
On Service Models for Multicast Transmission in Heterogeneous Environments

Matthias Grossglauser Jean-Chrysostome Bolot
AT&T Labs- Research Ensim Corporation

180 Park Avenue 1215 Terra Bella Avenue
Florham Park NJ 07932 Mountain View CA 94043

mgross@research.att.com bolot@ensim.com

Abstract– We examine in this paper the tradeoff between
application complexity, network complexity, and network effi-
ciency. We argue that the design of the current Internet reflects
a tradeoff between lower network complexity (no state in the
network, no signalling) and higher application complexity (rate
and error control mechanisms to obtain an adaptive application)
assuming a unicast service model. For such a service model, a
design methodology that leans heavily towards application com-
plexity has proven very successful.

However, we also argue that this tradeoff changes radically
for a multicast/multilayer service model. There are several rea-
sons for this. First, implementing a multicast/multilayer ser-
vice requires per-flow state. The incremental cost of deploying
a slightly more elaborate service model that takes into account
flow dependence is much smaller than in the case of unicast.
Second, several end-to-end functions, such as channel estima-
tion and error control, are considerably more difficult for multi-
cast/multilayer applications in a large-scale and heterogeneous
environment than for unicast applications. Third, the operating
point of a pure best-effort network is dictated largely by elastic
applications (such as those based on TCP). Unfortunately, this
operating point tends to be undesirable for multicast/multilayer
applications, as they have for example to use FEC to protect
high-priority layers. Other choices similarly lower the network
efficiency.

These insights motivate a new service model which slightly
departs from the best-effort model, and which trades off a
slightly higher network complexity for much lower application
complexity and higher network efficiency. We describe this ser-
vice model and the associated network protocols. The protocol
complexity is only marginally higher than that of a simple multi-
cast routing protocol with receiver-initiated join/leave capabili-
ties. The dependencies between multilayer flows are established
and maintained as soft state; therefore, no explicit session sig-
nalling to establish and tear down flow dependence state is nec-
essary.

I. INTRODUCTION

The current Internet provides a simple service, namely a sin-
gle class best effort service, which relies on simple mechanisms
in the network, namely datagram switching and stateless FIFO
queueing. The model is attractive because it facilitates the in-
terconnection of networks with different architectures, and it
provides flexible resource allocation and good reliability against
node and link failure [4]. The underlying network mechanisms
are attractive because they are extremely simple and they do not
rely on complex control mechanisms or signaling protocols.

However, from a connection’s point of view, best effort ser-
vice amounts in practice to offering a channel with time-varying
and hard-to-estimate characteristics such as delay and loss dis-
tributions. This makes it hard to predict or guarantee perfor-
mance such as maximum delay or maximum loss rate to ap-
plications. Two approaches to this problem are possible. For
clarity of presentation, let us first consider the case of unicast
connections.

One approach is to adapt application behavior to the service
provided by the network, i.e. to the time-varying characteris-
tics of the channel over which the application data packets are
sent. This amounts in practice to incorporating in the applica-
tion, control mechanisms that attempt to minimize the negative
impact of channel characteristics on the quality of the data de-
livered at the destination. Examples of such mechanisms in-
clude playout adjustment (to control delay jitter), rate control
(to match bandwidth requirements to available bandwidth), er-
ror recovery (to control the impact of packet loss on quality), etc.
Clearly, the complexity of applications increases as applications
incorporate more such mechanisms.

The other approach is to augment the best effort service with
other services providing various degrees of performance guar-
antees, i.e., providing channels with more predictable (or even
fixed) characteristics. It is clear that the complexity of the con-
trol mechanisms will decrease as the predictability of the chan-
nel characteristics increases. For example, in a network pro-
viding constant bit rate (CBR) channels, applications need not
include any kind of playout adjustment scheme (since delay jit-
ter is zero) or error recovery scheme (since packets are not lost
due to buffer overflow once admitted).

Thus, we observe a clear tradeoff between the complexity of
the applications (or rather the complexity of the control mecha-
nisms included in the applications) on one hand, and the com-
plexity of the mechanisms in the network that provide a service
with stricter or looser guarantees, i.e. with more or less pre-
dictable characteristics.

The balance of the tradeoff discussed above turns out to be
somewhat different in the case of unicast and multicast connec-
tions. This is because even in the current Internet architecture,
the multicast routing protocols do require that some state be kept
in routers. Furthermore, this state is updated using protocols that
essentially act as signaling protocols. These signaling capabil-
ities do exist even in the stateless Internet and are required by
the multicast routing algorithms. The question then is whether
this state information and the underlying signaling capabilities
could not be taken advantage of and used to improve the perfor-
mance of multicast delivery of layered data. More generally, the

question is whether a “small” amount of state information in the
network can improve overall performance, and if so how small
is small enough, and how much of a performance improvement
can be expected.

We discuss this question in this paper. We consider two is-
sues in particular, and we illustrate our points using two kinds
of service models and network architectures. The service mod-
els we examine are 1) the best effort model in which no state is
kept in intermediate routers, and 2) a controlled sharing model
with renegotiation similar to the RCBR model in [10]. We pick
best effort and CBR-like services because they are in a way two
extreme points in the space of service models.

The specific issues we examine are 1) the tradeoff between
complexity at the application level (i.e. at the network edge)
versus complexity inside the network, and 2) the impact on per-
formance and architecture complexity of information related to
the different flows sent over multiple multicast groups, specifi-
cally information about dependencies between flows.

The rest of the paper is organized as follows. In Section II,
we explore the design space spanned by network and application
complexity. In Section III, we use the insights from Section II to
design a new multicast/multilayer service model that trades off
a slightly higher network complexity for a vastly lower applica-
tion complexity. Section IV concludes the paper.

II. EXPLORING THE DESIGN SPACE

A. Impact of Service Model on Application and Network Com-
plexity

In this section, we study the tradeoff between application and
network complexity, by comparing the functionality required in
applications and in network nodes for several classes of service
models. We identify several core mechanisms both in the ap-
plication and inside the network. Table I gives an overview of
the mechanisms required to use and implement each class of
service model. The order of the service model in the table is
roughly given by the degree of “predictability” of the service to
the application. To the left, best-effort service is completely un-
predictable, making no implicit or explicit guarantees at all. To
the right, guaranteed rate/constant bit rate (CBR) service guar-
antees a fixed bandwidth allocated to the application, without
any bandwidth sharing through statistical multiplexing.

Our main focus here is not a direct comparison of these
service models; rather, we are interested in the shift in rela-
tive costs when we assume that the service is used as a mul-
ticast/multilayer service. We argue that the incremental cost of
adding functionality to the network is smaller than in the unicast
case, whereas the cost of application functionality is increased.

