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Abstract. Many applications of wireless ad hoc sensor and actuator
networks (WSANs) rely on the knowledge of node locations. These are
challenging to obtain when nodes are mobile and are not equipped with
any specific positioning hardware. In this paper, we are interested in
scenarios where there are constraints on the movement of nodes, such as
with cars on a road network.

We develop and analyse a tracking algorithm called MOONwalk that
explicitly takes such constraints into account in order to improve the
tracking precision. Furthermore, MOONwalk does not require global
knowledge of the network, and therefore lends itself well to large-scale
and high-mobility applications.

We evaluate the accuracy of MOONwalk by comparing it to the opti-
mal maximum likelihood estimator, under different radio conditions and
deployment scenarios. We find that MOONwalk performs well despite
its localized operation.

1 Introduction

Numerous applications of sensor and sensor-actuator networks need to track
mobile objects, such as people, animals, cars, planes, etc. We are interested in
scenarios where the tracked object is equipped with a communication device,
but not with a positioning device, such as GPS. Such a situation may arise
because of energy, cost, or radio constraints, or because the tracking system has
to be operational indoors. In this case, an estimate of the location of the tracked
object can be computed from channel measurements between the tracked object
and a set of fixed devices. Several papers have considered this tracking problem,
where the estimated position of the tracked object is unconstrained, i.e., can lie
anywhere in Euclidean space [1–8].

In this paper, we study a related problem, but where the space of possible
locations is constrained to a graph. More specifically, the vertices of this graph
each correspond to a point in space, and each edge corresponds to a line segment
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K. Römer, H. Karl, and F. Mattern (Eds.): EWSN 2006, LNCS 3868, pp. 148–163, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Constrained Tracking on a Road Network 149

connecting its adjacent vertices. The tracked object’s position always lies on this
graph. This formulation of the tracking problem is inspired by the tracking of
cars on the road network, where vertices model intersections and interpolation
points of curved roads.

Our main application for this problem is a fully distributed system called
SmartPark, which assists drivers in locating free parking spots and guides them
to these spots with turn-by-turn instructions [9]. The key idea is that every
parking spot is equipped with an embedded sensor, and a car is equipped with
a simple guidance device. For related projects, see [10, 11].

Although it would be possible to solve this problem by relying on an uncon-
strained tracking algorithm and projecting the location estimate onto the road
network, this may give rise to suboptimal precision and efficiency. In this paper,
we therefore develop constrained tracking algorithms from first principles, i.e.,
where the constraint is explicitly taken into account from the outset.

We first formulate this constrained tracking problem in a maximum-likelihood
(ML) framework, where the uncertainty stems from fading effects in the radio
channel between the car and the sensors. Although the resulting algorithm is
optimal, it is computationally demanding and requires knowledge of the full
road network graph, as well as knowledge of all the sensors and their geographic
positions, and it assumes a specific radio channel model.

In a system such as SmartPark, however, requiring every sensor and car to
have full knowledge of the road network and of all the sensors in parking spots
would be impractical. Moreover, none of the existing radio channel models fully
captures the real characteristics of radio propagation in an urban environment.
A realistic algorithm therefore has to be robust to channel uncertainties and has
to be able to compute the car’s location on the road network with only very
limited local information configured in the sensors, and no knowledge in the car.
This is because the set of sensors may be large (hundreds of thousands in a large
city), and may change over time (e.g., because of node outages). Furthermore, it
may be undesirable to configure sensors with their precise geographic position.

In this paper, we describe an algorithm called MOONwalk that relies on
considerably weaker assumptions than the ML algorithm. A key feature of this
algorithm is that the car’s guidance device does not need any a-priori knowledge
about the road network graph and about the set of sensors present in its vicinity.
This is challenging, because it implies that the guidance device loses valuable
information when a particular sensor is not able to communicate with the guid-
ance device, because it is not a-priori aware of the existence of this sensor. In
the ML formulation, this information is explicitly taken into account. MOON-
walk relies on some very limited state information in sensors to get around this
problem, which is particularly important in cases where sensor distributions are
very heterogeneous in space.

Another important feature of MOONwalk concerns the a-priori knowledge in
sensors, which typically has to be configured by hand or inferred through some
other process. ML requires the precise geographical position of each sensor but
MOONwalk only requires a set of potential positions on the road network (rather
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than in Euclidean space). This simplifies configuration and makes the tracking
process more robust to small configuration errors.

