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Abstract— We define and evaluate methods to perform robust
network monitoring using trajectory sampling in the presence of
report loss. The first challenge is to reconstruct an unambiguous
set of packet trajectories from the reports on sampled packets
received at a collector. In this paper we extend the reporting
paradigm of trajectory sampling to enable the elimination of
ambiguous groups of reports, but without introducing bias into
any characterization of traffic based on the surviving reports.

Even after the elimination, a proportion of trajectories are
incomplete due to report loss. A second challenge is to adapt
measurement based applications (including network engineering,
path tracing, and passive performance measurement) to
incomplete trajectories. To achieve this, we propose a method to
join multiple incomplete trajectories for inference, and analyze
its performance. We also show how applications can distinguish
between packet and report loss at the statistical level.
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I. I NTRODUCTION

A. Motivation

Trajectory Sampling (TS) has recently been proposed as a
method to directly measure the spatial flow of traffic through
an IP network at the packet level [3]. This is achieved by sam-
pling a subset of packets consistently: each packet is sampled
either at all routers it encounters, or at none. A router sends
a report on each sampled packet to a collector. The reports
contain sufficient information to distinguish different packets
(with high probability); the collector is able to reconstruct the
trajectory that the sampled packet took through the network.

The ability to reconstruct trajectories is impaired if reports
are lost in transit; this consequently impairs the operation
of measurement-based applications that exploit knowledgeof
the measured trajectories, either individually or throughtheir
statistical properties. In this paper we describe enhancements
to reporting and reconstruction that enables measurement
based applications to function even when reports are subject
to loss.

B. Elements of Trajectory Sampling

TS is realized through hash-based selection of packets.
While processing each packet, routers calculate a hash overa
domain within the invariant portion of the packet, i.e., that part
that does not change from hop to hop. (This excludes, e.g., the
Time to Live field in the IP packet header, and the IP header
checksum, which is recalculated at each hop). The packet is
selected for reporting if its hash falls within a set known asthe

selection range. When all routers use the same hash function,
domain and selection range, the selection decision for each
packet is the same at all routers: the packet is sampled either
everywhere or nowhere; see Figure 1.

Although hash-based selection is deterministic on packet
content, selection can appear only weakly correlated with any
field of the hash domain. This requires two things. Firstly,
the hash function should be strong in the sense that small
changes in the input (flipping a bit) generates large changes
in the output. Secondly, there should be large variability in
the content of each field in the hash domain. Under these
conditions, hash values cover the range of the hash function
nearly uniformly: hence the average sampling probability is the
fraction of the range that is covered by the selection range.

C. Applications of Trajectory Sampling

A strength of TS is that since trajectories are measured
directly, measurement-based applications do not need to join
trajectory samples with network state data (such as routing
tables) for interpretation. This eliminates uncertainties (e.g
due to routing table fluctuations and transients) and can save
significant computational and administrative cost associated
with obtaining and joining with the routing data. Applications
of TS include:

(i) Network Engineering:Reconstructed trajectories enable di-
rect mapping of traffic onto the network topology. The actual
traffic intensity of any class of traffic is estimated by dividing
the intensity of the sampled traffic in that class by the sampling
probability.

(ii) Path Tracing: the form of the trajectories themselves can
be used to detect routing loops (manifest as self-intersecting
trajectories) and to trace paths taken by network attack traffic
when source address spoofing obscures the originating host of
the attack.

(ii) Passive Performance Measurement:this is one of the major
new applications of TS: passively measuring loss and delay
attained by regular traffic, rather than that of probe traffic
injected into the network. Trajectories that terminate before
reaching their destination are interpreted as packet loss.(There
is no confusion with a packet entering a tunnel provided TS
enabled routers are able to look beyond encapsulation headers
to locate the appropriate hash domain). If routers include
synchronized timestamps in packet reports, the latency of



packets between routers can be found by subtraction. Sampling
based on packet content is the only technique available for
performing such measurements [10].
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Fig. 1. SCHEMATIC REPRESENTATION OF TRAJECTORY SAMPLING. A
measurement system collects packetlabels from all the links within the
domain. Labels are only collected from a pseudo-random subset of all the
packets traversing the domain. Both the decision whether tosample a packet
or not, and the packet label, are a function of the packet’s invariant content.

D. Reporting and the Reconstruction of Trajectories

The packet reports contain akey and/or alabel. The key
contains fields from the invariant portion of the IP and trans-
port headers, similar to the key used to distinguish packets
within a raw IP flow. However, keys will not necessarily
distinguish between different packets within a flow. For this
purpose reports may also contain a label. This is a second hash
(distinct from that used for selection) calculated over invariant
part of the packet. We assume that the hash acts on fields that
do vary between packets of a flow, e.g., IP identification, TCP
sequence numbers, or even payload if available.

Our previous work [3], [4] has shown that a label length of
about 4 bytes enables packets to be distinguished with high
probability even in large networks. On the other hand, keys
are expected to represent a significant portion of the IP and
transport headers; ingress reports may also include routing
state associated with the packet, such as routing prefix, and
source and destination Autonomous System (AS). As a rule of
thumb, we might expect keys to be� � �� times larger than
labels. Thus, the use of labels offers considerable reduction
in bandwidth consumed by trajectory samples. Consider the
ideal situation that the hash is collision free and there is no
report loss. Then it would be sufficient to associate the key
with the label only once. This leads to the paradigm of Label
Reporting, in which the ingress link reports both key and label,
while core links report only labels. Core reports for which
there is no ingress report with matching label are discardedat
the collector.

Label reporting from a path of� hops consumes� �� units
of bandwidth (measured in units of label size), as compared
with � �� � �� if keys and labels are reported. The ratio of
key to label bandwidth,� �� � ��� �� � �� is increasing in�
and �. For a long path (say� � 	�) this ratio represents an
order of magnitude difference.

Approaches to the collection and joining of individual
packet reports in order to reconstruct trajectories are described
in [4]. One of the main issues arising is collision of label
hashes from different packets, and their resolution. A simple
and robust approach that avoids introducing topological bias
is to discard all reports within a given time window for which
identical labels are observed at one or more ingress routers.
Some renormalization of measured traffic intensities is then
required in order to compensate for discarding measurements
when estimating original traffic intensities.

A related problem is how to accommodate constraints on the
bandwidth for reporting. As the label size increases, reporting
bandwidth increases while the frequency of hash collisions
decreases. Since labels do eventually repeat for different
packets, a related question is how to group individual reports
temporally in preparation for trajectory reconstruction.