A.1 Application Complexity

Let us look at application functionalityfirst. Channel estima-
tion is necessary whenever an application has no explicit knowl-
edge, through an explicit prior reservation or through an explicit
notification from the network, of the end-to-end channel charac-
teristics such as available bandwidth or delay jitter. The channel
estimation problem is harder in multicast, as the channel is now
a multicast tree shared with other receivers. Furthermore, the
use of multiple layers also makes it necessary to estimate the

interdependence of these layers. For example, in multicast con-
gestion control schemes that rely on receiver-initiated joins and
leaves to/from layers [3], [16], [15], [23], it is not enough to
estimate each per-layer channel, but the relative impact of each
layer on other layers as well; this is a hard estimation problem,
and there is so far little evidence that such approaches are feasi-
ble in large groups [9].

Error control encompasses several types of mechanisms to
limit the impact of transmission errors such as packet loss. Error
recovery attempts to “fill in the gap” either by retransmissions
(ARQ) or through forward-error correction (FEC). ARQ is of-
ten not feasible in delay-constrained real-time communication,
and the problem of determining the optimal amount of FEC in-
formation is hard [11] (but solvable in specific cases, e.g. [2])
in a single-flow case. However, the joint optimization of FEC
on multiple layers is essentially an open problem, and it can be
expected that its complexity is much higher, as the dimension
of the parameter space increases with the number of layers. Er-
ror resilience is a system property that minimizes the impact of
transmission errors, for example by appropriately mapping the
source information onto packets to limit error propagation. This
precludes the use of certain coding mechanisms such as inter-
frame coding, as these mechanisms are too sensitive to errors;
thus, error resilience is bought at the price of coding efficiency
[17]. Error resilience is harder to achieve with multilayer trans-
mission, as errors in the base layer can affect other layers as
well. For example, if a frame (or a block) of a video transmis-
sion is lost in the base layer, then the corresponding information
in the enhancement layer becomes useless, thereby making it
harder to limit the propagation of the error.

Traffic specification requires that the application be able to
specify the expected behavior of the traffic it generates. Traffic
specification of multiple layers is more difficult and expensive
than specification of a single layer, because of the larger number
of parameters to be determined.

A.2 Network Complexity

Let us now look at network functionality. Buffer manage-
ment and scheduling is not fundamentally harder in a multi-
cast context, as they are essentially local mechanisms manag-
ing local resources. The same holds for admission control,
which computes local schedulability of new flows demanding
admission1. Signalling and per-flow state, on the other hand,
require network-wide conventions for protocols, formats, and
policy. For a signalling protocol to be useful, all the nodes in
the network have to implement it. Even in the absence of an ex-
plicit signalling protocol such as RSVP [24], a node needs to be
aware of packet formats and semantics in order to be able to im-
plicitly set up meaningful per-flow state; for example, in order
to perform Fair Queueing, nodes must know how they are sup-
posed to classify packets (e.g., source-destination, destination
only, type-of-service (TOS) field, etc.) The deployment of sig-
nalling and per-flow state is therefore considerably more diffi-
cult than the deployment of local mechanisms mentioned above
such as scheduling and buffer management. Thus, the major
hurdle when deploying a more elaborate network service really

�

Assuming that the mapping from end-to-end to local QoS is straightforward
[8]

Service model BE DS-AF VBR/CL RCBR CBR/GL/EF

Application
mechanisms

Channel estimation

Error control (iii)

Traffic specification (i)

Network
mechanisms
and
properties

Buffer management (ii)

Scheduling (ii)

Admission control

Signalling

Per-flow state

Peak reservation

TABLE I: Five classes of service models (BE=Best Effort; DS-AF=diffserv with Assured Forwarding PHB; VBR/CL=Variable Bit Rate or intserv Controlled Load;
RCBR=Renegotiated Constant Bit Rate; CBR/GL/EF=Constant Bit Rate/intserv Guaranteed Load/diffserv with Expedited Forwarding PHB) and their associated
application and network functionality. (i) Diffserv requires traffic specification only for traffic aggregates, i.e., for all the traffic of a class at an ingress point [1];
(ii) In the Diffserv framework, scheduling and buffer management act at the granularity of traffic classes, not individual flows; (iii) VBR and the Controlled Load
service are designed to admit a nonzero, but very small probability of packet loss; error control is therefore not crucial, but cannot be completely ignored.

is the deployment of signalling and of per-flow state. Their ab-
sence represents the major cost2 advantage of the best-effort ser-
vice model of the current Internet.

The simplicity of the service model of the Internet, which es-
sentially limited the exchange of control information between
nodes to routing updates, was a major factor in its rapid spread.
However, multicast delivery requires a signalling protocol such
as DVMRP [6] anyway in order to establish, maintain, and tear
down multicast trees3. In order to correctly forward multicast
packets, nodes must know what tree a packet belongs to, and
this requires some state information in the nodes. The amount
of state might depend on the number of flows, or the number
of multicast groups, depending on whether some kind of state
aggregation is used. In any case, the point is that some state
information is required in network nodes. Therefore, as both
signalling and state information are found anyway in a multicast
capable network, the incremental cost of using these function-
alities to implement a more elaborate service model may be ac-
ceptable. This is especially true since we have observed that the
use of multicasting and hierarchical coding of multiple layers
considerably increases the complexity of application adaptation
mechanisms such as error control, channel estimation, and traf-
fic specification.

In summary, in a multicast/multilayer environment, the bal-
ance in the application-network complexity tradeoff might well
be shifted in favor of a more elaborate service model and more
complexity in the network. We argue that this shift is worth be-
ing examined carefully.

B. Impact of Service Model on Network Efficiency

B.1 The Notion of Resource Waste

In this section, we formalize in a simple model the main com-
plication arising from multilayer communication. This compli-
cation is the flow dependence that arises between flows that rep-
resent the same information at various qualities. For example,

�

By “cost”, we mean not only the cost of development and of equipment, but
also the “political” cost of having to establish standards.

�

We assume sparse mode multicast here, i.e., the number of receivers of a
typical multicast group is small w.r.t. the overall network size.

a raw video stream can be compressed into a sequence of infor-
mation flows [13]. The quality of the decoded signal increases
with the number of contiguous flows available to the decoder.
However, a flow cannot be used if it is not part of a contiguous
subset of flows, and is therefore effectively wasted. We focus in
this section on the resource waste that arises if the network is
not aware of these flow dependencies.

