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Abstract—Due to the increased usage of NAT boxes and
firewalls, it has become harder for applications to establish direct
connections seamlessly among two end-hosts. A recently adopted
proposal to mitigate this problem is to use relay nodes, end-hosts
that act as intermediary points to bridge connections. Efficiently
selecting a relay node is not a trivial problem, specially in
a large-scale unstructured overlay system where end-hosts are
heterogeneous. In such environment, heterogeneity among the
relay nodes comes from the inherent differences in their capacities
and from the way overlay networks are constructed. Despite this
fact, good relay selection algorithms should effectively balance
the aggregate load across the set of relay nodes. In this paper,
we address this problem using algorithms based on the two
random choices method. We first prove that the classic load-based
algorithm can effectively balance the load even when relays are
heterogeneous, and that its performance depends directly on relay
heterogeneity. Second, we propose an utilization-based random
choice algorithm to distribute load in order to balance relay
utilization. Numerical evaluations through simulations illustrate
the effectiveness of this algorithm, indicating that it might also
yield provable performance (which we conjecture). Finally, we
support our theoretical findings through simulations of various
large-scale scenarios, with realistic relay heterogeneity.

I. INTRODUCTION

In today’s Internet, it is often the case that two end-
hosts cannot establish a direct connection between themselves.
This occurs when both the end-hosts are located behind
NAT boxes or firewalls, which for security reasons block
connection establishment requests that arrive from outside
end-hosts. This limitation is a serious concern to network
application developers, as it limits the services the application
can provide to some of its users. A recently adopted proposal
to mitigate this problem is to use relay nodes, end-hosts that
act as intermediary points, bridging the connection between
two other end-hosts that want to communicate. In fact, such a
solution is already adopted by a few large-scale peer-to-peer
(P2P) applications, such as Skype [21] and Gnutella [1].

Within this framework, an open problem is to determine a
good relay node for a given pair of end-hosts. As the Internet
is mostly well connected, any candidate end-host could serve
as a relay node. However, because relay nodes are simply
other users’ computers running the same application, the
application developer would prefer to avoid overloading any
particular relay node. Thus, the problem of selecting a good
relay becomes one of balancing the load (i.e., connections)
generated by the users across the set of relay nodes. This
problem becomes non-trivial when we consider the conditions
and assumptions under which these applications must operate.
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Large-scale overlay systems are vastly decentralized, ex-
ecuted by a highly heterogenous end-host population, and
crafted to operate in a very dynamic scenario, where nodes
frequently join and leave the system. In such an environment,
even requiring every end-host to have full knowledge of
the set of available relay nodes can be too expensive, let
alone knowing the instantaneous state (i.e., load) of each
node. Therefore, any practical algorithm for selecting relay
nodes cannot assume to have this knowledge and should
be decentralized. Currently deployed systems such as Skype,
attempt to balance the load by imposing a maximum number of
connections a relay can handle [4], [10]. Clearly, such solution
is suboptimal and measurement studies indicate that it can
translate to longer delays when selecting a relay node [12].

Another important consideration when designing an efficient
relay selection algorithm is the heterogeneity present in the set
of relay nodes. In such systems, heterogeneity is caused by two
different reasons: (i) application-level mechanisms introduce
biases when sampling the relay nodes; (ii) relay nodes have
inherent capacity differences (e.g., access bandwidth). The
first case leads to a scenario where relay nodes have different
“popularities”, despite the fact that they may all have identical
capacities. The popularity of a given relay node is related to the
likelihood that other end-hosts have knowledge of its identity,
which consequently, is related to the likelihood that the relay
is used. Thus, a relay selection algorithm has a biased view
of the set of relays present in the system.

In the presence of the first type of heterogeneity, where
all relay nodes have identical capacities, an efficient relay
selection algorithm should spread the load equally across the
set of relays. However, in the presence of the second type
of heterogeneity, an efficient algorithm should balance the
utilization of the relay nodes, which is a metric proportional to
the ratio between the load and the capacity of the relay. Note
that balancing the absolute load in this case does not lead to a
good relay allocation, as some relay nodes can be overloaded
in terms of their utilization. In this paper we address these two
problems as follows.

When considering the first type of heterogeneity, we adopt
the simple and well-studied two random choices algorithm
[3], which bases its choice solely on the current load on the
relays. We then establish the performance of this algorithm
by proving a tight upper bound and an almost matching
lower bound on the maximum load on any relay at any
time. Numerical evaluations through simulations support our
theoretical findings, establishing the actual performance for
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different popularity models.