E. The Need for Duplicate Elimination

We briefly comment on the need to eliminate all duplicate
labels in a measurement period. Without duplicate elimination,
if two (or more) packets happen to possess the same label,
the corresponding trajectory appears as the composite of the
individual trajectories followed by these packets.

If this occurs rarely, the reliability of some types of statis-
tical estimators inferred from a set of measured trajectories
may not be affected (e.g., a simple estimator of the rate of
traffic between two routers). This might suggest that we should
simply ensure that duplicate labels are rare, but tolerate the
occasional composite trajectory that results. However, there
are two reasons why we would like to ensure that composite
trajectories never occur.

First, we can envision applications of trajectory sampling
that check whether a particular conditioneverhappens in the
network, e.g., a routing loop. Such applications could be very
fragile to the occurrence of even a single unfortunate overlap
of two or more trajectories (which could easily result in the
appearance of a ”phantom” routing loop). More generally,
composite trajectories can be ”physically impossible” fora
single packet; this complicates the design of algorithms in
measurement applications.

Second, allowing composite trajectories also complicates
storing trajectory samples, because it will lead to a com-
binatorial explosion of the space of possible trajectories. In
a trajectory database, significant compression and efficiency
gains result from many packets following the same trajectory,
which suggests data structures that either break out the ob-
served trajectories into a separate table or memory structure,
or explicitly enumerate the possible trajectories [4]. This table
will grow significantly due to this combinatorial explosion.

F. The Case Against Reliable Reporting

Our previous work assumed that report packets are trans-
ported reliably from the observation points in the measurement
domain (typically routers) to the collector. However, while
this simplifies the task of the collector of reconstructing
trajectories, this reliable transport has several disadvantages.



First, reliable transport requires that the observing device
be addressable for feedback (ACKs or NACKs); while this is
usually not a problem if the device is a router, it precludes
transparent devices that simply inject report packets intothe
network without being addressable themselves (such a device
might sit on a router’s linecard, or it might be completely
independent.).

Second, reliable transport requires that the measurement de-
vice buffer packets until they are acknowledged. This may be
undesirable if the device has limited memory and processing
power.

Third, it is necessary in the reliable scenario to match the
report generation rate to the available transport rate, as any
excess packets have to be buffered by the measurement device
until they can be delivered. This in turn requires a well-
designed outer control loop to quickly adjust the sampling
rate in case a mismatch exists. In the unreliable scenario,
the device has the additional option to react to a short-term
overload condition simply by dropping some packets itself.
Of course, appropriate congestion control is still required; we
simply argue that in the unreliable case, we have more leeway
to design this control (e.g., by averaging over longer time-
scales).

G. Scenarios for Information Loss

The most challenging scenario for TS is the export of
reports across a wide area network that offers only best effort
service. In this case report loss may be highly variable and
essentially uncontrolled. A tamer scenario is to use a two stage
export procedure. First, routers export reports to local staging
servers, located in a routing center, for example. This initial
export may take place out-of-band over dedicated management
networks, or in-band over relatively tightly controlled network
links, in which loss is rarer than in the WAN. Second, the
staging servers export the reports reliably to a central collector.
The staging servers may also play a larger role in distributed
analysis, for example by performing local analysis. We refer
the reader to [5] for description of such a multistage data
collection infrastructure.

For the present work, we observe that even with good
management of transport resources, data loss may still occur
due expected changes in traffic load, or resource contention
within the routers or other devices in the measurement infras-
tructure. For these reasons, it it necessary to make trajectory
reconstruction and analysis robust with respect to report loss.

H. Complications for Reconstruction with Unreliable Report-
ing

Unreliable reporting complicates trajectory reconstruction
and statistical inference from the packet reports. The methods
must be well adapted to the requirements of the applications
described in Section I-C.

The first problem is how to eliminate duplicate labels in
the presence of report loss. With label reporting, loss of
reports from ingress routers leaves “orphan” label-only reports
from the core that cannot generally be distinguished from

reports on other packets with the same label. This motivates
a more robust method of duplicate elimination that degrades
gracefully under report loss. Traffic volumes by path and class
are an important input to network engineering. In estimating
volumes, issues that arise during duplicate elimination are (a)
how to avoid topological biasing against subsets of trajectories
during elimination; and (b) how to correctly renormalize the
surviving measurements in order to estimate the original traffic
volumes that gave rise to the samples.

Once duplicates have been eliminated, there still remains
the problem of adapting applications that perform analysisof
packet trajectories to the occurrence of gaps in the recon-
structed trajectories due to report loss. For path tracing,the
problem is that measured trajectories may incomplete due to
report loss. One way to obtain complete paths is to overlay
trajectories of multiple packet that are expected to followthe
same path. When routing is stable, packets sharing a common
IP destination (or even prefix) will have this property.

For passive performance measurement, the problem is to
distinguish report loss from packet loss. This is not always
possible at the level of individual packets. For example, loss
of a packet at a given link� of a path will produce the same
set of packet reports at the collector as the loss of reports
from all links subsequent to� on the path. Instead, we have
to distinguish packet and report loss at the statistical level,
employing trajectory samples from multiple packets.

I. Alternatives to Trajectory Sampling

We discuss alternatives to TS, and their drawbacks.
1) Ingress Packet Marking:In TS, a packet’s hash value

signals implicitly to the router whether the packet should
be sampled. A alternative mechanism to consistently sample
packets is to explicitly mark them for sampling on ingress,
by randomly setting a bit in the packet. Marked packets are
selected for reporting at all routers they encounter. But this
approach has two disadvantages. Firstly, it requires allocating
a bit for marking in the IP packet header. However, all bit
positions in the IP4 are currently allocated, notwithstanding
some proposals to overload header fields for path tracing
applications [8].

Secondly, and more problematically, a domain that used
packet marking to signal selection would have to filter the
mark for all incoming packets. Otherwise, it would be possible
to overload the measurement subsystem by injecting marked
packets. Sealing the network against this attack would require
all edge routers to have this filtering capability. Making such
a change would be a formidable task in a large multi-vendor
environment. This is not an issue for TS, since the use of a
strong parameterizable hash function, with private parameter
settings and selection range, makes it exceedingly difficult to
craft streams of packets that would be selected. Also, TS can
be deployed incrementally, enabling TS-based applications to
operate for the logical overlay network spanned by TS enabled
routers.