We define resource waste as a resource that is allocated to an
entity (packet, flow, task etc.) that does not contribute to the
“utility” of the application [20]. The reason for resource waste
can be either (i) the utility for the application depends on the
availability of multiple resources, all of which must be available
to be useful, or (ii) the allocation of a redundant resource (e.g.,
when transmitting the same information in different represen-
tations multiple times, such as with FEC [13] or simulcast of
multimedia streams encoded with different quality levels [3]).

Let us focus on (i). We can distinguish two subtypes of re-
source waste due to dependence.

� Internal waste: Internal waste arises when the network does
not complete a task, but nevertheless allocates resources to it.
These resources are then wasted. Conceptually, internal waste
is due to the distributed nature of resource allocation. It could be
completely avoided if resource allocation were done in a central-
ized manner. As an example, consider a packet that is dropped
somewhere in the network; the buffer space and bandwidth con-
sumed up to the drop location is wasted. Internal waste could in
principle be avoided by the network: the necessary information
is available (e.g., credit-based flow control, open-loop determin-
istic service).

� External waste: External waste arises when the network
completes a task that is useless to the application due to exter-
nal conditions. This happens when the task of which the net-
work is aware (e.g. transmitting a packet from application to
application) is completed successfully, but with no utility to the
application due to these external conditions, such as the depen-
dence between flows. External waste cannot be avoided by the
network, as the network (typically) has no knowledge about the
external conditions.
The following examples illustrate the concept of external waste:
(i) cell vs. packet loss problem in ATM: if the transmission unit

of which the network is aware is the cell, then all cells belong-
ing to the same packet as a dropped cell in this packet become
useless to the application; (ii) layered coding: the dependen-
cies between hierarchically encoded flows result in some flows
being transported without being useful to the application; (iii)
FEC: transmitting redundant FEC packets that end up not being
used, because no original packets were lost.

External waste can be transformed into internal waste by giv-
ing the network additional information about the dependence
between resource requests, i.e., by giving the network partial or
complete knowledge of the application utility as a function of
the resources allocated to an application. For example, by mak-
ing a cell-switched network aware of packet boundaries, we can
avoid the transport of useless cells following the lost one.

Clearly, we would like to minimize the amount of external
waste. To do this, we need to examine (i) whether external re-
source waste occurs easily, (ii) assess its cost when it does occur,
and (iii) derive ways to prevent it.

B.2 Sensitivity of External Waste to Packet Loss

Below is a simple thought experiment to illustrate some of the
issues arising from flow dependence. Assume that we transmit
a (unicast) session through a network. The session consists of �
flows

�������	�	���
�
����

that depend on each other due to hierarchi-

cal coding of the source information in the sense that a packet
belonging to flow � is only useful to the application if the cor-
responding packets on flows � ���	���
� ����� have been received as
well.

Suppose that the network does not know about flow depen-
dence and that packets are dropped at random with probability��������� , independent of each other, and independent of what flow
the packet belongs to. Then the probability that a packet gets
through � links successfully is �����! �"� � ��������# � .

We study the following situation: one packet per layer is sent.
A packet arriving at the destination is useful to the destination
only if all the packets on layers with smaller index have arrived
as well. These � packets might represent a hierarchically en-
coded video frame, for example.

We are interested in the fraction of useful traffic arriving at
the destination as a function of the per-link probability � ������� and
the number � of links traversed. Then the expected number of
packets making it to the destination is �$� � . The number of use-
ful packets making it to the destination is % �& ' � �

&
� �(��� �
)+*-,.�
)+* .

as the probability that packet � gets through and is useful is �
&
� .

Thus, the fraction of useless or wasted traffic at the destination
is4

�"� �"� �"� � �������	# � ��0/ �"� �"� � �������1# ��2 (1)

Fig. 1 shows this fraction after � �43-5 hops, as a function of
the per-link loss probability ��������� and � , the number of depen-
dent layers. We can see that the fraction of useless traffic 6 is
quite sensitive to both � ������� and � : for example, for �7� � 58

Note that part of this useless traffic is internal waste, and part is external
waste: if the network knew about flow dependence, it could drop packets be-
longing to layers with higher index than the packet lost, thereby avoiding the
higher-index packets travel all the way to the destination; however, we would
still have internal waste, due to the packets transmission up to the point where
they get dropped. This is independent of flow dependence.

layers and �9�������:� � � 5<; � 3 , about 50% of the traffic arriving
at the destination is useless. So although about ���>= 82% of
the packets reach the destination, only about 40% of the original
packets can be used by the application.

0

10

20

30

40

−3

−2.5

−2

−1.5

−1
0

0.2

0.4

0.6

0.8

1

n

Fraction of useless traffic after 20 hops as a function of p
loss

 and # layers

log(p
loss

)

Fig. 1: External resource waste as fraction of total traffic after ?:@BA
C hops as
a function of the per-link loss probability DFEHG�IJI and the number of layers K .

The underlying problem is that the network assumes a util-
ity function, which it is (hopefully) designed to maximize, con-
siderably different from the utility function of the application.
Without knowledge of flow dependence, the network tries to op-
timize the wrong thing, and performs very suboptimally from
the application’s point of view in terms of utility w.r.t. to the
resources allocated [20].

This difference in the utility functions implies that we really
only have two choices: either we operate in a regime where the
network and the application utility functions are close, or change
the network utility function.

In the present example, the former implies operating in the
regime of very small per-link loss probabilities, thereby poten-
tially reducing the achievable statistical multiplexing gain. The
latter implies making the network aware of the utility function,
and in particular, of the non-additivity of the per-flow utilities.
This implies that there is no way around somehow making the
network aware of flow dependence.

B.3 Resource Waste and Channel Estimation in the Current In-
ternet

As noted in the introduction, best-effort networks can col-
lapse in the absence of appropriate end-to-end congestion con-
trol. Such a collapse manifests itself through high internal
waste; most packets do not make it to the destination, thereby
using up resources without ultimately being delivered to the ap-
plication. The current Internet with its best-effort service model
has no network-internal congestion control mechanism, such as
hop-by-hop flow control, and no mechanism to convey explicit
congestion notification to applications (we do not count Source
Quench as an operational scheme). As a result, end-to-end con-
gestion control mechanisms have to rely solely on the obser-
vation of the end-to-end packet transmission process to know

about the congestion in the network. In other words, the con-
gestion control mechanism has to estimate the characteristics of
the end-to-end channel.