This paper is organized as follows. In Section 2, we describe the models and
assumptions. The ML formulation is introduced in Section 3, and the MOON-
walk algorithm in Section 4. We report simulation results in Section 5, and show
that MOONwalk performs well compared to the optimal ML algorithm, despite
the complications cited above. In Section 6, we give a more detailed descrip-
tion of related work. In Section 7, we conclude the paper and describe future
research.

2 System Model

2.1 The Road Network Model

A vehicle is constrained to move on the road network. In the case of vehicle
tracking this fact becomes an opportunity, because one has to look for the vehicle
only within a road network. To model the road network we define the graph
G(V, E), where the set V of vertexes represents intersections and the set E
of directed edges represents line segments connecting the intersections [12, 13].
The proposed model can abstract any curved road as a set of straight roads
connecting virtual intersections. For the sake of simplicity we assume that G
is strongly connected and E contains one-way line segments only, i.e., any two
adjacent vertexes are directly connected only by one directed edge. We intend to
relax this assumption in the future. Since parking sensors are deployed usually
along the roads they can abstract the road topology as a G. At each sensor the
information about the line segment e = (v, w) and a distance from v and/or w to
its geographical location can be stored. Thus we distinguish between two different
types of locations of a sensor i, i.e., the geographical location in R

2: Xi, and
the road network location on G represented by so-called location-tuple: Li. The
location-tuple is defined by two functions Li = (e(Xi), β(Xi)) that characterise
the line segment and the distance between the actual location of a sensor Xi

and the location of the preceding (or the following) intersection Xv. In order to
simplify the notation we write the following Li = (ei, βi), where i represents the
sensor, ei = (vi, wi) ∈ E specifies the line segment on which i is located, and βi ∈
[0, 1] specifies i’s location on ei. The βi might be expressed as βi = ||Xi−Xv ||

||Xv−Xw|| ,
where ||Xi − Xv|| is the Euclidean distance between a sensor and the preceding
intersection and ||Xv − Xw|| represents the length of ei. However, one can use
some other metrics for the βi, e.g. a time needed to get from the preceding
intersection to the actual location Xi. Without loss of generality, as a metric
for the βi we use the ratio between the Euclidean distances. In the case of the
vehicle tracking on a road network one can rely on the parking sensors as they can
abstract the road network topology. We believe that this approach is appropriate,
since the navigation is performed based on the abstracted road topology, i.e.
the driver obtains the turn-by-turn instructions in the following format: “Drive
straight until the nearest intersection, then turn right. Your parking spot is the
fifth on the right side.”
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2.2 The Radio Model

All sensors and wireless guidance devices use omnidirectional antennas and nar-
rowband radio signals for communication. We investigate the probability of sig-
nal reception at a given distance from a vehicle and at a certain time, thus we use
the path loss radio communication combined with multipath propagation model.
The path loss attenuation between transceivers is given by d−α [14], where α
is the path loss exponent, which varies from 2 (free space) up to 6 (harsh en-
vironment), and d is the Euclidean distance between transceivers. The received
power level shows rapid and deep fluctuations about the local mean with the
movement of a mobile node and presence of obstacles. These fluctuations are
caused by multipath propagation. They are approximated by the Rayleigh dis-
tribution [15]. In our radio model we use the Rayleigh fading model, because it is
particularly appropriate when there is no direct line-of-sight between the trans-
mitters, which is often the case in a very harsh outdoor environment. The value
of the received power is in fact a random variable that depends on the actual
radio propagation characteristics and the distance to the transmitter. We have
verified, by means of simulations, that the proposed radio propagation model is
consistent with the experimental results achieved in [16]. We do not show these
results for the lack of space. Assuming that the transmitted power is 1 mW the
received power at the receiver is:

Pi(t, d, α, γ) = γ(t)θd−α (1)

where γ(t) is the random number drawn according to the Rayleigh p.d.f.:

p(r) =
{

r
σ2 exp(− r2

2σ2 ) for r ≥ 0
0 otherwise,

(2)

where r is the envelope amplitude of received signal and σ2 is its variance. The
random variable γ is chosen in such a way that its expected value is equal to
one. In that case the expected value of Pi is equal to d−α [14]. The exponent
θ represents the intensity of the fading, for example, when the multipath effect
decreases the level of received signal by 20 dB, then the θ is equal to 2.

