∈T

diJ(i) = dsJ(s) + dn1J(n1) + . . . dnkJ(nk).

It is important to emphasize that the cost of a tra-
jectory depends on the opportunistic route R that it
traverses, because each constituent ALC diJ depends
on the entire candidate relay set J , and not just on
the effective relay in J that is used. We illustrate this
dependence in Figure 2, by computing the cost of the
same trajectory T = (a, b, c, d) relative to four traversed
opportunistic routes. All links have delivery probabil-
ity 0.5, and the ALC metric is dETX . In Figure 2(a),
node a has two candidate relays, and so its ALC is
dETX

aJ(a) = (1 − 0.52)−1 = 4/3. Nodes b and c have a sin-

gle candidate relay and have ALC equal to 2, giving a
path cost c(T |R) = 5.33. In Fig. 2(b) the costs at nodes
b and c are lower due to their additional candidate re-
lays. In Fig. 2(c), the trajectory cost is the same as in
(a), even though the opp. routes are different, because
anycast link costs of nodes b and c are not changed by
additional incoming links. Finally in Fig. 2(d), the opp.
route and the trajectory are identical, with cost equal
to the cost of the single-path route from a to d.

dba c
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2 22

(c) c(T |R) = 5.33

2 24
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8
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(a) c(T |R) = 5.33 (b) c(T |R) = 3.81

(d) c(T |R) = 6

Figure 2: Cost of the same trajectory T = (a, b, c, d)

traversing four different opportunistic routes. The

cost dETX
iJ(i) is annotated next to nodes a, b, and c.

2.1.3 Least-cost opportunistic route

There are multiple possible trajectories to traverse
an opp. route, and each is used with some probabil-
ity P (T ), that depends on a number of factors, such as
the non-deterministic outcome of link-layer transmis-
sions, decisions made by link- and network-layer proto-
col mechanisms, and the topology of the network. It is
then natural to define the cost of an opp. route as the
expected cost of traversing it:

Definition 2. The cost C(R) of an opp. route R is
the expected cost of all trajectories across that route,

C(R) =
∑

T∈R

P (T ) · c(T |R),

Source DestinationD

C

B

A

Figure 3: Mis-match of single-path metrics with op-

portunistic routing. Sending a packet via the dense

mesh takes advantage of anycast forwarding and is

often cheaper than via the four-node strand at bot-

tom, even if it goes through more hops. However,

the use of a single-path metric prevents the source

from using any of its neighbors in the upper dense

area, because in single-path distance they are fur-

ther from the destination than the source itself.

where the sum is over all possible trajectories from the
source to the destination of R.

This definition generalizes the cost of a single-path route:
if all CRS’s are singletons, there is only one trajectory
T across an opp. route (and so P (T ) = 1), and its
cost is the sum of its constituent link costs. Each possi-
ble choice of candidate relays gives rise to a probability
distribution over all possible paths between the source
and destination, and this distribution determines the
expected cost of using a route. Fortunately, we shall
see in Section 3 that it is possible to avoid the explicit
computation of this distribution.

Having now defined opp. routes and their cost, it
is natural to define the least-cost opportunistic route
(“LCOR route”) between two nodes as the one with
minimal cost:

Definition 3. The least-cost opportunistic route (LCOR
route) R∗ from a source to a destination is the opp.
route that has lowest cost C(R∗) of all opp. routes be-
tween those nodes.

As a direct consequence of this definition, the LCOR
route has cost either smaller than or equal to the short-
est single-path cost between two nodes, since the set of
all opportunistic routes between two nodes includes the
set of single-path routes between these nodes. Note that
there may be multiple LCOR routes with equal mini-
mal cost (as is the case with single-path routes). Also,
the least-cost opportunistic route may itself be a single-
path route. For example, if the metric is ETX and all
links have delivery probability 1, then the LCOR route
is identical to the shortest single-path route.