We argue that relying on channel estimation constrains the
possible operating points at which the network can function.
The most prominent channel characteristic that congestion con-
trol algorithms are based upon is packet loss. For example, TCP
views a packet loss as an indication that the network is over-
loaded and reacts by reducing the size of its congestion window
[12]. Although TCP is not based on an a-priori specified target
operating point from which a control algorithm is derived, which
makes it difficult to characterize that operating point, simulation
studies [21] and analytical models [14] as well as evidence from
Internet measurements [18] clearly show that TCP’s operating
point is at rather high packet loss rates (� � �). We claim that
this is not an artifact of TCP, but instead a direct consequence of
congestion control based on loss estimation.

Suppose we want to devise an end-to-end congestion control
algorithm similar to that of TCP which keeps the network at a
much lower packet loss rate (say, � 5)��). How would such an al-
gorithm be designed? Assume that at any point in time, packets
are metered out into the network at a certain rate. The conges-
tion control algorithm then has to decide if this rate is too high
or too low in order to continually adjust the rate. However, in
order to make this decision with a certain confidence, the con-
troller must be able to observe enough samples of the relevant
channel property (here, the bottleneck bandwidth) in order to
avoid making wrong decisions too often. But the number of
samples required for this depends in turn on the operating point,
in the sense that many fewer samples are required to reliably
estimate a high loss rate than a low loss rate. For example, a
TCP-like algorithm would have to observe on the order of � 5 �
packets before being able to reliably decide that the current loss
rate is probably lower than the desired loss rate of � 5)�� , and
that it is therefore safe to increase the packet rate. It is clear
that this is not feasible in practice, as such a controller would be
prohibitively slow to react to changes in network conditions.

The reason why an operating point where the packet loss rate
is quite high is not problematic in TCP is that TCP only in-
curs internal resource waste. When a packet is missing from
a TCP session, it is simply retransmitted, and the gap is even-
tually filled. Thus, the cost of a lost packet is roughly equal
to the cost of transmitting an additional packet. However, ex-
ternal resource waste is much more sensitive to the loss rate in
the presence of flow dependencies and when retransmission is
not an option, such as with real-time video and audio commu-
nication. The example in the previous section shows that the
implicit operating point of TCP would incur unacceptably high
external resource waste5. Other control mechanisms competing
with TCP for network resources then have no choice but to op-
erate at the same operating point; if they attempted to operate at
a lower loss rate, they would be starved by TCP. Thus, competi-
tion with TCP effectively precludes applications from operating
at a loss rate where external resource waste is low. This is why
less aggressive versions of TCP might be greeted with interest,
and would operate at a point with less external resource waste,
�
Note that the same operating point would be reached with so-called TCP

friendly UDP-based applications.

but they are typically not used in practice.

B.4 FEC to Hide Resource Waste

One way of getting around the above problem of excessive ex-
ternal resource waste at TCP’s operating point is to use forward
error correction (FEC) techniques to hide packet loss from the
application. FEC achieves this by adding redundancy informa-
tion to each block of source information. The original message
can then be reconstructed even in the presence of loss.

The motivation for an application to use FEC is clear if one
assumes that the application attempts to use a given fixed chan-
nel in an optimal way. However, suppose all applications shar-
ing the network use FEC; this increases the total load of the
network, and may actually worsen the channel characteristics
as seen by each application. Therefore, it is not evident if the
generalized use of FEC is beneficial or detrimental.

In the appendix, we discuss this problem using a simple
model. We make the following observations. If an application
views the channel as fixed, i.e., the packet loss probability is
independent of its own packet generation rate, then increasing
the packet generation rate obviously appears beneficial to that
application. However, if all (or most of) the applications use
FEC, then it is possible that additional redundancy is actually
detrimental. In our model, this occurs when the total traffic load
exceeds a certain threshold. In this case, the capacity of the net-
work (the “goodput”) can be increased by decreasing the traffic
load and operating at a smaller loss rate, requiring less redun-
dancy. Mechanisms that allow such an operating point of small
loss probability and little redundancy result in more optimal use
of network resources. Therefore, the overall benefit of the gen-
eralized use of FEC in a network needs careful examination.

C. Summary

We have examined a number of service models, and we have
seen that to each model corresponds a balance between appli-
cation complexity, network complexity, and network efficiency.
Considering in particular the best effort service model provided
by the current Internet, we find that for multilayer multicast ap-
plications,

� Application complexity is high: Channel estimation is hard
because the channel is a multicast tree shared with other re-
ceivers; thus it is necessary to estimate the relative impact of
each layer on other layers, leading to very hard joint estimation
procedures. Error control and resilience raises thorny issue of
joint FEC optimization across several interdependent layers.

� Network complexity is very low in the case of unicast trans-
mission (no state in nodes, no signalling), however it is much
higher (though much of it hidden) in the case of multicast trans-
mission. Indeed, multicast delivery requires some sort of sig-
nalling protocol to establish, maintain, and tear down multicast
trees. Furthermore, some amount of state (per-flow, or per-
group) must be maintained in nodes.

� Network efficiency is limited by constraints by the network
model, which forces applications to rely on channel observa-
tion. The flow dependencies in multilayer transmission require
a network operating point where the loss rate is very low. How-
ever, this makes channel estimation through packet loss difficult.

Furthermore, the competition with TCP means that the operat-
ing point is determined by TCP’s behavior, which keeps loss
rates high. Finally, the generalized use of FEC to decouple the
channel as seen by the congestion control mechanism from the
channel used by the application is problematic.

Thus, in a multicast/multilayer environment, the network
complexity which is required anyway does not translate into low
application complexity. In the next section, we illustrate a de-
parture from the best-effort service model, and describe a ser-
vice model which trades off a slightly higher network complex-
ity for much lower application complexity and higher network
efficiency.

III. A RENEGOTIATION-BASED SERVICE MODEL FOR

LAYERED MULTICAST

The goal of this section is to illustrate our insight about the
tradeoff between network and application complexity by gen-
eralizing the RCBR service model to a multicast setting. We
picked RCBR as our starting service model because it is almost
the other extreme, in the service space, to the best effort model
examined earlier in the paper. We demonstrate how the General-
ized RCBR (GRCBR) protocol, which requires little more net-
work complexity in terms of state and processing than a simple
multicast routing protocol, considerably simplifies the design of
multicast/multilayer applications and avoids external resource
waste by taking flow dependence into account.

A. Definition of the GRCBR Service Model

The Renegotiated Constant Bit Rate (RCBR) service is a sim-
ple service which augments a constant bit rate (CBR) service
with a renegotiation mechanism that allows a source to request
a change to the guaranteed rate [10]. An application relying on
the RCBR service retains many of the advantages it would get
with a CBR service, namely a very low loss probability and no
queueing delay. Inside the network, RCBR requires only small
buffers and no complex scheduling disciplines. Furthermore, it
has been shown that RCBR can extract most of the statistical
multiplexing gain of traffic with bandwidth fluctuations on mul-
tiple time-scales.