3 Maximum Likelihood Approach

In this section we consider the case where the vehicle’s location estimate is ob-
tained without any restrictions on used hardware, decentralized implementation
or energy budget. We are looking for a scheme that will be optimal in terms of
accuracy. We expect that it will also give us an insight into how to develop and
implement an algorithm for more realistic scenarios.

We consider the following setting: the vehicle is equipped with a wireless
guidance device and it moves on the road network with a constant speed. It
broadcasts periodically a hello message. All sensors i that are in the vehicle’s
radio communication range are able to receive this message.
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We introduce a random variable Zi(t) that describes the reception of a mes-
sage by a parking sensor. A message is received when the received power level
exceeds some predefined power reception threshold Pth:

Zi(t) =
{

1 if Pi ≥ Pth

0 otherwise (3)

In this method we assume that the following information is available for the
vehicle explicitly at any time t:

a) road network topology: G(V, E),
b) geographical locations of all sensors: Xi,
c) instantaneous radio communication conditions: α, distribution of γ; and all

sensor’s reception power threshold: Pth,
d) all instantaneous sensor’s message reception events: Zi(t).

Based on the aforementioned information, the vehicle executes the proposed
algorithm in order to determine its location on a road network. The random
variable Zi(t) is characterized by the conditional probability p(zi(t)|Xi). Know-
ing the power reception threshold and the radio communication conditions we
can express this conditional probability as follows: p(zi(t)|Xi) = P(PR > Pth) =

exp(− d2α/θP
2/θ
th

2σ2 ). For the purpose of the ML algorithm we define a vector z̄ of
N sensor’s reception events: z̄(t) = (z1(t), z2(t), ..., zN (t)), that represents values
of Z1(t), Z2(t), ..., ZN (t). We define a likelihood function corresponding to the
vehicle’s location on the road network as:

J (e, β) = p(z̄(t)|X) (4)

Due to the multipath propagation, when a transmitter sends a radio message, its
reception by spatially distributed sensors within an urban area is independent.
This implies that Z1(t), Z2(t), ..., ZN (t) are independent, hence the p(z̄(t)|ei, βi)
is the product of the marginals:

p(z̄(t)|Xi) =
N∏

i=1

p(zi(t)|Xi) (5)

Applying the radio model from section 2.2, we obtain:

J (e, β) =
N∏

i=1

{
exp(− d2α/θP

2/θ
th

2σ2 ) if zi(t) = 1

1 − exp(− d2α/θP
2/θ
th

2σ2 ) if zi(t) = 0,
(6)

where d = ||Xcar − Xi|| is the distance between a sensor i = 1...N and a hypo-
thetic vehicle location Xcar. The maximization is done on two sets - one discrete:
E and one continuous: β ∈ [0, 1]. This allows us to find a value of β that max-
imizes (6) for all given e ∈ E separately. Afterwards we simply select the line
segment e for which the (6) takes the maximum value. Therefore we obtain the
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ML estimates for both, the line segment e and the β parameter that define the
location estimate of the vehicle on the road network L̂car.

The ML tracking method is optimal in terms of accuracy and is robust to
node outages. We use this method to examine the best achievable accuracy
of the constrained tracking. Note that it depends on the instantaneous radio
propagation conditions that are different for each transceiver in the network.
Even if we knew explicitly the multipath characteristics, it would be hard to
know the current path loss exponent for each transmitter. The path loss exponent
depends on the specific spatial distribution of the obstacles within the area where
SmartPark operates. As such, it is very difficult or even impossible to characterize
the path loss exponent statistically [14].

4 MOONwalk Algorithm

4.1 From ML Towards a Realistic Scenario

In this section we develop an algorithm that, in contrast to the ML algorithm,
does not require to know:

a) the whole road network topology,
b) the precise geographical location of all deployed parking sensors,
c) specific radio channel assumptions,
d) sensors that got the hello message and those that did not.

We assume that right after the deployment, during the so-called warm-up
phase, all parking sensors have to discover where they are located on a road
network. They can infer their location-tuples Li = (e, β), from a set of the
vehicle’s movement observations, i.e. they might obtain information about the
time needed to get from a certain intersection to a given position on a certain
line segment. How these location-tuples are derived, is out of scope of this paper.
However, we assume that they might be imprecise, especially in the case of
sensors that are close to intersections. Because of this, we allow each sensor
to have more than one location tuple, so we define a set of location-tuples as:
Li = {(ek

i , βk
i ), ..., (el

i, β
l
i)} that represents the set of possible candidates for the

real location of a sensor i. We also assume that the vehicle, while estimating its
road network location Lcar, can only rely on sensors’ road network locations:
Li and the received signal strength measurements of each received message: Pi.
We consider the following scenario: the vehicle moves on the road network and
broadcasts periodically a hello message. All sensors that can hear this message
respond to the vehicle with a reply message. Due to the multipath effects some
of the sensors will not be able to receive messages as shown in Figure 1.