We also consider the more general case where both types of
heterogeneity can be present in the system. We propose a sim-
ple modification to the previous algorithm to base its choice
on the projected relay utilization. We evaluate the algorithm
through simulations by considering realistic popularity and
capacity models. Our results show that the proposed algorithm
can effectively balance the utilization, and we conjecture that it
also exhibits provably good performance in terms of balancing
relay utilization.

Our contributions: The problem of relay selection when
relay nodes have heterogenous popularity levels has been
previously considered [6], [20]. However, these works focus
on structured overlay systems, which by design impose limits
on the popularity bias (i.e., relay nodes cannot have arbitrarily
large popularity levels and only a small fraction them can have
a large popularity level). Such assumptions are not reasonable
for unstructured overlay systems, where relay nodes can
have arbitrarily different popularity levels. To the best of our
knowledge, we are the first to provide theoretical bounds for
the two random choices algorithm under a general popularity
model. By using a single parameter to measure the bias of the
popularity model, we identify a scaling law on the performance
of the algorithm that has not been captured nor predicted by
any previous work. Our model relaxes some of the assumptions
of [6] generalizing their model and our results are significantly
different from theirs. Finally, to the best of our knowledge, we
are also the first to apply a variation of the two random choices
algorithm to balance relay utilization when relay nodes have
heterogeneous capacities. Numerical evaluations indicate that
this algorithm may yield provable good performance in terms
of balancing utilizations.

The remainder of this paper is organized as follows. In
Section II we review the related work. In Section III we
formalize the problem considered. Section IV presents the
load-based algorithm and our main theorerical result, while
Section V presents the utilization-based algorithm and its
numerical evaluation. Finally, Section VI concludes the paper.

II. RELATED WORK
A. Overlay networks

Overlay networks have been used in many applications
such as file sharing [1], IP telephony [4], [10], and recently
to improve network performance [9], [11]. Overlay systems
can be structured or unstructured. In structured overlays, both
data placement and overlay topology are tightly controlled
using distributed hash tables, see for example [17]. In these
topologies, (1) the maximum node degree is bounded from
above by logn and (2) the number of nodes with degree logn
is less than n® for some constant 0 < ¢ < 1 with high prob-
ability (whp)! [6]. The main drawback of structured overlays
is that they require significant maintenance overheads under
high node churns. Unstructured overlays avoid this cost by
allowing overlay nodes to connect largely unconstrained with

I'We use the term with high probability (whp) to mean with probability at
least 1 — 1/n? for some fixed constant ~.

each other. The resulting topology is robust to node churns, but
has unbalanced node degrees [15], [18], [22]. Specifically, the
two topological properties for structured overlays listed above
do not carry over to their unstructured counterparts. It was
shown in [15], [18], [22] that nodes in an unstructured overlay
can have arbitrary degrees (i.e., property (1) of structured
overlays in [6] is violated) and there is no guaranteed bound
on the number of nodes with a given degree (i.e., property (2)
of structured overlays in [6] is violated).

B. Theoretical Load Balancing

The general problem of load balancing can usually be
framed as a balls and bins problem, where the bins corre-
spond to resources and the balls correspond to load. A load
balancing algorithm will place balls into bins under some
given conditions. Consider the simple case of n balls and n
bins, but where the algorithm has no knowledge of (and does
not remember) the state of the bins. A simple load balancing
algorithm is to choose a bin independently and uniformly at
random for each ball. This algorithm ensures that the number

of balls in any bin is at most (1 + 0(1))10§ﬁ)gn with high
probability, see for example [14]. Azar et al. [3] suggest a
better algorithm that selects d > 2 bins at random for each
ball and places the ball in the least loaded bin, which is
known as the d-random choices algorithm. Although at first
sight this algorithm may look similar to the previous, the
authors show that the maximum load in any bin is at most

lolgol% + ©(1), whp. The significance of this result is the
exponential reduction in the maximum load when compared
to the previous algorithm, which can be obtained by simply
selecting two bins for each ball. Moreover, choosing more bins
only yields a marginal improvement over the two choices. This
phenomenon is called “the power of two random choices” [13].

Byers et al. [6] study the performance of the d-random
choices algorithm when the bin sampling distribution is not
uniform. Under the assumptions guaranteed by a structured
overlay system (listed above), they prove that the 2-random
choice algorithm yields a maximum load on any bin of at most
loglogn whp. This is a strong result because the sampling
distribution is far from uniform, with some bins sampled with
probability 10&% and others with probability #gn More

recently, however, Wieder [20] has shown that this double
logarithmic bound ceases to hold when the number of choices
d is small and the number of balls (m) is much larger than
the number of bins (n). To achieve the maximum load of

ot lolgol%" +0(1), i.e., the result obtained when all bins are

chosen with equal probability % [5], d has to be significantly
large (d = O(logn)) [20].