2.2 Why not use shortest single-path metrics?
Certain existing opportunistic routing protocols are

driven by single-path metrics: nodes run a single-path
routing algorithm and choose candidate relays using a
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criterion that is based on the shortest-path distance
of their neighbors to the destination. For example, a
node running ExOR [3] takes as candidate relays all
neighbors with lower single-path cost to reach the des-
tination. Before developing our solution to the LCOR
problem, we show why strategies based on shortest-path
metrics do not always lead to optimal CRS choices.

Figure 3 shows a network where the source has four
neighbors and must select a subset of these neighbors as
the set of candidate relays that may be used to reach the
destination. Let us assume that all links have packet de-
livery probability p = 0.75, and compute delivery prob-
abilities using a single-path metric. The probability of
a packet being successfully delivered to the destination
when sending via D through the two-node strand at the
bottom is p3 = 0.42. The probability of a packet being
successfully delivered when going through any 4-node
path in the mesh at the top is p5 = 0.24. A single-path
metric would therefore lead us to select node D as the
sole candidate relay from the source, since A, B, and C
each have a lower delivery probability to the destination
than the source itself. However, with anycast forward-
ing, each node in the upper mesh has three candidate re-
lays to its right, and so the probability of delivery across
the upper mesh is actually higher than 0.24. Indeed, a
simple computation shows that the true delivery proba-
bility, when using A, B, C as candidate relays and going
through the upper mesh is (1 − (1 − p)3)4 · p = 0.70. If
our choice of candidates is driven by single-path metrics,
we would ignore this opportunity, and as a result make
a routing decision that provides a significantly lower
delivery probability; the single-path metric effectively
disqualifies nodes that in fact should be candidates.

3. FINDING LEAST-COST OPPORTUNIS-
TIC ROUTES

While the definition of opportunistic route cost (Def.
2) is intuitive, it sheds no light on how to actually com-
pute this cost in a distributed setting, let alone how to
find the opportunistic route with least cost. This sec-
tion introduces a distributed algorithm to compute the
optimal candidate relay sets, based on Bellman-Ford.

3.1 Remaining path cost
With unicast forwarding, it is trivial that the remain-

ing cost for a packet to reach the destination after it is
forwarded to the relay is the path cost from the relay to
the destination. With anycast forwarding, the effective
relay can be any node in J , and so the corresponding
notion must be revisited. We define the remaining
path cost (RPC), denoted RiJ , as the expected cost
to reach the destination from the CRS J to which node
i has anycast a packet. The breakdown of an oppor-
tunistic route’s cost into ALC and RPC is illustrated
in Figure 4. Like for the anycast link cost, establishing

i J
Dest.

diJ

Cost from i to J
RiJ

Cost from J to dest.

Figure 4: The cost of an opportunistic route can

be separated into two components: the anycast link

cost, which is the cost to reach the next-hop relay,

and the remaining path cost, which is the cost to

get from the next-hop relay to the destination.

the RPC is a modelling decision, and its expression can
differ for various instantiations of LCOR.

This notion of a distance from a set of nodes J to the
destination may appear somewhat disconcerting. The
key is to note that the RPC is a weighted combination
of costs from each node in J to the destination. The
weights reflect the relative probability that each node
in J is effectively used as relay and forwards a packet
that was link-layer anycast from i to J .

As an example of RPC, consider an ideal anycast link
layer operating as follows. The sender i transmits a
packet. If a single node in J receives the packet, that
node is used as the relay. If multiple nodes in J receive
the packet, then the receiver with lowest cost to reach
the destination is selected as the relay. If the packet is
not received by any node in J , the sender retransmits.
The behavior of non-ideal, practical link layers can also
be captured in the RPC and is further discussed in Sec-
tion 4.

Denote by Dk the cost to reach the destination from
a node k. If Dk = D for all k ∈ J , then the RPC with
our ideal link layer is simply RiJ = D. Now consider
the case where all Dk are not equal, but all link delivery
probabilities are equal to some p. In this case, the RPC
can be computed as

RiJ =
p

1 − (1 − p)n

n
∑

j=1

(1 − p)j−1Dj , (3)

where it is assumed (without loss of generality) that the
nodes in J are sorted by their cost to the destination,
i.e., that D1 < D2 < . . . < Dj. Finally, in the general
case each node k in J receives the packet with some
probability pik. The remaining path cost is then:

RiJ =
1

1 −
∏

k∈J pik



pi1D1 +

n
∑

j=2

pijDj

(

j−1
∏

k=1

pik

)



 .