2) Independent Sampling (IS):This entails routers selecting
packets in an uncoordinated manner, each router selecting



some proportion of the packets that pass through it, for
example by periodic or simple random sampling. IS destroys
the trajectory semantic, since a given packet is very unlikely to
be sampled at all points in its trajectory. Thus with IS, passive
performance measurement of individual packets, including
loss and network latency, becomes practically impossible.
Furthermore, it is not generally effective to substitute statistical
performance measures. Section V shows that, for packet loss
rates likely to be found in the Internet, statistical estimation of
loss in a link of transmission rate� incurs a variance roughly�� �� � � � times larger for IS than for TS, e.g, 50 times larger
for a loss of�� .

J. Outline of the Paper

We describe the TS architecture and record concepts, our
model, and notation in Section II. In Section III we describe
a method to deal with report loss than enables trajectory
reconstruction to be performed in an unbiased manner. Our
approach is for ingress nodes to record the presence of labels
in Bloom filters [1], which are transmitted to the collector,
where elimination is performed. The elimination procedureis
unbiased, and robust with respect to partial loss of the Bloom
filter in transit. This enables unbiased inference of original
traffic intensities for network management applications. This
is done transparently, using aneffective sampling ratethat is
the product of the TS target sampling rate with the rate of
duplicate elimination.

Even after duplicate elimination, other applications mustbe
adapted to report loss. Section IV addresses the reconstruction
of network paths from incomplete trajectories reconstructed
from multiple packets in the same flow. Provided transmission
rates are not identically zero, multiple packet reports that take
the same network path eventually cover the path, in the sense
that at least one report is received from each router on the
path. We analyze the mean number of packets that must be
reported to attain this coverage.

Section V shows how link loss rates can be inferred even in
the presence of report loss. The main idea is that the collector
can infer the loss rates of report packets if the reports include
sequence numbers. In both Section IV and V we compare
the performance of TS with applying the same methods with
reports from independently sampled packets. In both cases,
the performance is noticeably better for TS, and particularly
so in the estimation of loss rate. We conclude in Section VI.

II. OVERVIEW AND NOTATION

In this section, we give an overview of the proposed system
architecture and methods we propose to deal with report loss.

We first define some notation:
� The measurement domain is a directed graph� �� � � �,

where we refer to vertices asroutersand to edges aslinks.
The set of vertices comprises a set ofexternal routers, a
set of edge routers, and a set ofcore routers. External
routers connect to edge routers through aningress link.
Links that are not ingress links are calledcore linksor
internal links.

core router

edge router

ingress link

internal link

external router

Fig. 2. A measurement domainconsists of a set of routers under adminis-
trative control of a network operator, plus a set of externalrouters that act as
sources and sinks for all traffic entering and leaving the network. The internal
routers are further subdivided intoedgeandcore routers, where edge routers
are those having an incoming link (calledingress link) from an external router.
In general, core routers only collect labels from their incoming links, while
edge routers collect additional information from ingress links.

� A trajectory is a path, i.e., an ordered set of links
�� 	 � 
 
 
 � �� � in the measurement domain� . � denotes
the set of all valid trajectories. Atrajectory subsetis a set
of links 
� 	 � 
 
 
 � �� � that do not necessarily form a path,
but which is a subset of at least one trajectory� � � .
A trajectory subset arises when a trajectory is reported
as a set of reports from each link it traverses, and some
reports are lost.� A trajectory sampleis a trajectory subset that is recon-
structed by the collector based on reports received from
the links on a packet’s trajectory. In general, trajectory
samples are not used in raw form, but are aggregated
into higher-level statistics as outlined in the introduction.
Examples include inference of the traffic and path matri-
ces (see Section III-D); passive measurement of packet
loss rates (see Section V) and passive measurement of
one-way packet delay (see e.g. [10]).� The concepts oflabel graphandlossy label graphrecord
how many times a particular label� has been observed
on every link in the network. Specifically, a label graph� �� is a mapping� � � ; it denotes how many times a
label � has been observedfor each link � � � , where�
is the sampling probability. For the case where labels are
transported unreliably to the collector, where�� is the
probability that a label from a router� is lost, we call
the resulting label graph alossy label graphand denote it
with

� �� �� , where� � ��	 � 
 
 
 � �� �� contains all the report
loss rates for every router.� A path matrix �  �! � � � is a function that maps akey
! and a path� to a volume of traffic. The key! is
itself a property of packets, e.g., the source or destination
IP address or autonomous system (AS). Note that if
the key is trivial (a constant), then the path matrix is
simply the traffic volume for every possible path through
the network. The path matrix provides the most fine-



grained spatial representation of the traffic that flows
through a measurement domain over some time interval
of interest. Trajectory sampling can essentially be viewed
as estimating the path matrix (where the key can be any
function of the packet collected by the method).

We discuss some of the assumptions underlying the descrip-
tion of the proposed method for inference from lossy reporting.
� Throughout this paper, we focus on a single reporting

epoch, i.e., a time interval that is some upper bound of the
lifetime of a packet in the network. We assume that two
labels received within such an epoch may stem from the
same packet or from different packets; if two labels are
from different epochs, then they must stem from different
packets. Therefore, the main challenge is to reconstruct
the set of trajectories of sampled packets within an epoch,
and the entire discussion in this paper focuses on a single
epoch1.� We assume in the performance analysis that hash func-
tions are perfect, i.e., we can view a hash function
computed over some set of objects (e.g., packets) as
generating a set of i.i.d. uniform random variables over
the range of the function. This assumption is justified by
the properties of hash functions and by our earlier work
[3], where we show that there is enough entropy, i.e.,
variability from packet to packet, to ensure that sampling
decisions and labels essentially appear random.

The basic trajectory sampling architecture that is able to
cope with report loss in shown in Figure 3. First, for every
link in the measurement domain (internal and ingress links),
reports are generated from sampled packets and transportedto
a collector2.

TS reports include one of both of the following:
� Key: fields from the invariant portion of the IP and trans-

port headers. We assume that keys will not distinguish
between different packets within a flow.� Label: a hash calculated over invariant part of the packet.
We assume that the hash acts on fields that vary between
packets of a flow (e.g. IP identification, TCP sequence
numbers) in order the packets may be distinguished.
This is important for applications such as passive delay
measurement that must distinguish individual packets.

The basic reporting paradigm for TS is:
� Label Reporting:The ingress link reports both key and

label, while core links report only labels. Core reports for
which there is no ingress report with matching label are
discarded at the collector.

The above is identical to the reporting paradigm in the
reliable case, as proposed in [3]. We now add a new type of
report that allows the collector to eliminate all duplicatelabels,
i.e., all reports from multiple packets that happened to generate

1We discuss some methods to deal with the various packet and reporting
delays in [4].