Despite the fact that the d-random choice algorithm and its
variations have been applied to a wide range of load balancing
problems, its performance on unstructured overlays is still
an open issue. First, as we mentioned earlier the topological
constraints of structured overlays do not apply to unstructured
overlays hence the balancing results in [6] may not carry over.
Indeed, we show that when these constraints are violated,
the bound in [6] does not apply. Second, in a decentralized
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system, it is unrealistic to adapt the number of choices d
to logn as in [20], because this would require every node
to know the instantaneous number of relays in the system.
Third, in real overlay systems, connections arrive and depart
the system continuously, but the approaches in [6], [20] apply
only to static systems where m balls arrive in sequential
order without any departure. In this paper, we remove all
of the above restricted constraints to provide tight bounds on
the performance of the d-random choices method on realistic
unstructured overlays.

III. PROBLEM STATEMENT

In this paper we are interested in large-scale networked
applications that use relay nodes. Relays are used as inter-
mediary nodes to bridge a connection between two end-hosts
that could not otherwise communicate. We assume here that
users of this application are interested in communicating with
one another and generate traffic in the form of connections.
This is motivated by large-scale voice-over-IP (VoIP) (Skype
[4], [10], [21]) and file sharing (Gnutella [1]) applications.

The relay selection algorithm is responsible for assigning a
relay node for each new connection generated by the users.
The algorithm is part of the large-scale networked application
and runs on the end-host of the user initiating the connection,
and it is therefore a distributed algorithm. We assume that
the algorithm has no knowledge of the set of relays currently
available. However, the algorithm can request the system
to provide the identity of a small number of relay nodes.
The answer provided by the system need not be uniformly
distributed over the entire set of candidate relays. In particular,
we assume that there can be bias based on the “popularity” of
the relay node.

In practical applications [1], [21], special end-hosts, known
as super-nodes or ultra-peers, play the role of the system
by maintaining an overlay network. In particular, super-nodes
provide the relay selection algorithm with a small subset of the
candidate relays that they know [4], [10]. However, the super-
nodes themselves need to learn the identity of candidate relays.
One proposal is to sample the overlay network using a random
walk algorithm. It is well known that this mechanism produces
a biased view of the candidate relays, with bias proportional to
the super-node degree. Furthermore, a relay that is present in
the system for prolonged periods of time is more likely to have
its identity known by more super-nodes than a relay node that
has a high churn. For these and other reasons, it is therefore
unlikely that relay nodes are used equally in unstructured
overlay systems [18], even when they have identical capacities.
Thus, an effective relay selection algorithm should cope with
this fact.

Finally, relay nodes can also be inherently heterogeneous
when we consider their capacities (e.g., access bandwidth
or CPU speed) [16]. Note that although future networked
systems can implement algorithms to remove the popularity
bias discussed above, heterogeneity in terms of capacity will
always be inherent in the system. We note that relay popularity
and capacity need not be correlated, although in practice this is
probably the case. Again, an efficient relay selection algorithm

should also cope with this kind of heterogeneity, and distribute
the load such that relay utilization is balanced.

The problem we investigate is the following: Given the
scenario above, how should we design a “good” relay se-
lection algorithm? A good relay selection algorithm is one
that distributes the aggregate load over the set of relays such
that either the absolute load or the utilization is effectively
balanced. At the same time, the relay selection algorithm
should be efficient, quickly finding a relay node without
imposing a high communication overhead. In what follows,
we describe more precisely the model we consider, followed
by our proposed solutions and their evaluations.

Let R denote the set of relay nodes available in the system,
where n = |R| denotes their total number. In order to model
relay popularity, we will assign to each relay node r; € R
a fixed popularity level a; > 0. The popularity of the relays
will be used to determine the probability that its identity is
revealed to the relay selection algorithm. In particular, let p;
denote this probability with p; = «;/ ZmeR «;. Moreover,
we assume that each relay 7; € R will have a fixed capacity,
denoted by ; > 0.

Let m;(t) denote the number of connections traversing relay
r; € R at time ¢. We call m;(t) the load of r; at time ¢. Let
u;(t) denote the utilization of relay r; € R at time ¢, which
is simply given by w;(t) = m;(t)/k;. Each relay node keeps
track of this information (m;(t) and u;(¢)) and responds with
these values to probes generated by other nodes.