The ML algorithm uses the geographical locations of all sensors to estimate
the road network location of the vehicle. We seek an algorithm that will not
use any information about the sensor’s geographical location nor any distance
measurement techniques. However, we can rely on distances between sensors
and the vehicle, while estimating the location, by using the relationship between
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a parking sensor that was able to reply
to a "hello" msg

contour of a "hello" msg reception region
e=3

e=4 e=1

e=2A

B

D

C

a parking sensor

a parking sensor that got a "hello" msg 
but was not able to send a  "reply" msg

hello

reply

Kcar

vehicle sensor

Fig. 1. An example of the interaction between vehicle and parking sensors

distance and Pi. In a certain propagation direction the expected Pi is mono-
tonically decreasing [16, 17], thus we assume that the expected Pi should be
higher for sensors that are closer to the vehicle. Note that we do not make any
assumptions about the correlation between absolute distance and the expected
Pi. Relying only on instantaneous Pi measurements is not sufficient to design a
robust method for location estimation because of the multipath effects.

There might be different densities of sensors on different line segments; if a
vehicle can know these densities, such knowledge can help it to decide on which
line segment it is at the moment. This kind of information is very useful, e.g.
in cases when a vehicle is close to an intersection and it can communicate with
sensors that belong to different line segments as shown in Figure 1. Knowing
sensors that did and did not receive a hello message, helps to infer their den-
sities on line segments. In the ML algorithm the vehicle knows all the sensors
that did not receive its hello message. A naive approach, where one could take
into account only the sensors that respond to the hello message, would bias the
results of location estimation in favour of high sensor densities, thus it is hard
to design a robust real-life algorithm that may know about non-responding sen-
sors. However, even without direct sensor-to-sensor communication, sensors can
learn about all neighbouring sensors. For this purpose one could use vehicles that
would propagate information about sensors they were able to communicate with
recently. Based on such information, each sensor could learn over time about its
neighbourhood. The reason we want to rely only on sensor-to-vehicle communi-
cation is that the radio channel between sensors might be very obstructed, as
they are deployed in the ground. Moreover, the vehicle has an almost infinite
resource of energy thus we can easily extend the lifetime of the whole system if
we preserve sensors from direct communication between each other. The long-
term sensor’s observation of its neighbourhood could be sent to the passing by
vehicles. Thus a vehicle would be able to find out which sensors were able or not
to receive its hello message. Note that the accuracy of such information depends
on the number of vehicles that pass by and the radio propagation conditions.
The more vehicles and the better radio propagation conditions, the better ap-
proximation of the sensor’s real surrounding.

4.2 How to MOONwalk

The vehicle and parking sensors perform a three-way communication that is
needed to estimate the vehicle’s road network location as shown in Figure 1.
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The hello message contains a location query. The reply message contains the
sensor’s ID: i, the set of location-tuples: Li and its neighbour table: Ni. The
neighbour table Ni represents a sensor’s knowledge of its neighbourhood. Each
entry of this table: nij represents the number of occurrences of a sensor j in
the neighbourhood of sensor i: Ni = {(j, nij)}. Each sensor has an entry for
itself in this table. Note that the Ni does not represent a direct observation
of i’s neighbourhood, since there is no sensor-to-sensor communication. After
collecting all reply messages the vehicle finds two sets - the reply message set:
R = {(i, Ni, Li)} and the so-called one-hop neighbourhood set : Kcar. The defini-
tion of a neighbour is the following: if a sensor i can communicate directly with
the vehicle, after receiving a hello message, then i is called a vehicle’s neighbour,
thus Kcar = {i : i ∈ R} . The Kcar relies on bi-directional connectivity - if there
is only a uni-directional link between two transceivers, they are not considered
as neighbours. The Kcar represents only a snapshot of vehicle’s instantaneous
neighbourhood at a given time. Once the Kcar is found, the vehicle broadcasts
it to all the sensors in the vicinity, so that they can update their Ni tables.
Note that the nii element in Ni table corresponds to the total number of such
messages. We assume that both the set of location-tuples Li and the neighbour
table Ni of each sensor are given, i.e., all sensors have observed their surrounding
long enough.