Renegotiation Semantics. Let us then first examine the se-
mantics of renegotiation in GRCBR. Recall that in RCBR rene-
gotiation succeeds only if all the links on the path as well as the
receiver itself can accommodate the new requested bandwidth.
We therefore extend this model to a multicast tree simply by re-
quiring that for a renegotiation to succeed in GRCBR, all links
and receivers making up the multicast tree can accommodate
the new bandwidth. We call this type of renegotiation a closed
renegotiation (CRNG).

We now discuss the necessity for a second type of renego-
tiation called open renegotiation (ORNG). Actually, one of the
goals of using multiple hierarchical layers is precisely to use this
spare bandwidth as efficiently as possible. One way to achieve
this is to limit the “fate sharing” in the multicast tree. An open
renegotiation achieves this as follows: When an open renegoti-
ation request arrives on a link, the link attempts to reserve the
requested bandwidth; if it cannot, then the link and the whole
subtree fed by this link is renegotiated to zero bandwidth and
effectively disconnected. The flow may be reinstated on this

link upon its next (open) renegotiation, if spare bandwidth has
become available in the meantime.

The rationale for the two types of renegotiation are as fol-
lows. A receiver is assumed to require a minimum set of layers
in order to satisfy the minimum quality requirements of the ap-
plication. The receiver cannot accept losing these layers even
temporarily; only closed renegotiations are therefore acceptable
between the source and this receiver. The receiver might also
want to receive lower-priority layers whenever possible. This
means that the corresponding flow could grab unused resources
when available, and thus maximize network utilization and re-
ceiver utility. For such a flow, an open renegotiation between
the sender and the receiver would be acceptable.

Admission Control. The role of admission control is to en-
sure that a flow is only admitted on a link if the renegotiation
failure probability after admission of the new flow remains small
for the new flow and for all previously admitted and still active
flows. Therefore, we propose the following design rule: If a
flow has been admitted on a link, then both open and closed
renegotiation can be performed on this link; insufficient unused
bandwidth on this link can therefore cause a failure of a CRNG
for this flow; If a flow has not been admitted on a link, then only
open renegotiations (ORNG) can be performed on this link. In-
sufficient unused bandwidth can therefore affect only receivers
downstream from this link.

This rule partitions the multicast tree into a guaranteed (G)
tree rooted at the sender6, and a set of non-guaranteed (NG)
subtrees hanging off the G-tree (cf. Fig. 2). A CRNG issued by
the sender is changed into an ORNG when the request traverses
from the G-tree into one of the NG-subtrees.

NG-subtrees

G-treeORNG

CRNG

Fig. 2: The multicast tree consists of an admitted or guaranteed part (G-tree)
and a “renegotiated best-effort” part (set of NG-subtrees).

Atomic Processing of Several Renegotiation Requests. In
Section II-B.1, we discussed the advantage of making the net-
work aware of flow dependencies to avoid external resource
waste. Let us now examine how to exploit a knowledge of flow

�

We also require that if a flow has not been admitted on a link, then it will not
be admitted on any link downstream from it.

dependence in the context of the GRCBR protocol. Consider the
case of an application sending hierarchically encoded data over� flows. We would like a renegotiation request for layer � to be
satisfied only if those for layers � �	�	���
� �F�B� are satisfied as well.
More generally, if the available bandwidth on this link is insuffi-
cient to accommodate all of the � requests, they should be satis-
fied in the order desired by the application. We see then that the
only functionality we have to add to the renegotiation protocol
is the ability to atomically process a sequence of renegotiation
requests. The semantics of such an atomic renegotiation are to
atomically free the bandwidth held by the respective flows, and
then request the new bandwidth in sequential order (cf. Fig. 3).

F1

F2

F3

RNG-request

G1

timerenegotiation

RNG-request

b

G2

a

time

RNG-request

Session 1

Session 2

renegotiation

F1: CRNG (bw=a)

F3: ORNG (bw=c)

F2: CRNG (bw=b)

F1: CRNG (bw=a)

F2: CRNG (bw=b)

F3: ORNG (bw=0, failed)

G2: ORNG (bw=0, failed)

Fig. 3: An atomic renegotiation request arrives for a multilayer session���
��� � ��� � ��� . The requests for more bandwidth for flow

�
� and

�
� can be

granted, but at the expense of blocking the request for
�

� , and of preempting
another non-guaranteed flow � � of a different session. The renegotiation re-
quest for

�
�
	 � is passed on downstream, along with the request to release the

bandwidth held by
�

� . A new message is also generated to release the band-
width held by � � .

B. Implementation Issues

We discuss implementation issues for the GRCBR service
model. We focus mainly on signalling and network state re-
quired to implement this service model.

Preemption of NG Flows. Admission control limits the
number of guaranteed flows on a link to keep the renegotia-
tion failure probabilityat some small value. The non-guaranteed
flows are in a sense “renegotiated best-effort” flows; the renego-
tiation failure probability of such flows may be high. Therefore,
our service model requires preemptability of non-guaranteed
flows in order to respect the priority of guaranteed flows. Ad-
mission control of the guaranteed flows assumes that they can
potentially use up all of the available bandwidth7. Therefore,
when insufficient unused bandwidth is available for an (open
or closed) renegotiation request for a guaranteed flow, then this
bandwidth should be obtained by preempting non-guaranteed
flows, if any.

Flow Dependence State for NG Flows. While the selec-
tion criterion of which NG-flow(s) to preempt depends on local
policy (such as fixed priority or smart market bidding [22]), it
�
Although it is conceivable that a service provider would set the available

bandwidth for guaranteedflows to less than the link capacity, in order to set aside
some minimal bandwidth for non-guaranteed (renegotiated best-effort) flows.

is clear that preempting NG-flows without taking flow depen-
dencies into account may again lead to external resource waste.
Since the preemption of NG-flows happens asynchronously, it
is necessary to introduce a flow dependence state for NG-flows
to avoid external resource waste due to preemption. This state
can take the form of two pointers high-prior and low-prior for
an NG-flow that points to the two flows of the same multilayer
session with the next lower and the next higher priority, respec-
tively. Fortunately, setting up this state does not require an addi-
tional session control signalling message, because it is implicitly
conveyed by the bundled renegotiation request. As the order of
the flows in the bundled renegotiation request implicitly con-
tains the flow dependence information, the pointers can be set
when a bundled renegotiation request is processed by a node.
The NG-flow’s dependence information is therefore maintained
as soft state in the sense there is no need for an additional ses-
sion management protocol to convey flow dependence informa-
tion from applications to the network. When one or several NG-
flows are preempted on a link, then the bandwidth they hold on
the subtree fed by this link should be released.