IV. BALANCING RELAY LOAD

In this section, we address the problem of balancing the
load across the set of relays in the presence of only relay
popularity heterogeneity. We assume that all relays have
identical capacities, such that x; = 1, for ¢ = 1,...,n (an
assumption we relax in the next section). In this scenario, the
ultimate goal of a distributed relay selection algorithm is to
spread the load over the relays as equally as possible, even
though some relays can be much more popular than others.

In order to measure the quality of load balancing achieved
by the algorithm, we will consider the maximum load (i.e.,
number of connections) imposed on any relay node. In partic-
ular, let m(t) = max;cg m;(t) denote the maximum number
of connections across any given relay node at time ¢. A good
load balancing algorithm minimizes m(t) at all times, where
the optimal value at time ¢ is given by [),_» m;(t)/n].

In this scenario, we propose to use the load-based d-random
choices algorithm. This algorithm is very simple and efficient
in selecting a relay node, as we next describe. Moreover,
its performance in terms of load balancing (m(t)) can be
established theoretically, as a function of system parameters.

A. The load-based d-random choices algorithm

The load-based d-random choices algorithm works as fol-
lows. At the time of arrival of a new connection, ¢, the
algorithm requests d relay nodes from the system. Let R4 be
the set of relay nodes provided by the system. The algorithm
then probes all relay nodes in R4 to obtain their current
load. The least loaded relay node is selected for this new
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connection. Thus, the chosen relay r(t) is given by r(t) =
arg min;er, m;(t). This algorithm will be referred to as the
“load-based d-relay” algorithm or “d-relay” in short.

In the d-relay algorithm, the number of relay nodes d
requested from the system and probed can vary from 1 to
n = |R|. We advocate the 2-relay algorithm for the relay
selection problem, which is very efficient as it only requires
two probes per new connection. Moreover, as we demonstrate
next, the 2-relay algorithm yields provable load balancing
performance on the relays.

B. Theoretical Evaluation

In this section we show that the performance of the load-
based d-relay algorithm can be captured using a simple metric
to model heterogeneity in the relay popularity. In particular,
recall that p;, the probability that the system reveals relay ¢ to
the algorithm, depends on ¢. Thus, we introduce a metric we
call popularity deviation, o(n), defined as follows:

max,,er
i

n Zm er Qi
Note that the popularity deviation measures the ratio between

the maximum and the average popularity levels of the relays.
More importantly, we have the following bound:

a(n) = = nmaxp;. ()

T, ER

pi < %n) forall r; € R 2)
This model is very parsimonious because it summarizes the
heterogeneity among the relay nodes in a single parameter
a(n). Moreover, as we will see shortly the performance of the
load-based 2-relay algorithm is strictly a function of «(n). In
the rest of this paper, we use « instead of a(n) for notational
convenience.

Consider the maximum relay load in the system at any
point in time m(t). We first provide an upper-bound of
loglogn + O(a) on m(t) in Theorem 1 for any overlay
system. We then prove an almost matching lower bound of
Q(loglogn + a) on the expected maximum relay load in
Theorem 2 by constructing overlay systems that achieve this
bound. Note that if & = ©(logn), the expected load on
the most loaded relay is ©(logn). A simple application of
the Chernoff bound yields that the maximum load is also
O(logn) whp. This result is in stark contrast with the rather
optimistic bound of loglogn in [6]. The difference between
our result and those in [6] stems from the fact that we relax the
constraints needed in [6] on (1) the maximum relay sampling
probability and on (2) the number of relays with a given
sampling probability. This relaxation is necessary to study
unstructured overlays as explained earlier.

Theorem 1: If the number of connections in the system is
always smaller than or equal to n and the popularity deviation
is o, then at any time ¢, with probability at least 1 — 1/ nﬂ(l),
the maximum load is no more than loglogn + 8ea + O(1).

We will use the witness tree method in [2] to prove the
theorem. A special case of the theorem where o = 1 was
proven in [8]. Our proof develops further the techniques used
in [8], but differs in the way we construct the witness tree. This

TABLE I
NOTATION USED ONLY IN THE PROOF

[ Symbol [ Definition
Cm The m-th connection in the system
v The jth node of the witness tree

€ = (0;,00)

r(u)

An edge between node v; and v,
The relay represented by node u

c(e) The connection represented by edge e
rfm and rgm The two relays choices of connection ¢,

where 7{™ is the finally chosen relay
tm The time ¢, arrives in the system

T The set of all unlabeled pruned witness trees

TeT An unlabeled pruned witness tree

s =T Number of nodes in a tree T

Or and z = |Qr| | The set of pruning edges in 7" and its cardinality
Nt Number of ways to label the tree T'