2In a typical scenario, multiple reports are aggregated intoa singlereport
packetfor efficiency; when there is no danger of confusion, we do notmake
this distinction explicit.

identical labels. This is necessary because the collector has
no guarantee to receive all the reports of these packets, with
a possibility of missing these duplicates. The details of this
process are explained in the next section.

III. U NBIASED DUPLICATE ELIMINATION UNDER LOSS

A. Challenges for Unbiased Duplicate Elimination

As we have mentioned previously, there is a nonzero
probability that two or more packets produce identical labels
because the hash function is many-to-one [3], [4]. When more
than one packet has the same label, it would sometimes be
possible to disambiguate them. However, this disambiguation
is costly, and may introduce bias into estimators if care is
not taken. Therefore, in [4] we have proposed a different
approach: eliminating all duplicate labels, whether they can
be disambiguated or not. While this is slightly suboptimal
because we ignore useful information, it greatly simplifies
reconstructing trajectories and avoids bias in estimators.

If we assume that reports are carried reliably from routers
to the collector, we can simply use the labels collected from
ingress routers to detect and discard duplicate labels, because
if a label is observed multiple times on an ingress router, itis
necessarily a duplicate.

In the unreliable case, this approach cannot be used directly
because ingress reports may be lost, which can result in
undetected duplicates. Consider the set of labels receivedfrom
some ingress node over a time period of interest. If we simply
transfer these labels as normal reports, i.e., as sequencesof
labels, then in the case where one or several reports are lost,
we have no idea what the lost labels were. We could try to
FEC-encode the set of labels using erasure codes in order
to tolerate a certain loss rate, but this is computationally
expensive, and would only work if the actual loss rate is
smaller than the predefined target that the code was designed
for. Another option would be to send the complement of the
observed labels, i.e., all the label valuesnot observed at each
ingress link. However, this approach is very wasteful, as the
complement set is much larger than the label set.

1 M

1 M

1 M

labels collected in a measurement period

��: set of unique labels at edge router�

��: set of duplicate labels at edge router�

Fig. 4. At every ingress router� , the set of labels is partitioned into a set of
unique labels�� and a set of duplicate labels�� , which are then separately
encoded using a packetized Bloom filters.
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Fig. 3. The type of report generated for a sampled packet depends on the link on which a packet was observed. For an ingress link, a report contains the
packet’s label along with other information of interest (the key); separately, the label is reported as part of a set�� or �� , depending on whether the label
was unique or duplicate. Both�� and �� are encoded as packetized Bloom filters��� �� � � ��� ��� for transport. The collector tests every label� received
from internal links against the PBFs, eliminating every label from consideration that has been observed multiple times.

B. Packetized Bloom Filters

We instead propose a data structure based onBloom filters
to encode the set of labels observed on ingress links. ABloom
filter [1], [2] is a data structure to compress a set membership
function. We essentially encode the set of labels as a Bloom
filter and transport it to the encoder as a sequence of separate
packets that we refer to as apacketized Bloom filter (PBF).

More formally, let� be a set of labels out of an alphabet
of size  , and let � � �� � be its size. We denote by�� �� the  -packet PBF for� obtained as follows. The PBF
uses a set of hash functions
!" � # � � � 
 
 
 � ! �, where !" $

� � 
 
 
 �  � � 
� � 
 
 
 �  %�, with  the number of report
packets generated from� (cf. Fig. 5) and% the size of a report
packet. Specifically, each report packet& is a bit array'( of
length %, where'( �) � �& � �� � � � if and only if !" ��� � )
for at least one# � 
� � 
 
 
 � ! � and any� � � . Each packet
also includes some control information (time-stamp,& , etc.).
In essence, this amounts to first generating a large Bloom filter
of size  %, which we then transmit as individual packets of
size % each.

To check whether a candidate element) is in the
compressed set, we check whether all the bit positions

! 	 �) � � 
 
 
 � !* �) �� are set to one. Thus, a Bloom filter
achieves compression of a set at the expense of only false
positives (i.e., adding some elements to the set), but no false
negatives. This is because the bit positions correspondingto
an element) present in the set are guaranteed to be set to
one, while there is no guarantee that at least one bit position
corresponding to an element) + not in the set is set to zero.

Now note that we can ensure the same property (only false
positives) with any received subset of packets of a PBF, if we
simply replace each missing packet with a vector of length
% of only �’s. Obviously, the probability of false negatives

increases with the fraction of lost PBF packets, but we never
falsely reject a label. We will see that this property allowsus to
ensure that despite the lossy transport of the PBFs from ingress
routers, any duplicate labels areguaranteedto be eliminated
by the collector, because we cannot miss a label that has been
observed more than once. Of course, some unique labels are
also eliminated due to false negatives, and the probabilityof
elimination increases with the number of lost PBF packets.
However, we show below that these false positives can easily
be compensated for.

C. Duplicate Elimination and the Elimination Rate

We use the PBF in our proposed architecture in the fol-
lowing way. Consider an edge router� , and the set of packets
sampled on the ingress links connected to� . This set of packets
generates a set of labels. We partition the set of labels intotwo
subsets� � and, � , where� � contains the set ofuniquelabels
at � (i.e., only a single packet gave rise to each label), and
, � contains the set of packets withduplicatelabels at� (i.e.,
multiple packets gave rise to each label).

We now generate two PBFs
�� � ��- and

�, � ��. from these
sets and transmit them unreliably to the collection system.As
some of the packets may be lost, only a subset/ � � 0 � of the
original packets is received. We denote the resulting partial
Bloom filter by

�� � �1 � and
�, � �2� . Once the collector has

received � �� � �1 � � �, � �2� � for all edge routers� as well as
explicit label report (packets containing sets of labels) from
core routers, it proceeds as follows.

First, the collector matches the loss rates for all Blooom
filters 
 �� � �1 � �. It achieves this by selecting a subset/ +�
of received packets/ � for every PBF, such that�/ +� � �
3 45 �67edge routers8 �/ � �, i.e., all PBFs have the same length,
equal to the length of the smallest received PBF. This will



ensure that the duplicate elimination probability does not
depend on what edge router a label has been observed on3.

Second, for every label� received explicitly from a core or
edge router, the collector eliminates� if

if � � �, � �2� for some� (1)

or if � � �� � � �1 �� � �� �� �1 �� for some� 	 �� �� 
 (2)

In other words, any label� that has either been observed more
than once at a single ingress router, and/or been observed at
multiple ingress routers, is eliminated from the pool of labels.
We call

�
the set of explicit labels received from internal

links by the collector, and� the set of labels after duplicate
elimination (cf. Fig. 3).