Since the position of a node on the road network is specified by a location-
tuple, we can split the algorithm into two phases. During the first phase the
algorithm will identify the proper line segment on which a given vehicle is lo-
cated. In the second phase the algorithm will find the position on the line segment
found in the first phase.

In order to find the proper line segment we need to specify a statistic that rep-
resents the certainty of the vehicle’s presence on the corresponding line segment.
This statistic is a function of the vehicle’s observation (Kcar), local density of
sensors that belong to the same line segments (Nis) and the Pi measurements.
The proper line segment is found by comparing the statistics. Below we present
the MOONwalk algorithm in more details.

Phase I. After performing the three-way communication, a vehicle creates a
matrix ncar

ij using all the Ni tables it has collected:

ncar
ij =

{
nij if nij ∈ R
0 otherwise (7)

The size of this ncar
ij matrix is the number of all the sensors that are in the Kcar

and the sensors that are neighbours of the sensors from Kcar. Each element of
this matrix takes a value from a corresponding Ni table as shown in Table 1. All
the elements of the ncar

ij matrix represent the number of times a sensor j appeared
in the sensor i’s neighbourhood. If neighbourhoods of two sensors overlap, they
should see each other equally often, i.e. if the distance between two sensors i
and j is short enough, then it is more likely that they can receive the same
hello message from a vehicle. This shows how strong two sensors are correlated
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with respect to their neighbourhoods. For this reason we apply a correlation
technique called Pearson’s correlation, which in general shows how strong is the
association between two variables:

φij =
∑

k(nik − n̄i·)(njk − n̄j·)√∑
k(nik − n̄i·)2

√∑
k(njk − n̄j·)2

(8)

Thus for all non-zero elements of the ncar
ij matrix the vehicle finds the Pear-

son’s correlation coefficients matrix φcar
ij .

Table 1. Ni tables for sensors A,B, and C respectively (left) and a corresponding ncar
ij

matrix (right)

Sensor ID # occur.
A 13
B 10
C 13
D 2

Sensor ID # occur.
A 8
B 11
C 11

Sensor ID # occur.
A 10
B 9
C 12
D 4

=⇒

... A B C D
A 13 8 10 0
B 10 11 9 0
C 13 11 12 0
D 2 0 4 0

After finding all correlation coefficients, for each line segment e, taken from
all the received position-tuples from R, the vehicle finds corresponding Se set
that contains all the sensors from Kcar, which belong to this line segment e:
Se = {i : e ∈ Li} ⊂ Kcar. Note that Kcar = ∪eSe. For each such set Se the
vehicle obtains a submatrix of coefficients from the φcar

ij matrix. The size of such
a submatrix is q x q, where q = |Se|. In such a submatrix both rows and columns
correspond to the sensors that belong to the same line segment. Suppose that
the vehicle has to decide whether it is on a line segment e = 1 or e = 2 as shown
in Figure 1. By inspecting the position-tuples, the vehicle knows that S1 = B, C
and S2 = A, B, C as shown in Table 2.

Table 2. An example of the two submatrices of the φcar
ij that contain pairwise corre-

lation coefficients of the sensors that belong to S1 (left) and S2 (right)

... B C
B 1.0000 0.9142
C 0.9142 1.0000

... A B C
A 1.0000 0.8889 0.9707
B 0.8889 1.0000 0.9142
C 0.9707 0.9142 1.0000

After finding these submatrices, the vehicle calculates the average correla-
tion for each candidate line segment: Φi

e = 1
q

∑q
j=1 φiSe[j], which approximates

the sensor’s belief about its line segment membership. Thus for different line
segments we have different coefficients for the same sensors. We use the Φi

e coef-
ficients as weights to determine the relative importance of the information about
a certain location provided by a sensor. At this point we also use the vehicle’s
set of Pi measurements and the size of each sensor’s neighborhood to define a
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statistic T used to find the proper line segment. By doing so we counterbalance
the effect of received responses of nodes which neighbours did not respond. The
T statistic takes a maximum value for a line segment for which the certainty of
the vehicle’s presence is highest.