(4)
Note that like the anycast link cost, the RPC gener-
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alizes the single-path case: when |J | = 1, it simply be-
comes the cost from the relay to the destination. Note
however that the RPC from a CRS J to the destination
depends not only on J itself, but also on the predecessor
node i of J . In other words, the same CRS J can give a
different RPC for two different senders i. In this sense
RPC is quite different to the single-path notion that it
generalizes, since the traditional single-path notion of
path cost does not depend on any previous node in a
path.

We illustrate the dependence of the RPC on the sender
with the example of Figure 5. Two forwarding nodes
i and j each have the same candidate relay set C =
C(i) = C(j) = {k, l}. We consider the ideal link-layer
described earlier, that selects as relay the receiver with
lowest cost to reach the destination. So k is chosen as
relay every time it receives a packet (because Dk < Dl),
and node l is only chosen if it receives a packet and k
does not. What are the remaining path costs RiC and
RjC to the destination? Consider first sender i. Node k
receives every packet from i, and so is the effective relay
for every packet (including for packets that node l had
received as well). The remaining path cost RiC is thus 5.
The situation is different for sender j. Node k only re-
ceives packets from j with probability 0.8, whereas node
l receives every packet, thus RjC = 0.8∗5+0.2∗10 = 6.
Note that the ideal link-layer is not required to illus-
trate RiC 6= RjC , e.g. the inequality would also hold if
the relay is selected at random each time both k and l
receive a transmission.

1

1

i

j

k

l

0.8

0.8

CRS

Dl = 10

Dk = 5

C(i) = C(j) = {k, l}

RiC(i) = 5

RjC(j) = 6

Figure 5: The remaining path cost depends not
only on the CRS J but also on the sender i.

3.2 Physical cost criterion
While the ALC and RPC metrics can be designed

in many different ways depending on the underlying
protocol and cost model, they must jointly satisfy one
condition in order for routing to converge. This is the
physical cost criterion; it requires that if a node i adds
to its CRS a neighbor with higher cost to the destina-
tion than i itself, then i’s cost to reach the destination
must increase. The physical cost criterion can be seen
as a generalization of the requirement that link costs be
non-negative in order for single-path routing algorithms
to converge.

Definition 4. Consider a node i with CRS J . The
cost to reach the destination from i is Di = diJ + RiJ .
Let k ∈ N(i) \J be a neighbor of i that is not in J , and
for which Dk ≥ Di, and define J ′ = J ∪k. The physical
cost criterion is respected if and only if:

diJ′ + RiJ′ ≥ diJ + RiJ ,

for all possible combinations of i, J , and k.

3.3 Least-cost opportunistic routing algorithm
How does a node select which of its neighbors should

be candidate relay nodes? As illustrated in Fig. 4,
the expression to minimize is the sum of the ALC and
RPC, which must be minimized over all possible subsets
J ⊆ N(i) :

Di = min
J∈2N(i)

[diJ + RiJ ]. (5)

This equation represents the steady-state of the LCOR
algorithm, that computes least-cost opp. routes as fol-
lows. In one iteration, each node i updates its value Dh

i ,
where h is the iteration index. This Dh

i is the oppor-
tunistic routing cost estimate from i to the destination
at the h-th iteration; it converges toward Di. By con-
vention, we take:

Dh
1 = 0, for all h, (6)

and we set dij = ∞ if (i, j) is not an link of the graph.
One iteration step consists of updating the estimated
cost to the destination from each node:

Dh+1
i = min

J∈2N(i)
[diJ + Rh

iJ ] for all i 6= 1, (7)

where Rh
iJ is the remaining path cost computed using

the costs Dh
j , j ∈ J from the previous iteration. The

CRS used by i is found as a by-product of minimizing
the above equation. Our definition of the algorithm is
completed by noting the initial conditions:

D0
i = ∞, for all i 6= 1.