! loglogn

w 8ea

q a constant, ¢ > 2

modification is needed to handle a@ > 1. As in the classical
proof of the theorem with o = 1 [8], the main idea of the
witness tree method is that if at time ¢ there is a relay r with
more than [4w-+ g connections where [ = loglogn, w = 8ea,
and ¢ > 2 is a constant, then a certain sequence of “bad”
events must have happened before time ¢ in order to build up
the connections in r. The witness tree is used to capture this
sequence of events. This tree reports only the events that we
know for sure have happened between time 0 and ¢. By proving
that the probability of the occurrence of such a tree is upper-
bounded by 1/ n2( we can then deduce that the probability
that there is a relay with at least [ + w + ¢ connections is also
upper-bounded by the same number.

Throughout the proof, we will use the notations in Table 1.

Proof: When o > logn, the proof is straightforward.
Indeed, the probability that a connection ¢ chooses a specific
relay r in at least one of its two choices is upper-bounded
by 2a/n. The expected number of connections that goes to
r at any time ¢ is therefore at most n2a/n = 2a. A simple
application of the Chernoff bound yields that the number of
connections in any relay is at most 4« with probability at least
1—1/n20),

When a < logn, the proof consists of three steps. In the
first step, we show that if there is a relay r € R at time ¢ with
l+w-+q connections then we can construct an irregular, labeled
full witness tree of depth [ + 1 that captures a set of events
that must have happened before time ¢. In the second step, we
prune the full witness tree to obtain a pruned witness tree to
remove stochastic dependencies between nodes and edges of
the tree. The probability that the pruned witness tree occurs
is an upper-bound on the probability that the corresponding
full witness tree occurs. In the last step, we enumerate all the
possible pruned witness trees to obtain an upper-bound on the
probability that such a tree occurs.

Step 1: Constructing the full witness tree

A witness tree is a labeled tree in which each node v;
is labeled by a relay r(v;) € R together with a set of w
connections, and each edge e is labeled by a connection c(e).
The detailed construction of the witness is as follows.

Assume that at time ¢ there is a relay r with more than [ +
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w-+q connections. We place r at the root vy of the witness tree,
i.e., r(vg) = r. We denote the [+w-+¢ connections in r at time
t by c1,...,Cl4w+q and assume that these connections have
arrived at node 7 at times t1 < tg < ... < tj4p4q < t. From
v we draw ¢ edges, each connecting vy with a child node that
represents the other relay choice r5™ of the connection ¢y,
forall l+w+1 < m <!+ w+ q. Note that when c,, arrives
to r at time t,,, there are already at least m — 1 connections in
r (connections ¢y, ..., Cp—1). AS ¢, chose r as its relay, the
number of connections in r5™ must be larger than or equal
to the number of connections in r. Therefore the number of
connections in 5™ at time ¢,, must be at least m — 1. Hence,
each child of the root vy is labeled by a relay that has at
least [ + w connections at some given time (specified by the
corresponding ., ).

Using the previous observation, we then recursively grow
the witness tree by constructing a subtree from each child of
the root vg. Take a child v;, v; is labeled by a relay r(v;)
that has at least [ + w connections at some given time. We
call any of the last [ connections that arrive to r(v;) among
the [ + w connections in 7(v;) a “top” connection. The other
w connections are called “bottom” connections. For each of
the top [ connections in this relay there must be an alternate
relay choice. These alternate relay choices are set to be the
children of v; and the edges are labeled by the corresponding
connections. We recurse similarly for each of the ! children.
For a parent node with load x 4+ w, the (x — 7 4+ 1)th top
connection must have had an alternate relay choice with load
at least © — ¢ + w; this is the ¢th child of the parent node. The
ith child, which has load at least x — ¢ 4+ w will be expanded
down further to « — ¢ children corresponding to the alternate
relay choices for its top = — ¢ connections. We continue this
recursion as long as a relay has a load greater than w and stop
when it equals w, which is the load of the leaf nodes. We also
label each node (relay) with the set of w bottom connections.
These connections are distinct from the connections that label
the edges incident on this node because by construction only
the top connections label edges.

The resulting witness tree has a depth of [ + 1, with the
root having ¢ children. We call this tree the full witness tree.
It is easy to check inductively that the total number of nodes in
each sub-tree stemming out of each child of the root is exactly
2!, Hence the total number of nodes in the full witness tree is
q2'+1. Different nodes in this tree can represent the same relay
and different edges can represent the same connection. Note
however that adjacent edges represent distinct connections. An
illustration of the full witness tree is given in Figure 1.