No Network-Initiated Reinstatement of Preempted Flows.
We do not include a mechanism for network-initiated reinstate-
ment of preempted NG-flows. The reason is that in a cyclic
network such as a general mesh network, there can be cycles in
the resource dependency graph. Without additional mechanisms
such as imposing a total order on flows or centralized control of
preemption/reinstatement, the cyclic resource dependency that
may arise among flows sharing multiple resources in the net-
work, thrashing may occur. Thrashing can dramatically increase
the load of the signalling system, and decrease network through-
put, as the flows involved in the thrashing are not in a coherent
state most of the time8. Note that multicast may exacerbate the
likelihoodof such cycles occurring, as a preemption or reinstate-
ment of a flow can be “seen” by a potentially large subtree. We
break these resource dependence cycles by only allowing the
network to preempt flows, but not to reinstate them. Reinstate-
ment of a flow can only occur upon its next renegotiation. As
renegotiations are issued by the source, and are therefore inde-
pendent of preemption inside the network, resource dependency
cycles cannot arise.

Signalling for GRCBR. The signalling protocol for RCBR is
a simple two-phase reservation protocol. The first phase makes
a temporary reservation on all the links it traverses in the for-
ward direction (from the source towards the receivers). The
second phase in the reverse direction (towards the source) ei-
ther commits or cancels this temporary reservation. We call
the signalling message in the first phase renegotiation request
(RNG-request), and in the second phase renegotiation re-
sponse (RNG-response).

GRCBR requires a two-phase reservation protocol similar to
its unicast counterpart. However, because of the different se-
mantics of open and closed renegotiation, the paths that sig-
nalling messages would take in the case of a renegotiation fail-
ure for both types of messages may be different. With closed
renegotiation (CRNG), all the links in the G-tree must be able
to accommodate the new bandwidth for the renegotiation to suc-
�
A flow is in a coherent state if no internal waste arises from information

flowing over links without reaching receivers downstream from this link.

ceed; therefore, a RNG-request fails and is terminated when it
encounters a link that cannot accommodate the requested band-
width. In that case, a negative renegotiation response is sent
back up the tree to cancel the tentative reservation. It is also
necessary to undo tentative reservations in the subtrees hanging
off the path leading from the source to the failed link. For this,
an additional third signalling message of type CRNG-undo is
used.

With open renegotiation (ORNG), when a link has insuffi-
cient bandwidth to accept a renegotiation request, the subtree
fed by this link is temporarily cut off. Of course, it may later be
reinstated by the next renegotiation for this flow. The renegoti-
ation request upon encountering such a link has to travel further
down the tree, in order to release the bandwidth reservation held
by this flow in the blocked subtree. For example, in Figure 4, if
an ORNG for a flow on link

���
fails, then forwarding for that

flow on link
���

is suspended. However, the bandwidth reser-
vation on

��� �
and

�����
must be canceled. Also, in this case,

a negative RNG-response should be sent upstream to release
reservations that have become useless as a result (in the previous
example, the link � �).

F’

G-tree for F2

G-tree for F1

CRNG

S

R5R2 R3 R4 R6

RNG-request

F2: CRNG

F1: CRNG F1: CRNG

F1: CRNG

RNG-request

ORNG

F2: ORNG

F’: ORNG (failed)

RNG-request

B

F2: CRNG (failed)

RNG-request

CRNG-undo

D

R1

A

EC

RNG-request

F1: CRNG

F2: CRNG, bw=old_bw

F2: ORNG

Fig. 4: An example tree with two flows
�

� and
�

� emitted by source � , where�
� has higher priority than

�
� . Four receivers 	 ����
�

� 	 8 receive both

�
�

and
�

� as guaranteed flows; 	 � only receives the base layer
�

� as guaranteed
(G), but the enhancement layer (

�
�) as “renegotiated best effort” (NG) - it may

be interrupted during congestion; 	 � receives both flows as NG (note that flow
priority for 	 � is nevertheless ensured: 	 � will never receive

�
� without also

receiving
�

� .) A failed CRNG on link ��� with corresponding CRNG-undo
on link ��� is shown, as well as the transformation of a CRNG into a ORNG
at the boundary between the G-tree and the NG-subtree for

�
� , and finally the

preemption of flow
���

by the RNG-request for
� �

� � � � � on link ��� (
���

is a
NG flow of another session.)

Unfortunately, CRNG and ORNG requests cannot follow
different paths if we are to bundle renegotiations for multiple
flows and process them atomically on each link in order to re-
spect their dependencies. If a source initiates a bundled renego-
tiation request, possibly combining ORNG and CRNG (some
of which may also be changed into ORNG if the corresponding

flow has NG-subtrees), then the processing of this request must
remain atomic throughout the tree in order to respect the priori-
ties of the flows. Therefore, the bundled renegotiation must fol-
low a common path that permits the correct processing of both
CRNG and ORNG.

This can be achieved as follows. The renegotiation request
spans the entire tree from the source to all the receivers. A rene-
gotiation response is generated only when the request reaches
a receiver. The responses are merged such that there is only a
single (bundled) response on each link.

When an NG-flow is preempted as a result of a CRNG-
request by another flow for which sufficient bandwidth is not
available, then the situation is as if an ORNG-request for this
NG-flow had failed on this link (flow

���
on link

���
in Fig.

4): an ORNG-request with a set failed-flag is generated for this
flow. Note that the high-prior and low-prior pointers contain
the flow dependence information and allow to avoid external re-
source waste upon preemption of a flow. In fact, suppose a flow���

is a candidate for preemption. If flow
���

’s low-prior points
to
�����

, then
���

should be preempted only if
�����

is preempted as
well.

Let us summarize the GRCBR scheme. The service model
offers a renegotiable CBR flow from a source to a set of re-
ceivers. Some receivers can be connected to a GRCBR multi-
cast tree only through one or several “renegotiable best-effort”
(NG) links. These receivers can experience interruption in the
reception of such a flow. If a receiver is connected directly to the
G-tree, then it will not see interruption of the flow if the source
only issues CRNGs.

The data path of the network is as simple as in RCBR. Net-
work buffering is minimal, and no sophisticated scheduling al-
gorithms are necessary. The signalling path essentially receives
bundled renegotiation messages from an upstream link, for-
wards them to the appropriate downstream links, and awaits the
responses. It merges the responses and passes them upstream.
The CRNG-undo message is only necessary when CRNG fails,
which is a rare event. Non-guaranteed flows can be preempted
on a link to make bandwidth available for guaranteed flows.