The algorithm terminates when:

Dh
i = Dh

i−1, for all i.

In the following, a (≤ h) opportunistic route is one
whose longest path contains at most h hops. A least-
cost (≤ h) opp. route from a node i is a least-cost opp.
route from i to the destination, subject to the constraint
that the longest path in the opp. route traverses at most
h hops.

Proposition 1. The LCOR algorithm computes, at
iteration h, the least-cost (≤ h) opportunistic route costs
from each node to the destination. Furthermore, the al-
gorithm terminates after at most h∗ ≤ |N | iterations,
and at termination, Dh∗

i is the cost of the least-cost opp.
route from i to the destination.
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The proof of this proposition is given in [8]. The LCOR
algorithm resembles the classical Bellman-Ford algo-
rithm, with the crucial difference that the cost metrics
are generalized to handle candidate relay sets rather
than single relay nodes. Just like single-path Bellman-
Ford, the algorithm works in a distributed setting, with
nodes asynchronously recomputing their cost (using eq.
(7)) and advertising it to their neighbors.

3.4 Reducing the Search Space
While the upper bound on the LCOR algorithm’s

convergence time (in number of iterations) is the same
as for single-path Bellman-Ford, its complexity is greater,
since there are 2|N(i)| possible subsets that must be eval-
uated, compared to |N(i)| possible relays with single-
path routing. We now discuss some possible ways to
reduce the complexity of computing (7).

3.4.1 Distance filtering

A first reduction comes under the assumption of a
physical cost model. With such a model, we can do
distance filtering and reduce the size of the set N(i).
Define the set of nodes Ň(i) ⊆ N(i) consisting of all
the neighbors k of i for which Dk < Di. Then, we have
that

min
J∈2Ň(i)

diJ + RiJ = min
J∈2N(i)

[diJ + RiJ ],

where the proof follows immediately from the defini-
tion of the physical cost model that says that adding
any node in N(i) \ Ň(i) to the candidate relay set can
only increase the distance Di. So, we can take only the
neighbors with lower distance to the destination than
ourselves Dk < Di and perform the Bellman minimiza-
tion over the nodes in this set. Of course, this simplifi-
cation is helpful in practice, but it does not modify the
exponential nature of the solution space size.

3.4.2 Subset ordering

While in the general case we must resort to heuristics
to reduce the exponential size of the solution space, we
are fortunate that the Bellman equation simplifies con-
siderably, under a set of conditions that hold for some
cases of practical interest. These conditions essentially
require that there be an ordering on all the 2n possible
subsets of N(i), that this ordering depend only on the
Di, and that the ordering be the same as the ordering of
candidate relay sets that results from the costs diJ +RiJ

of (5).
The first condition (H1) states that the remaining

path cost decreases when we add a node to the candidate
relay set with distance to the destination inferior than
that of all nodes already in the set. The second condi-
tion (H2) states that the anycast link cost depends only
on the size of the candidate relay set, and that this cost
decreases as the set grows. The third condition (H3)

states that the remaining path cost decreases when we
replace a node in the CRS with another node having
lower distance to the destination. These conditions are
formally defined hereafter:
H1 : For all k /∈ J and J ′ = J ∪ {k},

RiJ′ < RiJ if Dk < Dj for all j ∈ J.

H2 : For all J and J ′,

diJ′ < diJ iff |J ′| > |J |, and

diJ′ = diJ iff |J ′| = |J |.

H3 : For all l, k ∈ J s.t. Dl < Dk,

RiJ′ < RiJ , where J ′ = J \ k ∪ {l}.

Assume now w.l.o.g. that the n nodes in N(i) are
sorted by their distance to the destination, i.e., that
D1 < D2 < . . . < Dn.

Proposition 2. In a network model satisfying H1,
H2, and H3, the candidate relay set C(i) minimizing
the Bellman equation (5) is of the form {1, 2, . . . , j},
where 1 ≤ j ≤ |N(i)|.

The proof of this proposition is given in [8].

Corollary 1. In a network model satisfying H1,
H2, and H3, finding the C(i) that minimizes the Bell-
man equation (5) requires only searching through n pos-
sible sets.