Phase II. Once the estimated line segment: ê is found, the vehicle can search
for the estimate β̂ of the position on ê. Here the Pi measurements can be used
again. We are only considering the Pi measurements of the sensors that belong
to the same line segment ê, found in the first phase of the algorithm. Usually the
parking spots are placed along roads, so the expected Pi of each message, sent
by the sensors from the parking spots, should monotonically decrease with the
distance between the vehicle and a sensor. Thus we can expect that the sensor
for which Pi is the maximum is the closest to the vehicle. We simply take the β
parameter of such a sensor as the vehicle’s estimate of its position on a certain
line segment: β̂.

5 Evaluation

5.1 Methodology

In this paragraph we define the performance metric that will measure the accu-
racy of the proposed methods. The proposed metric is in fact a cost function that
shows how much effort a driver would have to devote to get from the estimated
location to the real one. Our motivation comes from the following observation:
it is easier to move between the real location and the estimated one if both
are on the same line segment, even if a driver would have to use the reverse
gear. Whereas it is much more difficult to get from the estimated location to
the real one through an intersection. Since the tracking subsystem will provide
other SmartPark subsystems (e.g. navigation and reservation subsystems) with
an actual vehicle’s location information, we need to define a performance metric
that will express the driver’s effort needed to recover from misleading instruc-
tions received from SmartPark. Therefore we specify the cost function in the
following way. If a driver has to move on the same line segment to get to the
estimated location, she does not have to spend more than C effort. When she
has to cross an intersection, she has to devote at least C effort. In our approach
we express the cost function as a road graph distance error ∆dG as follows:

∆dG =

{
|β − β̂| if ê = e

2 − |β − β̂| if ê �= e
(9)

One can notice that a driver will have to devote at most C = 1 effort in the
first case, whereas in the second case the minimal cost will be at least C = 1.
Therefore we expect from the proposed algorithms that their accuracy in terms
of proposed error metric should be at least below 1 and close to 0 as much as
possible.

We compare the performance of the two proposed methods under different
conditions. The four differrent evaluation areas are illustrated in Figure 2. The
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Fig. 2. Four different simulation areas used in tests

first three differ only in terms of sensors’ distribution along the line segments.
The fourth one is a part of a city centre that contains 220 sensors that are placed
along the line segments - all parking spot coordinates and the road network
characteristics were taken from the map of Basel city centre.

First we check how the performace depends on the radio conditions for four
different deployments of sensors along the line segments. Next, we check the
accuracy of the two algorithms with respect to different sensor densities, within
three different simulation areas. For this case, we generate five different sets of
sensors for each deployment scheme on the grid road network topology.

Because of the MOONwalk algorithm requirements related to the warm-up
phase, we had to perform a special pre-computation that defines the road net-
work mapping and the Ni tables for each parking sensor. For this purpose we
have projected the road topology onto the parking sensors in the following way.
Since all sensors are deployed along the streets, we define an area A that is a
rectangle, whose symmetry axis is the given line segment e. If a sensor node is
inside this rectangle A, it means that it belongs to the line segment e. It may
happen that one parking sensor will be inside more than one such rectangle,
which is usually the case if it is close to an intersection; then this parking sensor
has more than one location-tuple that forms the set of location-tuples: Li. The
projection technique is shown in Figure 3.

In case of the Ni tables, we specified five different intervals of occurrences i.e
< 25, 20 >, < 20, 15 >, < 15, 10 >, < 10, 5 > < 5, 0 > and five corresponding
radii R1 < R2 < R3 < R4 < R5. The technique we used to construct the Ni

for each sensor was the following - if the distance between sensors i and j was
smaller than Rk then the number of occurrences of j in i’s neighbourhood was
uniformly chosen from the kth interval.

In our simulations we use one vehicle that is placed at a random intersection
and moves randomly with the constant speed, according to pre-defined road
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a sensor with one location-tuple

a sensor with two location-tuples

Fig. 3. The projection of the road network topology onto the fixed part of SmartPark

rules. We develop our own simulator written in MATLAB. Because the exact
distribution of ∆dG is unknown, we evaluate the performance based on the lower
quartile, the median and the upper quartile of ∆dG.