We do not discuss flow setup and teardown in detail here, as
it is essentially an orthogonal issue. Let us just remark that flow
setup and teardown (e.g., receiver-initiated join and leave re-
quests) should be bundled in the same way as the corresponding
renegotiations, in order to ensure that (i) the flows belonging to
a given session follow the same path in the network, and (ii)
flow dependence is respected in admission control (layer � is
guaranteed only if layers � ���	�	� � � �7� are guaranteed as well).
Furthermore, let us remark that flow join/leave will typically oc-
cur much less frequently than in schemes that rely on receiver-
initiated join/leave as a congestion control mechanism, such as
those proposed in [3], [16], [15], as flow preemption and re-
instatement happen implicitly in GRCBR. This is important as
join/leave operations are quite slow and costly.

C. Summary

Let us summarize the GRCBR multicast service model. A
source sends a number of flows to a set of receivers. By grouping
renegotiations for these flows in the order of their relative priori-
ties, the GRCBR service guarantees to transport a contiguous set

of flows to the receivers, such that no external waste arises. For
each flow, a receiver may be connected directly to the G-tree, or
it may be connected to an NG-subtree. If the receiver is con-
nected to the G-tree of a flow, then this flow is never disrupted,
provided the source only issues CRNGs for this flow; if the re-
ceiver is connected to the NG-subtree, then it may experience
disruption of the flow, depending on network congestion.

More generally, we have described a service model that trades
off a slightly higher network complexity for lower application
complexity and higher network efficiency. We briefly compare
the GRCBR service model to a pure best-effort service model
described in Section II.

� Application complexity is dramatically reduced under the
GRCBR service model. First, channel estimation is essentially
unnecessary, as the channel is a simple CBR pipe with very low
packet loss rate and small delay and delay jitter. Therefore, there
is no need to estimate round-trip delays, packet loss rates etc.
9 Error control is also simplified, as a flow either reaches a re-
ceiver with very low packet loss probability, or not at all (for NG
flows). The only error control necessary is for the source to be
able to adapt to rare failures of closed renegotiations and adapt
its sending rate until the next successful renegotiation. Traffic
specification is necessary for guaranteed flows in order to per-
form admission control. However, measurement-based admis-
sion control (MBAC) may be used to relieve the application of
the burden of traffic specification.

� Network complexity: the GRCBR service model relies on
a very simple data path, and could be implemented on top of
an intserv Guaranteed Rate (GR), diffserv Expedited Forward-
ing (EF), or ATM CBR service. Renegotiation messages require
limited processing in a node (the common case is a simple test
for each layer if the requested amount of bandwidth is available,
and potentially the preemption of a NG flow). The implemen-
tation could make use of RSVP resv and path messages, for ex-
ample. GRCBR does require per-flow network state, of course.
As the multicast service already uses per-flow state anyway, the
incremental cost of including the GRCBR state is small.

� Network efficiency: as GRCBR processes renegotiation re-
quests for several layers atomically, external waste can be com-
pletely avoided. We have argued earlier that if the network
is unaware of flow dependencies, we can avoid external re-
source waste only by either keeping the loss probabilityvery low
(which reduces link utilization and is problematic when sharing
bandwidth with TCP flows) or by protecting high-priority layers
with FEC (which wastes bandwidth by transmitting redundant
information, and can actually reduce the overall network capac-
ity). Simply allowing for atomic processing of renegotiations
eliminates external resource waste.

IV. CONCLUSION

The main issue of this paper is the tradeoff between appli-
cation complexity, network complexity, and network efficiency.
We have argued that the design of the current Internet reflects

�

A receiver might choose to estimate the renegotiation blocking probability
for NG flows over a longer time-scale, in order to subscribe to or unsubscribe
from layers. However, if the receiver is too aggressive and joins a group which
will be blocked most of the time, this does not degrade the higher-priority layers,
because the network is aware of flow dependencies.

this tradeoff assuming a unicast service model. For such a ser-
vice model, a design methodology that leans heavily towards ap-
plication complexity (sometimes referred to as the “end-to-end
argument” [19]) has proven very successful.

We have also argued that this tradeoff changes radically for
a multicast/multilayer service model. There are several rea-
sons for this. First, implementing a multicast/multilayer ser-
vice requires per-flow state. The incremental cost of deploying
a slightly more elaborate service model that takes into account
flow dependence is much smaller than in the case of unicast.
Second, several end-to-end functions, such as channel estima-
tion and error control, are considerably more difficult for mul-
ticast/multilayer applications that have to function in a large-
scale and heterogeneous environment than for unicast applica-
tions. Third, the operating point of a pure best-effort network
is dictated largely by elastic applications (such as those based
on TCP). Unfortunately, this operaing point tends to be highly
undesirable for multicast/multilayer applications, as they face
two undesirable choices: either accept high external waste, or
use FEC to protect high-priority layers. Both choices lower the
network efficiency.

We have substantiated this claim by discussing the GRCBR
service model for layered multicast, which relies on a renegoti-
ation mechanism for the controlled sharing of bandwidth. GR-
CBR inherits from RCBR the simplicity of the data path, re-
quiring only minimal buffering and FIFO scheduling. External
resource waste is avoided by respecting flow dependencies. We
have argued that application complexity is greatly reduced, as
channel estimation and error control become very simple. The
price for this is a small amount of additional per-flow state in
the network (in addition to the state necessary for the forward-
ing tree), and the ability to process several renegotiation requests
atomically.

ACKNOWLEDGMENTS

The authors would like to acknowledge very helpful com-
ments from Suhas Diggavi.

REFERENCES

[1] Y. Bernet, J. Binder, S. Blake, M. Carlson, B. E. Carpenter, S. Keshav,
E. David, B. Ohlman, D. Verma, Z. Whang, and W. Weiss. A Framework
for Differentiated Services. Internet Draft (work in progress), February
1999.

[2] J-C. Bolot, S. Fosse Paris, and D. Towsley. Optimal joint rate/FEC control
for Internet telephony. In IEEE Infocom ’99, New York, NY, March 1999.

[3] S. Y. Cheung, M. Ammar, and X. Li. On the Use of Destination Set Group-
ing to Improve Fairness in Multicast Video Distribution. In IEEE INFO-
COM ’96, San Francisco, Calif., USA, March 1996.

[4] D. D. Clark. The design philosophy of the DARPA Internet protocols. In
Proc. ACM SIGCOMM ’88, pages 106–114, Stanford, CA, August 1988.

[5] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
Wiley, 1991.

[6] S. E. Deering. Multicast Routing in Internetworks and Extended LANs.
In Proc. ACM SIGCOMM ’88, Stanford, Calif., August 1988.