� ��	

report packet
	

bits

set of�labels

report packet �report packet 


�

......

����� ����������
�����

Fig. 5. A packetized Bloom filter (PBF)encodes the set of labels received
at edge links into� packets of length� each.

Note that because of the possibility for a Bloom filter to
produce false positives, some globally unique labels can also
be eliminated. However, we next show that the elimination
process is unbiased. This implies that the set of labels left
after the duplicate elimination can be regarded as having been
produced by a label assignment process that assigns aunique
label to every sampled packet, but at a lower sampling rate.

Consider a fictitious system in which labels are a-priori
unique (e.g., by selecting them out of a very large alphabet,
or through some global coordination). We denote by

� �� �� the
label subgraph obtained with sampling rate� and report loss
probabilities�.

Theorem 1:Assume a network� �� � � � and a set of pack-
ets with associated trajectories. Then the label subgraph

� �� ��
for every received label� satisfies

� �� �� �� � � � �� ��� �� � � (3)

where� � � �� eliminated�.
Proof: Partition the set of labels of sampled packets

into two sets� and � , where � denotes the set of unique
labels, and where� denotes the set of labels that occur more
than once. Note that a label� � � occurs only in the set
� � �� , where� ��� is the ingress router where the corresponding
packet entered.

3Note that this procedure is adopted for simplicity, although it has the dis-
advantage of increasing the duplicate elimination probability. An alternative,
more complex approach would consist in not equalizing the PBF lengths and
to renormalize the weights of different trajectories.

Consider an arbitrary duplicate label� � � . By definition,
this label either (a) occurs in the set� � �� and at least one other
set�! or ,! with " �� � ���, or (b) it occurs in the set, � �� 
and possibly one or more sets�! or ,! with " �� � ���. This
implies that a label in� � � , by the fundamental property of
Bloom filters (no false negatives), will be correctly eliminated
by the criteria (1) and (2).

Next, consider an arbitrary unique label� � � . Define the
following events. For an ingress node" , �! � 
� � ��! �1 #$ �,
and%! � 
� � �,! �2$ �. Note that�� �� is always true, while
�! , " �� � ���, and%! can be true only due to a false positive
match in the corresponding PBF.

It follows from the perfect hashing assumption for the sets
of hash functions
!" � used to compute the PBFs that for
any " �� � ���, the events
�! $ " �� � ���� and 
%! � are
independent of each other and of�. Furthermore, the

� ��! �
depend only on�/ +! �, which by definition are equal. Both�! &' � �� �! and

�! %! are independent of each other and do
not depend on�� � � ����. Therefore, the events
� eliminated�
for all � � � are equiprobable and mutually independent.

Given the perfect hashing assumption on the label hash�,
the label� of each packet is independent of the packet itself,
and it follows that every packet is eliminated independently
with equal probability� . This is equivalent to sampling the
packet population with sampling probability�� .
D. Effective Sampling Rate and Applications

The above theorem implies that the set of labels� after
duplicate elimination can be regarded as resulting from a tra-
jectory sampling process that avoids label collisions altogether,
i.e., where every label is unique. This simplifies the statistical
inference of estimators, such as the loss rates on a set of links,
as there is no need to explicitly account for the possibilityof
label collisions to avoid bias in constructing these estimators.
Rather, we consider sampling to have taken place with the
effective sampling rate�� . We give two examples of inference
using the effective sampling rate:
� Inference of Packet Loss Rates:An example is provided

in Section V, where we construct estimators for link loss
rates: we can simply work on the set� and assume a-
priori unique labels when constructing an estimator. The
only correction is to assume that the sampling rate was
�� .� Inference of Path Matrix Elements:let ( in be a packet
input key, i.e., some function of the packet key that does
not depend explicitly on the destination IP address or
destination TCP/UDP port numbers. An example would
be source Autonomous System (AS). Likewise, let(out

be a packet output key, i.e, some function of the packet
key that does not depend explicitly on the source IP
address or source TCP/UDP port numbers, e.g., the
destination AS. Note the usual traffic matrix elements
are

�  �! in � !out
� � )

* 6+
�  �! in � !out� � � 
 (4)



Depending on the application,� might be the set of all
paths in a domain, or the set of all paths in the domain
that connect specific ingress and egress links.

Let �  T� �!in � !out� � � denote the a path matrix ele-
ment of trajectory sampled traffic after duplicates have
been eliminated. Then the corresponding path matrix
element of the original traffic is estimated by dividing
by the effective sampling rate:�
�  T� �! in � !out� �� � �  T� �! in � !out� � �� ��� � (5)

Note that in practice,� can be easily derived from auxiliary
information in report packets giving the size of the sets of
labels before (

�
) and after (� ) elimination. It follows from

the law of large numbers that the ratio�� �� �� � converges a.s.
to � when the number of received labels grows large.

E. Parameter Settings for the PBF

Finally, we discuss parameter settings in the PBF. First,
assume that all the labels are observed at a single point, where
they are encoded in a PBF. We encode both sets� � and
, � into PBFs; note that�� � � � �, � �, therefore the cost is
dominated by � .

Assume a fraction� of the  � report packets is received,
i.e., the report loss rate is� � �. When! is chosen optimally
[2], a bit in the Bloom filter is zero or one with equal
probability ���, and the false positive probability is given by� � �� 	 �* � �� � ����* � �� � �����- � �� ��� � (6)

where � 	 � �� � ���� is the probability that a bit in the
receivedPBF is one. Therefore, to ensure a reasonably small
error probability, a set of� elements has to be encoded into
 � % � 	 �� ��� bits. As % should reasonably lie within the
range of ��
 to ��� bits in IP, this determines the number
 � of PBF packets that should be used to encode the labels
received during an epoch. A similar reasoning gives � .

In our previous work [3], we computed the optimal number
of sampled labels� �

and the optimal alphabet size �
, given a

constraint
 on the total number of bits to be collected from the
network in one measurement period. We showed that � �

 ��� � and� � �  �� ���  �

. Therefore, � % � 	 �
� ��� 
�,
which is considerably cheaper than explicitly sending the
complement of observed labels, which costs	 �
�.

In general, of course, labels are observed at multiple ingress
links. The above dimensioning argument should then be ap-
plied on a per-ingress basis, i.e., the number of exported PBF
packets � and  � should depend on the expected number of
labels� � observed on ingress link�. This avoids that resources
are wasted by transmitting underpopulated Bloom filters from
slow links.