5.2 Comparison of the Algorithms

Using the same pre-defined path and radio communication conditions, we eval-
uate the performance of the proposed algorithms through the cumulative distri-
bution of ∆dG, shown in Figure 4. The ML method outperforms the MOONwalk
algorithm in all the cases. However the ∆dG is significantly lower than 1 for at
least 80% of cases for both algorithms.
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each journey: 9 line segments, vehicle’s speed: 40 km/h
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During the second test, we let the vehicle travel through 70 line segments.
We calculate the lower quartile, the median and the upper quartile of the ∆dG.
We do this for different intensities of Rayleigh fading. The median value of ∆dG

grows with multipath intensity for the ML algorithm, which is not the case for
the MOONwalk method, as shown in Figure 5. The results of the third test are
shown in Figure 6. Here we check how the number of active sensors affect the
algorithms performance. The median value of ∆dG decreases with the number of
sensors for both algorithms. The improvement is, however, not significant. This
is a good sign because the performance of both algorithms does not suffer from
sensor outages - if 80% of the sensors from a line segment cannot communicate
with a vehicle at a given time, the ∆dG decreases at most of 0.0128 and 0.0123
for ML and MOONwalk algorithms, respectively.

The MOONwalk algorithm depends mostly on the proper projection of the
road network topology onto the fixed part of SmartPark. However, its strong
advantage is that it does not require as much input data as ML in order to
achieve comparable accuracy. Moreover, its accuracy does not decrease in the
case of significant multipath fading and it is much easier to implement in a real-
life scenario than ML. This shows us that MOONwalk is a good candidate for
the tracking subsystem of SmartPark.

6 Related Work

Extensive research has been done on localization and tracking for wireless sensor
networks. A general survey on localization is found in [18]. Systems focused on
the locating problem on a large geographic scale use, for example, GPS. In
the past decade, there have been many different types of location-based projects
that work outdoors, where the radio signal is highly disturbed by the presence of
obstacles and moving objects. These systems are usually supported by networks
of small spatially distributed wireless devices. Here, we focus only on localization
techniques suitable for sensor networks that use only the Radio Frequency (RF)
based approach.

In [7] Gupta and Das have developed a simple detection and tracking algo-
rithm that involves only simple computation and local communication only to
the nodes in the vicinity of the target. They focus only on the unconstrained
tracking approach, where the target is unknown to the system and its appear-
ance alerts all sensors along the projected path of the target. In this approach all
sensors are capable of estimating the distance of the target to be tracked from
the sensor readings. This requires additional effort to map the sensor readings
to the distance. In order to track the target they use the triangulation method.

In [17] Youssef et. all present a method for inferring the location of a de-
vice based on FM radio signal strengths. The proposed method is robust to
measurement differences between devices by basing the inferences on rankings
of radio stations rather than on their absolute received signal strength. The
method does not require any manual survey of received signal strength as a
function of location. However, it requires the usage of the simulated radio maps



162 M. Piórkowski and M. Grossglauser

designed for a given area, validation of simulated received signal strength maps
and an additional pre-processing needed to reduce the number of rank vectors
that correspond to given locations.

Our approach also uses a RF-based method needed to perform the localization
of a mobile node within a wireless sensor network. However, in contrast to the
above-mentioned systems where the tracking is unconstrained, our work focuses
on the problem of how to build the mobile node’s movement constraints into the
tracking algorithm in order to meet the application needs. Given the fact that we
use a decentralized architecture of small devices that are relatively inexpensive,
our constrained tracking approach, especially MOONwalk with the option where
no extra hardware is needed, represents an attractive and powerful solution to
the vehicle tracking on a road network problem.

7 Conclusion and Future Work

The MOONwalk algorithm is a good candidate for the tracking subsystem of
SmartPark mainly because it does not require any additional range-measurement
hardware. Its accuracy is comparable with that achieved by the optimal approach
specified by ML algorithm. We believe there is still place for improvement. If
we introduce more vehicles we can rely not only on the sensor-to-vehicle, but
also on the vehicle-to-vehicle communication. We currently are investigating this
approach called collaborative tracking in more detail. Another possible improve-
ment is to let the vehicle send a hello message with the maximum RF power and
to let the parking sensor send back several reply messages, using different RF
power levels. One could combine this approach with the collaborative tracking.
By this it might be possible to achieve a sufficient trade-off between communica-
tion overhead and accuracy. We are also working on the dynamic version of both
methods where we are using the dead reckoning techniques. In order to improve
the accuracy of the location estimation, we apply the past location estimates
of a vehicle. Preliminary results show that the improvement is significant. We
are also investigating the problem of the road network topology projection onto
the fixed wireless network of parking sensors. We are currently evaluating the
MOONwalk algorithm on a test-bed in a real-life scenario.
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