[7] Suhas Diggavi and Matthias Grossglauser. Information Transmission over
a Finite-Buffer Channel. Submitted for publication, September 1999.

[8] V. Firoiu and D. Towsley. Call Admission and Resource Reservation for
Multicast Sessions. In Proc. IEEE INFOCOM ’96, San Francisco, Cali-
fornia, March 1996.

[9] R. Gopalakrishnan, J. Griffioen, G. Hjalmtysson, and C. Sreenan. Stability
and Fairness in Layered Multicast. In International Workshop on Network
and Operating Systems Support for Digital Audio and Video (NOSSDAV
’99), Basking Ridge, New Jersey, USA, June 1999.

[10] M. Grossglauser, S. Keshav, and D. Tse. RCBR: A Simple and Efficient

Service for Multiple Time-Scale Traffic. IEEE/ACM Transactions on Net-
working, 5(6):741–755, December 1997.

[11] B. Hochwald and K. Zeger. Tradeoff Between Source and Channel Cod-
ing. IEEE Trans. on Information Theory, 43(5), September 1997.

[12] V. Jacobson. Congestion avoidance and control. In Proc. ACM SIGCOMM
’88, pages 314–329, Stanford, Calif., USA, August 1988.

[13] G. Karlsson and M. Vetterli. Packet Video and Its Integration into the Net-
work Architecture. IEEE Journal on Selected Areas of Communications,
7(5), June 1989.

[14] T. V. Lakshman and U. Madhow. Performance Analysis of Window-based
Flow Control using TCP/IP: Effect of High Bandwidth-Delay Product and
Random Loss. In Proc. 5th IFIP Conference on High Performance Net-
working (HPN) ’94, Grenoble, France, June 1994.

[15] X. Li, S. Paul, and M. Ammar. Layered Video Multicast with Retransmis-
sions (LVMR): Evaluation of Hierarchical Rate Control. In Proc. IEEE
INFOCOM ’98, San Francisco, Calif., USA, March 1998.

[16] S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven Layered Mul-
ticast. In Proc. ACM SIGCOMM’96, pages 117–130, Stanford, CA, Sept.
1996.

[17] S. McCanne, M. Vetterli, and V. Jacobson. Low-complexity Video Coding
for Receiver-driven Layered Multicast. IEEE Journal on Selected Areas
of Communications, 16(6):983–1001, August 1997.

[18] V. Paxson. End-to-End Internet Packet Dynamics. In Proc. ACM SIG-
COMM ’97, Cannes, France, September 1997.

[19] J. Saltzer, D. P. Reed, and D. D. Clark. End to end arguments in system
design. ACM Transactions on Computer Systems, pages 277–288, Nov.
1984.

[20] S. Shenker. Fundamental Design Issues for the Future Internet. IEEE
Journal on Selected Areas of Communications, 13(7), 1995.

[21] S. Shenker and L. Zhang. Some Observations on the Dynamics of a Con-
gestion Control Algorithm. ACM SIGCOMM Computer Communication
Review, 20(5), October 1990.

[22] F. Toutain and O. Huber. A General Preemption-Based Admission Policy
Using a Smart Market Approach. In Proc. IEEE INFOCOM ’97, Kobe,
Japan, April 1997.

[23] Lorenzo Vicisano, Luigi Rizzo, and Jon Crowcroft. TCP-like Congestion
Control for Layered Multicast Data Transfer. In Proc. IEEE INFOCOM
’98, San Francisco, Calif., USA, March 1998.

[24] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A
New Resource ReSerVation Protocol. IEEE Network, September 1993.

Appendix: What if Everybody Uses FEC?

We consider the following simple model. A source transmits
a message through a network to a receiver. The message is en-
coded into packets. We model the network as an erasure chan-
nel, which either perfectly transmits a packet, or completely
loses a packet. Under mild assumptions on the erasure pro-
cess, such a channel can be shown to have Shannon capacity� � � � � # ��� bits per second, where � denotes the packet
arrival rate and where � is the packet size in bits (assumed con-
stant) [7]. The Shannon capacity expresses the amount of in-
formation per time unit that can be transmitted reliably over a
channel [5]. We consider the capacity as a function of � .

First, let us consider the ideal choice of � if � is fixed, which
can be viewed as finding the packet generation rate for a single
flow in a system that is shared among a large number of flows,
such that the loss probability is not affected by this individual
flow’s bandwidth. As � � � # ��� increases monotonically with� , a flow can obviously increase its capacity by increasing its
packet arrival rate.

Second, let us consider the ideal choice of � if � depends on� , which can be viewed as finding the packet generation rate for
a single flow if all flows sharing the system behave in the same
way, i.e., they generate packets at the same rate � and use the
same channel coding. We assume that � � # is increasing. If�� � # converges to one quickly enough for ����� , there exists
a finite ��� such that the capacity is maximized. Assuming �� � #

is differentiable, this �	� satisfies the condition� �

 � � � � � #�� � � � # � � ��5 � (2)

If �� � # is convex-U, then �	� is upper-bounded by

� which is the

unique solution of
�

� �
� # � � � (3)

Whenever ������� , the system is in a regime where all flows
can increase their capacity by increasing � . The packet loss rate
does increase with � , but it can be compensated for through a
modest increase in redundancy in the encoding. However, when� � ��� , increasing � will actually decrease the capacity: the
packet loss probability, and therefore the redundancy necessary
to compensate for it, increases too quickly.

As an illustration, we can approximate the packet loss prob-
ability � with the buffer overflow probability of an ��������� -
queue with buffer size � and service rate � . Suppose the queue
is shared by � statistically identical flows. Let � � ������� denote
the normalized load. The overflow probability of this queue is
given by10 �:� ����� � � (4)

Equation (3) becomes
� � � � #
 �
��"! � �� � � � � # ��
� # � �

�
� # � �� � � � (5)

Therefore, if the packet loss probability �� � #$# �%� � � � # , we
are in the regime � � ��� where the capacity decreases with the
packet generation rate � . The capacity is suboptimal, because
too much rendundancy is necessary to compensate for loss. To
increase the capacity, the flows would have to lower their packet
generation rate � and use less redundancy. Note that �%� � � � # is
a packet loss probability frequently exceeded in Internet routers
(� is typically on the order of several hundred packets in cur-
rent backbone routers), suggesting that it is questionable if the
universal deployment of FEC applications would be beneficial
in the current Internet.

�'&
Note that the packet loss rate of a finite buffer queue of size � is upper-

bounded by the probability of exceeding the threshold � in an infinite-buffer
queue.