Step 2: Pruning the full witness tree

If the nodes of the witness tree are all distinct, then it is
relatively easy to upper-bound the probability that such a tree
exists. However, many nodes in the full witness tree can be
labeled by the same relay. It is therefore necessary to trim the
tree so that all nodes in the tree are labeled by distinct relays,
which will then eliminate stochastic dependencies between the
nodes and edges. We can then upper-bound the probability of
the occurrence of the trimmed tree. The pruning procedure
works as follows. We perform a breadth first search of the

Full Witness Tree (q=3, 1=4)

%0 The root has g=3 children

Each node is labeled by (i) one relay and (ii) w connections
Each edge is labeled by a connection

Fig. 1. TIllustration of the construction of the full witness tree, with [ =
4,q = 3. Each node v; in the tree is labeled with a relay r(v;) and a set
of w connections. Each edge in the tree is labeled with a connection. In this
example, the load of r(vg) is 4+ 3+ w, each of the relays r(v1), r(v2) and
r(v3) has load at least 4 4+ w. In the subtree rooted at v1, r(v4), which is
the same relay as r(vg), has load at least 3 + w and r(vs) has load at least
2 4 w and so on.

Pruned Witness Tree (q=3, |=4)

Each node is labeled by (i) one relay and (ii) w connections
Each edge is labeled by a connection

Fig. 2. Illustration of the pruned witness tree. There are z = 2 pruning
edges, marked by a cross. Here, z = 2 < g = 3, observe that the subtree
rooted at vg is the same as in the full witness tree.

full witness tree starting at the root. As we move along the
tree, we keep a set U of the labeled nodes that we have already
visited and a set Q of labeled edges that cause repetition of
relays in the full witness tree. At the beginning, U = () and
Q = (). During the trimming procedure, whenever we visit a
node v; there are two possibilities:

o If v; is labeled by a relay that is different from the labels
of nodes in U, we add it to 4/ and move to the next node.

e Otherwise, we remove the subtree rooted at v; from the
witness tree. We call the edge from v; to its parent a
pruning edge and add this pruning edge to Q.

The procedure continues until one of the following two

conditions is met:

o All nodes of the full witness tree have been visited.

o There are already ¢ pruning edges. In this case, we prune
all the nodes of the full witness tree that have not been
visited.

The tree that results from this process is called the pruned
witness tree. Each pruned witness tree T}, is a labeled tree that
consists of (i) all the labeled nodes and edges that remain in
the tree after the pruning process, and (ii) the set of pruning
edges Qr, (with their labels). Let z = |Qr, | be the number of
pruning edges in a pruned witness tree 7),. Figure 2 provides
an illustration for the pruning procedure that obtains a pruned
witness tree from the full witness tree of Figure 1.

Step 3: Bounding the probability of occurrence of a
pruned witness tree

Define T to be an unlabeled, rooted pruned witness tree.
That is, T" provides a detailed description of the topology of
a pruned witness tree and the corresponding set of pruning
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edges Qp. However, each node of T is not associated with
a relay and a set of w connections. The edges of T and the
pruning edges in Qp are also not associated with connections.
Let 7 be the set of all possible unlabeled pruned witness trees.

We upper-bound the probability that a pruned witness
tree exists by upper-bounding both the number of possible
unlabeled trees 7', the number of ways to label a tree 7', and
the probability that each such labeled tree could arise.

Bounding the number of unlabeled trees

The pruning process stops if there are ¢ pruning edges, i.e.,
z < q. Hence there are at most ¢ different values for the
number of pruning edges z. For each value of z, because the

pruned witness tree has at most ¢2' edges, the number of ways
l

q2 !
< gF2'*.

Thus the total number of unlabeled trees is at most

we can choose z pruning edges is at most

|T| < git12l, (3)

Number of ways to label an unlabeled tree T':

We now focus on an unlabeled tree T'. Let s = |T'| be the
total number of nodes in 7". We start by counting the number
of ways to label T' and Qrp, that is, the number of ways to
assign (i) a relay to every node of 7", (ii) one connection to
each edge of 7', (iii) w connections to each relay associated
with a node in 7', and (iv) one connection to each of the
pruning edges in Q7. We now enumerate each of the above
individually.

(i) There are at most n ways of assigning a relay to a node.
Therefore, there are at most n° ways to label s nodes in the
unlabeled tree 7.

(i1) The total number of ways of assigning connections to all
edges in the unlabeled tree 7" is at most n*~! (there are s — 1
edges) because at any time there are at most n connections in
the system.