4. PROPERTIES AND INSIGHTS
This section uses the framework and algorithm of the

previous sections to shed some insight on the interplay
between LCOR, the underlying link-layer coordination
protocol, and the cost and characteristics of least-cost
routes.

4.1 Other policies for effective relay selection
When a packet transmitted by a node i is received

by more than one node in i’s CRS, a decision must
be made as to which receiver should then forward the
packet further. We call this an effective relay selection
(ERS) policy. The previous sections assumed a pol-
icy that always chose as the next forwarding node the
“best-placed” receiver, that is, the receiver k with min-
imum cost to the destination Dk. We call this policy
ERS-best. The framework and algorithm outlined in
the previous sections allow to model and capture the
effect of other relay selection policies. Another exam-
ple of ERS policy is ERS-any, where the relay is chosen
uniformly at random among receivers of a packet.

In comparison with ERS-best, ERS-any has the dis-
advantage that it may select as relay a receiver with
a more costly path to the destination than the least-
cost receiver. At the same time, executing ERS-any in
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(a) Rany

(b) Rdup

Figure 6: Comparison of least-cost opportunistic

routes with perfect link layer coordination vs a link

layer that sometimes lets through duplicate trans-

missions. In (b), the optimal LCOR route has

smaller CRS’s, because the reduction in forwarding

cost from using large CRS is offset by cost of pos-

sible duplicate transmissions, in particular at large

distances from the destination.

a protocol may have lower cost than executing ERS-
best. Also, using ERS-any spreads the forwarding load
more evenly than ERS-best over the entire opportunis-
tic route. These arguments are qualitative. We do not
seek to claim that ERS-any should be used over ERS-
best, but rather to point out that other policies exist,
and show how they can be modelled within LCOR.

With ERS-any, if S ⊆ J is the set of nodes that
receives a transmission, then the remaining path cost
is the average cost over the nodes in S. The remaining
path cost Rany

iJ can thus be written as

Rany
iJ =

∑

S∈2C(i)

P (S)





1

|S|

∑

j∈S

Dj



 , (8)

where P (S) is the probability that the subset of nodes
receiving a packet from node i is S:

P (S) =
∏

j∈C(i)

(pij1j∈S + (1 − pij)1j /∈S).

By plugging the above expression of Rany
iJ into equa-

tion (7) we obtain a different instance of LCOR that
computes the least-cost routes under the use of ERS-
any. Note that not only the costs of routes will be dif-
ferent with ERS-any than ERS-best; the opportunistic
routes themselves will in the general case be different,
because the J minimizing (7) may not be the same un-
der different expressions of RiJ . One way to see this is
that with ERS-any, a neighbor with a high Dk that is
added to the CRS is more likely to be used than with
ERS-best, and so the optimal CRS with ERS-any tends
to be smaller than with ERS-best.

4.2 Duplicate relays

An important challenge in OR is the design of a co-
ordination protocol to implement an ERS policy. This
protocol must ensure that the nodes receiving a packet
agree on their identities, and select the correct relay
as required by the ERS policy. While an ideal proto-
col executes the ERS policy with complete reliability,
it is in practice possible that the outcome of executing
the coordination protocol is incorrect. One such error
would be that more than one receiver forwards a packet.
Such a duplicate transmission could happen, for exam-
ple, when due to lost signalling information, two nodes
mistakenly believe they are each the only receiver of a
packet.

In addition to accounting for different ERS policies,
the LCOR framework and algorithms can also capture
imperfect (e.g, real) coordination protocols that do not
always carry out the ERS decision correctly. For exam-
ple, consider an implementation of ERS-any where each
node other than the effective relay mistakenly forwards
a duplicate packet is forwarded with probability p. In
such a case, the RPC can be expressed as:

Rdup
iJ = (1 + p(|J | − 1)) · Rany

iJ . (9)