In summary, the duplicate elimination process described
in this section ensures that duplicates are guaranteed to be
eliminated. The robustness of this process to report loss was
bought at the expense of the loss of a small number of unique
labels. Appropriate dimensioning of the PBF sizes ensures
that this additional loss rate remains small. The overhead of
collecting PBF from ingress links is small with respect to the

total overhead due to label collection from the entire network.
Most importantly, the duplicate elimination process can be
treated as simply subsampling the set of sampled packets.
Therefore, the possibility of duplicates can be ignored by
statistical estimators.

IV. PATH COVERAGE AND LOSSYREPORTING

A. Coverage Count and Loss Model

In the introduction we stated that one of the new appli-
cations of TS is the ability to trace packet paths through a
network. With lossy reporting, the set of links for which a
packet is received may not form a contiguous path through the
network. Nevertheless, when routing is stable, packets from a
given traffic flow are expected to follow the same path (or
set of paths if load balancing is used). Provided the report
loss rate is not one on any link on a path, eventually a report
will be received from every link on the path. Thus taking the
union of label subgraphs derived from multiple packets from
the same flow, will eventually cover each link on the the path
or set of paths followed by the flows packets.

The covering approach requires that packets report a quan-
tity that enables them to be identified as members of the flow
of one or more packets, and that which uniquely determines
the path taken by the packet. Here we will assume that the
key (or more generally, some subfield of the key) serves this
purposes. Thus, packets are grouped into flow on the basis of
key value, and the key contains the IP destination address.

We shall assume that the set of packet reports has already
undergone duplicate elimination as described in Section III.
We derive expressions for the mean number of packets re-
quired to cover a path. Let� be a trajectory, and let� � � �
denote the number of links in� . We assume that packets on
the trajectory are sampled and reports dispatched to a collector
from each link � in the trajectory. Consider a sequence of
packets labeled by� � � � � � 
 
 
. The coverage countfor � is
the smallest integer for which a report has been received from
each link in� ; at this time we say that� has been covered.

For analysis we assume the following simple statistical
model of trajectory sampling: with probability� a packet is
selected at all links on its trajectory; otherwise at none. We
ignore transmission loss, and focus instead on report loss and
assume that reports are independently successfully transmitted
with probability �.

For this model, coverage time and its asymptotic behavior
is characterized using the following result:

Theorem 2:Let 
' �" $ � � � � 
 
 
 � � � # � � � � � 
 
 
� be i.i.d.
indicator random variables with

� �' �" � �� � �. Let � �
45 � 
# $ 3 45 � 3 ��( � " ' �( � ��.
(i) � �� � � % �� � � � $� ��*' 	 ��* � ��	 � �

	� �	�!  �
(ii) % �� � � � � � and "% �� � � ��" � � �� as � # �.
(iii) As � � �, % �� � � � $ % 	 �� � � � � %� �� where%� is the

harmonic number��"' 	 ��#.
(iv) �% 	 �� � � � $ & � ��� � as� � ' , where& is the Euler

constant�43 � () �%� � ��� � � � � 
*++��, 
 
 
.
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Fig. 6. Surface plot of mean coverage count� �� � � � as function of path
length

�
and report transmission probability�. Note logarithmic vertical axis.� �� � � � grows as��� for small �, but growth with path length

�
is relatively

slow. .

Proof: (i) � � 3 ��� � �� where � �� � 45 � 
# $
' �" � ��. The� �� are i.i.d geometrically distributed random
variables, with

� �� �� � �� � �� � � �� . Hence
� �� �

�� � � � �� � �� � � �� �� and � �� � � � ��	 � �� � �� �
� ��	 ��*' 	 ��* � �� ��*
 	 �� � � ��* � % �� � � �, after binomial
expansion of

� �� � ��. (ii) follows simply from (i). (iii)
�43 !( 	 �% �� � � � � ��*' 	 ��* � �� ��*
 	 �! � � 		 �' �� � �� �
' �� ��' � � 		 �' �� � '� �� �� � ' � � %� . (iv) follows from
the definition of& .

In the current context,� is the number of sampled packets
needed to receive at least one packet report form each of�
links on a path. The form of% �� � � � is displayed in Figure 6.
As predicted from Theorem 2,% �� � � � grows as��� for small
�, but growth with path length� is relatively slow.

B. Reporting Strategies and Mean Coverage

The mean coverage count for label reporting is calculated
as follows. Only packets which generate a label report that
reaches the collector contribute. These occur at a rate� �
relative to the original packet stream. The mean coverage count
within these packets for the� � � core links is% �� � � � � �.
Hence the overall mean coverage count is

�
� �� � �� � ��	% �� � � � � � (7)

From Theorem 2 the range of behavior as a function of the
report loss rate� is

�
� �� � � 	
� �	�! � � � � �
%� �	� �� � � � � � � � (8)

Note from (ii) that for nearly lossless reporting (� � �) the
mean coverage count grows affinely with the path length� .
The rapid��� growth for small� can be tempered by adjusting
the reporting strategy:

� Key Reporting:All routers report keys; labels may be
reported as well if it is desired to distinguish different
packets within a flow.

For key reporting, the mean coverage count is

�
� �� � � �	% �� � � � (9)

which behaves as%� � �� � � for small�, reducing the growth by
� relative to label reporting. When report loss is small�� � ��,
The behavior for small report loss (� � �) is the same as for
TS, to leading order in�� � � �.
C. Comparison with Independent Sampling

Routers which do not offer TS may still be able to sample
packets; see e.g. [7]. With key reporting, trajectory coverage
can then be performed at the collector. We model this with
independent sampling (IS) of packets at probability� . The
mean coverage count in this case is

� �� �� � % �� �� � � (10)

We compare with key reporting for TS in two regimes.
Suppose there is no report loss:� � �. By Theorem 2:

� �� ��
�
� �� � �% �� �� � � %� (11)

since� is assumed small. For example, for the longest paths
typically observed in the wide area Internet, we take� � 	�
[6]; then the above ratio is� 
�.

In the lossy regime� � � then by Theorem 2,

� �� ��
�
� �� � � �% �� �� � �

�% �� � � �
� � (12)

since� is small. The decreasing advantage of TS relative to
IS as � becomes small stems from the fact that increasingly,
once a report on a given packet has been received from one
link, reports are reasonably likely to have been received from
other links.