(iii) Similarly, there are at most ( w ) ways to assign w
connections to the relay associated with one node in 7, and
S
n . .
thus at most ( w ) ways to assign w connections to each

of the s nodes.

(iv) There are at most n* ways of assigning connections to
the z pruning edges in Q.

Hence the total number of different ways to label 1" and
OQr (i.e, the number of ways of assigning relays to nodes,
w connections to each relay, connections to edges of 7', and
connections to pruning edges of Qr), denoted by Nrp, is
bounded from above by

n S
) n®.
w

Probability that a labeled pruned witness tree T occurs:

We say that a given (labeled) pruned witness tree is activated
if the choices of relays for the connections occur in such a
way that (i) all the chosen relays associated with the nodes
are connected by the chosen connections associated with the
edges of the tree, (ii) all w connections associated with a relay

Np < nfnst ( 4)

do finally choose that relay, (iii) and all the chosen connections
associated with the z pruning edges in Qp have their two relay
choices represented by two nodes in the pruned witness tree.

We now bound the probability that a given pruned witness
tree is activated by bounding each of the above items.

(i) Recall here that the probability that a connection chooses
a specific relay is bounded from above by «/n because of (2).
Therefore, the probability that a given connection picks two
specific relays is bounded from above by 27%2 =222, where
the factor of 2 comes from the 2 possible assignments of 2
relays to a connection. For the sake of simplicity, we assume
that the system chooses relays with replacement. Hence, the
probability that s — 1 edges of T" are labeled by s — 1 specific
902 s—1
n2

labels is at most (

(ii)) We now consider the probability that a relay r; has
w connections. The probability that a connection picks a
particular relay in one of its two choices is bounded by 2a/n.
Hence, the probability that w specific connections go to a
specific relay is at most (2a;/n)™. Thus the probability that
all s nodes in T' are labels by ws specific connections is at
most (22)**

(iii) A pruning connection has both its relay choices rep-
resented by nodes in the pruned witness tree. Hence, the
probability that a specific connection is a pruning connection is
2  +1

2
of nodes in the pruned witness tree is no more than that in the
full witness tree, i.e., q2l + 1.

Hence, the probability that a specific pruned witness tree is
activated is no more than

)]

202\° 7" 20\ " [202 [ g2 +1
n2 n n2 2

Note that we can multiply the probabilities because the w
connections in each relay, the connections represented by the
edges of the pruned witness tree and the pruning connections
are all distinct.

Combining the bounds

Combining (4) and (5), an application of the union bound
yields an upper bound on the probability P(7") that an unla-
beled tree T' occurs

upper-bounded by 27%2 ) , because the total number

(&)

2 wo s 2 2 222l .
P(T) < o 2002 e LG L) def B(n).
202 w n
!

In the above inequality, we use 2 2+ 1 < ¢%2% and

n w

< (@) for all w > 0.
/LU w

Observe that either the number of pruning connections, z,
equals g or the number of nodes s > 2! = logn (because in
the latter case, at least one subtree rooted at a child of the root
in the full witness tree will remain untouched in the pruning
process and this subtree has 2! nodes). Note also that when
w = 8eq, 202 (%T“)w < 1/4 for all « > 0. In both cases,

replacing | = loglogn yields B(n) < 1/n*"). From (3),
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|7] = O(log?n). Hence the probability that at time ¢ there
exists a relay with more than [ + w + ¢ connections is at most
|T|/nM) = 1/n?1) This completes the proof. [ ]

Theorem 1 can be easily extended to the case where there
are at most kn (k > 1) connections in the system at any
time by repeating the same arguments in the proof but using
w = 8eka.

Corollary 1: If the number of connections in the system at
any time is at most kn and the popularity deviation is «, with
probability at least 1 — 1/n(1) the maximum load on any
relay is at most loglogn + 8eka + O(1).

We now provide an almost matching lower bound of
Q(loglogn + «) on the maximum number of connections on
any relay by constructing a relay system R* that satisfies the
condition in (2) and achieves this lower-bound.

Theorem 2: If the number of connections in the system is
always n and the popularity deviation is «, then there is a
set of relays such that at any time ¢ the expected load on the
heaviest relay is at least Q(loglogn + «).

We follow similar strategies as those in [19] and [20] to
prove this lower bound.

Proof: The Q(loglogn) term in the lower bound follows
from Vocking’s lower bound [19] for placement of n balls
into n bins when each ball picks two bins at random using
any arbitrary but fixed distribution.