This Rdup can then be used as the RPC in the LCOR
algorithm which then takes into account the expected
cost of duplicates. The result is that sizes of CRS in an
LCOR route is smaller when using as RPC Rdup than
Rany, because the possibility of duplicates increases the
cost of having large CRS’s, which can partially (or en-
tirely) offset the reduced forwarding cost captured by
the ALC. This effect of the LCOR algorithm “clamp-
ing down” on CRS sizes is actually dependent on the
distance to the destination. At close distance (e.g, 1
or 2 hops away), the overall penalty of transmitting a
duplicate is less steep than at far distances, since the
duplicate will be redundantly transmitted over a smaller
number of hops. A comparison of LCOR routes found
by the algorithm using Rdup vs. Rany is shown in Fig-
ure 6, with a high value of p = 0.1 in order to make the
distance-dependent CRS size reductions clearly appar-
ent.

4.3 Asymmetry
With single-path routes, route costs are symmetric

as long as individual links are symmetric. This prop-
erty does not hold for opp. routes. Figure 7(a) shows
a network with two end-points A and B, and three in-
termediate nodes. All links have delivery probability
0.9, except for one link that has delivery probability
0.1. The ALC metric is expected transmission count
(ETX).

Figure 7(b) shows the least-cost opp. route from A
to B. This route does not use the upper node as a
candidate relay, because it has a poor connection to
B. Given that this upper node has to re-transmit on
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Figure 7: Example of a least-cost opp. route that

is not symmetric. Link delivery probabilities are

depicted in the left-most figure. The cost metric is

expected transmission count (ETX).

average 10 times to deliver a packet to B, it is preferable
for node A to re-transmit in the rare case that neither
of the two bottom candidates receives the packet, even
if the upper node has received it.

Now let us consider the reverse direction, from B to
A. Here, the least-cost opp. route uses all three in-
termediate nodes are candidate relays. Using a smaller
CRS set would result in a higher ETX to get from B to
the set, and since all intermediate nodes have the same
delivery probability to A, there is no performance hit
from using the upper relay (unlike when sending from
A to B).

5. RELATION TO EXISTING WORK
Link-layer anycasting has been previously proposed

and motivated in various forms [1] [6]. These works
focus on mechanisms to implement anycast forwarding
at the link layer, and assume that the network layer
maintains a list of possible relay candidates (e.g., by
a multi-path routing protocol) that is provided to the
link layer. These works do not propose specific strate-
gies for the selection of these candidates by the routing
protocol, and the LCOR algorithm could be used to
feed these link layers with relay candidates.

Jain and Das [4] go a step further by integrating
an anycast extension of the 802.11 link layer with the
multi-path AODV (AOMDV) [9] routing protocol. They
observe the same tradeoff as [6] between number of can-
didates and path length. Motivated by an empirical
evaluation, they modify AOMDV to allow the use of
paths up to one hop longer than the shortest path.

Note that the original design goal of most multipath
routing protocols is usually to improve load-balancing,
redundancy or failover by providing multiple route choices.
This is in contrast with LCOR (and OR in general)
that provides multiple relay candidates specifically to
take advantage of anycast forwarding. In the context
of wired networks, one example of multipath routing
is the work of Zaumen and Garcia-Luna-Aceves [10].
This work defines a routing algorithm that computes
the multipaths containing all paths from the source to
the destination that are guaranteed to be loop-free at

every instant. The definition of opportunistic route in
Section 3 is similar to theirs, but our notion of least-cost
opportunistic routes is different, because our cost model
is designed to reflect the use of anycast forwarding.

One approach to candidate selection is to use geo-
graphic positions [11], and select as candidate relays
those nodes that are closer to the destination than the
current node. This approach is simple and trivially
guarantees loop-freedom. One challenge inherent in
a geographic approach is however that radio propaga-
tion is highly irregular at local scales, and so making
progress in physical distance does not guarantee mak-
ing progress in the actual network topology.

Finally, Zhong et. al. previously remarked [5] that
the routes used by ExOR are not optimal, and propose
a heuristic-based method for candidate relay selection
based on single-path metrics.

6. CONCLUSION
This paper introduces an algorithm to compute least-

cost opportunistic routes in multi-hop wireless networks.
The technique is general and the associated framework
can accommodate a number of different network and
cost models.
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