A fuller comparison of the sampling methods should also
take account of the reporting bandwidth. Recall labels have
the advantage of being smaller than keys, and hence consume
less bandwidth. Let� � � denote the ratio of the size of a key
to the size of a label. Label sizes of 4 bytes have been found
to be sufficient to distinguish packet in TS. On the other hand,
a flow key may include a significant proportion of the IP and
UDP/TCP packet headers. We assume� to be about 10.

Measuring in units of label size, key reporting consumes
� � while label reporting consumes� � � without keys, and�� � keys. Comparing TS without keys and IS, the ratio of
the mean bandwidth required to cover a trajectory of length
� is � �� ��

�
� �� � �
� � � � � �% �� � � � �

% �� � � � � �
�

� �	 � ��	 (13)

With lossless reporting�� � �� and small� this ratio is
approximately%� � �� �	 � ��	 �. Taking� � 	� and� � ��
yields a ratio of	� 
�. For lossy reporting, the ratio behaves
as � � �� �	 � ��	 �. Thus for sufficiently small�, IS can have
a bandwidth advantage, i.e., the ratio becomes less than�.



Fig. 7. Network and measurement collection configuration for loss estimation

This happens when� � � �	 � ��	, i.e., about� 
�	 using
above values for� and �. This would be an extremely low
transmission ambient transmission rate in the Internet, soTS
would be expected to have the bandwidth advantage over IS.

V. L OSSINFERENCE IN THEPRESENCE OFREPORTLOSS

A. Distinguishing Packet and Report Loss

Passive measurement of packet loss is one of the most
attractive new applications of TS. With reliable reporting,
packet loss is manifest by trajectories that terminate without
the packet reaching its destination. Consider the simplestcase
that traffic of a given key class is routed along a single path
(that we assume stable routing and no load balancing). The
loss rate for packet of that class at a link on that path is
estimated as the proportion of packet reports for the class that
terminate at that link.

With unreliable reporting, reports may be lost. In order to
estimate packet loss, we must disentangle the effect of report
loss. Clearly this is not possible at the level of single packets.
Loss of a packet at a given link� of a path will produce the
same set of packet reports at the collector as loss of reports
from all links subsequent to� on the path. Instead, we have
to distinguish packet and report loss at the statistical level,
employing reports from multiple packets. In the following
we shall assume that the set of packet reports has already
undergone duplicate elimination as described in Section III.

B. Estimating Packet Loss with Known Report Loss

The generic configuration for loss estimation is show in
Figure 7. We wish to estimate the packet loss rate on along
a path � � �

. Packet reports are collected from both nodes.
We make no assumptions concerning the collection paths: they
may have subpaths in common, and may encompass the paths� � �

or
� � �.

Consider some number� of packets in a class of interest.
The presence of absence of a given packet, or its reports, is
indicated by the random variables'" and )" respectively. A
given packet! is present at node# iff ' �* 

" � �, with ' �* 
" � �

otherwise. A report for that packet is received at the collector
from node # if ) �* 

" � �, with ) �* 
" � � otherwise. Thus,

� " � � * ) �*  
" is the number of packets reaching the collector

from node#. We denote by� " the conditional probability for
a report to reach the collector from node#, given that the
underlying packet is sampled at#; the probability is assumed
uniform over all packets.

Suppose the transmission rates� " for the packet reports were
known. Then we would estimate the transmission rate� on the
link � � �

by
�� �

� � �	
� 	�� (14)

This estimator is consistent for a stationary loss process,
provided the law of large numbers holds for the numbers of
packet and reports transmitted. This holds, for example, ifthe
sequence of random variables�' �*  	 � ) �* 

" � labeled by packet!
sampled at node�, forms a stationary and ergodic process. Let
there be are� " sampled packets in the class of interest present
at node#. As � 	 � ' , then � � �� 	 � � , � "�� " � � ", and
hence

�� �
� �
� �

� �
� 	

� 	
� 	
�	
�� � � 
 (15)

The numbers of packets� " in the class that are sampled at
nodes# do not enter explicitly into the estimator

��.

C. Estimating Packet Loss with Unknown Report Loss

If the � " are not known, they may be estimated from the
streams of packet reports. For example, assume that reports
are transmitted individually to the collector, and that they
carry transmission sequence numbers. Suppose " successive
trajectory samples reach the collector from node# in a given
period. We assume that the collector performs any reordering
of samples with respect to transmission sequence number, if
required. Adding� to the difference between the transmission
sequence numbers of the first and last of these packets yields
� ", the number of trajectory samples transmitted between
transmission of the first and last received samples. The trans-
mission rate for trajectory samples from node# is estimated
by

�� " �  "�� ".
The statistics of the packet process may potentially influence

the transmission rate of reports. For example, burstiness in the
packet stream of a traffic class can be inherited to some extent
by the sampled packet stream. However, we expect sampling
rates to be quite small, hence “taming” the burstiness by
spacing out packets in the sampled stream, as compared with
the original stream. Beyond this, there is no reason to assume
that packet selection and transmission of packet reports will
be coupled with packet content. For these reasons we assume
that the transmission rate of packet reports for the class under
study is the same as for all traffic. Thus we are free to employ
transmission sequence numbers applied to packet reports from
the whole packet stream, rather than those from the traffic
class under study. Thus we estimate the transmission rate�
by replacing� " with

�� " in (14):

�� �
� � 	� �
� 	� 	 � (16)



D. Loss Estimation Variance

Correlation between loss of reports (from different packets
and/or different nodes) does not effect estimator consistency,
but it can effect estimator variance. Now, correlation between
loss reports is manifest as non-zero conditional covariance
between) �* 

	 and ) �* 
� , conditional on packet! having being

sampled. But since terms) �* 	 appear in the denominator,
while terms) �* � appear in the numerator, positive correlations
between appear actually reduce estimator variance.

To show this, we compute the variance of the estimator (16),
asymptotically for a large number of samples. For simplicity
we ignore the variability in the numbers " of reports and
packet� " in all classes. This is a reasonable approach if the
traffic under study forms a small proportion of the total, and
is equivalent to treating the ratios " �� " as fixed numbers� "
as in (14).

We analyze the asymptotic variance of
�� from (14), as� �

' , using the Delta method [9]. This derives the asymptotic
behavior of functions of sums of random variables that obey
the central limit theorem, as we now summarize:

Lemma 1:Let � and �� be any vector-valued random
variables such that�� ��� � � � has asymptotically, as� �
' , a multivariate Gaussian distribution with mean zero and
covariance matrix

�
. Then for any real function

�
of the

random variables, differentiable at� , �� �� ��� � � � �� �� has
asymptotically, as� � ' , a multivariate Gaussian distribution
with mean zero and covariance
 � � � � � where� � � � �� �
is the gradient of

�
at � .

We model TS as selecting trajectories independently with
probability� , and apply the Delta method using�� � ��	 �� * � �* ) �* 	 �� * � �* ) �* � � (17)� � �43�() ��� � �� �	 �� ��� � (18)� �� 	 �� � � � � � �� 	 � �	��� (19)

One finds� � ��� � �� �	 � � �� �� �� � � �, and
�

is the covariance
matrix of ��) 	 � �)� � namely,

� � � � �	 �� � � �	 � � � 	� � � �� � � ���	 ��
� � 	� � � �� � � ���	� � ��� �� � � ��� � �

(20)
where� 	� is the covariance of) �* 	 and ) �*  � , conditional on
packet! having been sampled. Summarizing:

Theorem 3:The distribution of�� ��� � � � converges as
� � ' to a Gaussian random variable with mean� and
variance
 � � � � � , equal to



� � � ��	 �� � ��� � � ��� �� � � � � �� 	� �
� �	�� 
 (21)

This establishes the earlier claim that positive correlation
between transmission of reports reduced estimator variance.
Conversely, negative correlation increases estimator variance.
Negative correlation may occur if the reports from different
routers compete for transmission resources along a common
path to the collector.

Correlations between different probes do not qualitatively
change the results. Gaussian asymptotics still prevail, although

the asymptotic covariances are in general different. For a
given mode, e.g., the�' �*  � ) �* � form a Markov process,
the covariances can be calculated using generalizations ofthe
Central Limit Theorem for dependent variables.

Finally, although we have estimated the loss rate on a single
path, one could perform joint estimation of the loss rates ona
number of (possibly) intersecting paths. It can be shown that
the loss rate estimators remain consistent under the previous
assumptions. Variance is calculated using a higher dimensional
analog of the matrix (20), whose elements take into account
potential correlations of loss between export from different
routers, e.g., due to intersecting export paths.

E. Comparison with Independent Sampling

We now isolate the difference in estimator variance due to
sampling method. For reference, consider first TS with the
simplifying assumption of no report loss:� " � � � � 	� � �,
Then 

� reduces to



� � � �� � � ��� 
 (22)

For IS, it can be shown that the only change to the calculation
behind Theorem 3 is to set the diagonal terms in (20) to� since
independent selection renders report transmission independent
under the assumption of no report loss. This yields asymptotic
variance


�� � � �� � � � �� � ��� 
 (23)

Both variances are inversely proportional to� : fewer samples
mean higher variance.

One sees easily that
�� � 

� , with equality only when� �
� or � � �. The expected physical regime is small sampling
probability � and small report loss probability� � �. In this
regime, the expressions for variance simplify:



� � �� � � ��� � while 
�� � ��� 
 (24)

The notable property is that the ratio of the variances of the
two estimators is driven by loss rate to be estimated, with

�� �

� � �� �� � � � � *� when estimating a�� loss. We
display the ratio� � 
�� �

� as function of� and � in
Figure 8. Observed the rapid growth of� as ���� � for � � �.
Dependence on� is mild by comparison.

F. Loss Estimation under Load Balancing

The techniques of this section apply to estimation of loss
on a point-to-point path. In practice, load balancing may be
employed, giving rise to point-to-multipoint paths. The above
technique can be applied provided the problem can be reduced
to that of estimation on a set of point-to-point paths. This is
possible if trajectory sampling is employed on both inbound
and outbound interfaces at nodes in which load balancing takes
place.
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Fig. 8. Surface plot of the ratio�
������

of variances of transmission
rate estimators for independent and trajectory sampling, as a functions of
the sampling probability� and the path transmission rate� under estimation.

VI. CONCLUSION

In a network measurement system such as the one described
in this paper, there exists a tradeoff between the complexity
of the measurement devices and the complexity of the central
collector. In our previous work, we assumed that measurement
devices are capable of reliably exporting measurements to
the collector, which simplifies the task of the collector in
reconstructing a statistically representative set of trajectory
samples. However, there are circumstances where such reliable
export is either not desirable or not possible. Therefore,
in this paper, we assume that measurement devices export
measurement report packets unreliably, which relieves them
of the burden of buffering and processing acknowledgments.
But dealing with missing reports complicates the task of the
collector. In this paper, we propose methods for the collector
to deal with such loss.

The first aspect of trajectory reconstruction that is compli-
cated by report loss is duplicate elimination, i.e., the elim-
ination of reports that happened to map to identical labels.
We wish to eliminate such duplicates in order to ensure
that the final set of trajectories is not polluted by composite
trajectories resulting from multiple packets. This may have
various undesirable side effects when estimating quantities
of interest from these trajectories and monitoring the correct
network behavior.

With reliable reporting, a straightforward approach to elim-
inate duplicate labels is to rely on auxiliary information
reported about sampled packets from ingress links, or simply
to assume that a given packet should not be observed on
ingress links more than once. With unreliable reporting, this
approach is not guaranteed to catch all duplicates, because
ingress reports may be lost.

We have proposed an approach based on Bloom filters, a
data structure that compressed a set membership function into
a bit array. Bloom filters are appropriate because the only error

they incur are false positives, which may lead to the elimina-
tion of some unique labels in addition to actual duplicates.
While this represents a small loss of measurement data, the
main property of this approach, given in Theorem 1, is that
the duplicate elimination essentially behaves like subsampling
the original set of packets. Therefore, by applying a correction
factor, the resulting set of trajectories can be treated as if it
had been obtained in a collision-free way. This insulates the
estimation and detection procedures fed by trajectory samples
from the intricacies of duplicate elimination.

Once duplicate labels have been eliminated, the resulting
report stream can be passed to applications. In general, appli-
cations must be adapted to report loss. Path tracing applica-
tions must amalgamate reports from several packets in order
to reconstruct complete trajectories. Passive loss measurement
applications must distinguish report loss from packet lossby
exploiting transmission sequence numbers in the reports to
estimate report loss rates. The performance analysis of these
applications shows that trajectory sampling brings substantial
advantages over independent packet sampling, reducing both
estimator variance and reporting bandwidth.

Future work includes unification of the current work on
report loss with the work of [4] in grouping reports temporally
for reconstruction. Some timeout must be applied to packet
grouping, both to manage collector memory and to reduce
label recurrence. On the other hand, this inevitably sunders
some reports from trajectories; an efficient way is requiredto
manage this without discarding stranded reports too aggres-
sively.
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