We now prove the second term () using a strategy similar
to [20]. Consider a set of relays R* where "éﬁ Ly
n(Ba—p)

Ba—1
probability Bin, for any constant 5 > 2. Denote by H the set

of "ég j) relays in R* with high sampling probability a/n.

The probability that a connection chooses a relay in H is

nB-1a _af-1)

Ba—1n  fa—1"

relays have

sampling probability -, and relays have sampling

Hence the probability that a connection goes to a relay in ‘H
: a(f-1)
is at least (m
chooses two relays in ‘H for both of its choices. Therefore,
after inserting n balls the expected total number of connections

2
%) . Hence, the expected load in

2
) , 1.e., the probability that the connection

in H is at least n(

the most loaded relay in H (with ”(5 _1) relays) is at least
;(f_ll) > § = Q(a) for any constant 3 > 2. This completes
the proof. |

C. Numerical evaluation

We design and implement a simple simulator of the model
described in Section III. For the simulations, we assume that
the aggregate connection arrival rate to the system follows
a Poisson process with rate A and that connections have
exponentially distributed durations with mean 1. Notice that
since each new connection is treated independently from any
other event by the relay selection algorithm, it does not matter
which end-host generates it. The number of relay nodes in the
system is n = 1000, unless otherwise specified.

As the maximum load on any relay, m(t), varies with time,
we will consider its time average, namely m(t), in order to
characterize the maximally loaded relay in the system. In
particular, we define (¢

=1/t [;"m
the simulation end time.

We begin by considering the performance of the algorithm
as a function of the connection arrival rate (which is also the
average number of connections in the system). Figure 3.(a)
and 3.(b) present the results for a wide range of arrival rates
under two different popularity models. In the linear popularity
model of Figure 3.(a) the popularity level of relay r; is given
by ¢, thus, a; = 4. This model yields a popularity deviation
a = 2n/(n 4+ 1), which is close to 2. In the Zipf popularity
model of Figure 3.(b) the popularity of relay r; is o; = i~ 2.
The corresponding popularity deviation is o = 392. As
predicted by Theorem 1, the 2-relay and 4-relay algorithms
balance the load well in both moderately (linear model) and
extremely (Zipf distribution) biased popularity distributions,
when compared to the performance of the 1-relay. Moreover,
as predicted by Theorem 1 and 2, the maximum load depends
directly on «. Notice that the maximum load in the linear
model (o = 2) is significantly less than that of the Zipf model
(a = 392). Indeed, as we soon discuss, the maximum load
in these two cases follow two different scaling laws. Finally,
we also observe that the average maximum load on the relays
grows linearly with the arrival rate, as predicted by Corollary
1. Note that the arrival rate here is directly related to the
maximum number of connections in the system, denoted by
k, in the corollary statement.

We now consider a popularity model motivated by the
Gnutella network. In Figure 3.(c) we consider the case where
relays have popularities that are equal to the node degrees
in the Gnutella network. Thus, according to the measurement
studies of [18], [22], we assume that 5% of the relay nodes
have popularity uniformly distributed between 1 and 27; 90%
have popularity uniformly distributed between 28 and 32; and
5% have popularity uniformly distributed between 33 and 60.
In the figure, we vary the number of relays n to study the effect
of n on the performance of the d-relay algorithm. The arrival
rate is 10 * n, hence the maximum number of connections in
the system remains constant. Thus, both k£ and the popularity
deviation « remain unchanged. Again, we observe that our
bounds predict very well the performance of the d-random
choices algorithm where the maximum load increases very
slowly with n (double logarithmic) when both « and & do not
grow.

Finally, we consider the impact of the popularity deviation
« on the maximum load using the Gnutella popularity model.
In order to scale the popularity deviation we increase the max-
imum node degree in the system and keep all other parameters
unchanged (5% of the relays have popularity between 33 and
the maximum degree). Figure 4 shows a regime change in the
2-relay algorithm as « increases. As predicted in Theorems 1
and 2, when « is small (o« = ©(log logn)), the maximum load
in the system increases very slowly, as a double logarithmic
function of n. However, when « is large (o = ©(logn)), the
maximum load increases much faster, as a logarithmic function

) dt, where t, is
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500.
of n. We note that this behavior of the maximum load has not
been captured nor predicted by any previous work.

V. BALANCING RELAY UTILIZATION

As previously discussed, relay nodes can be heterogeneous
with respect to their inherent capacities. In this scenario,
effectively balancing the load across the set of relays is
not necessarily a good strategy. In fact, this may lead to a
scenario where the utilization of the relay nodes are very
unbalanced, possibly overloading some relay nodes. This is
clearly undesirable since both the relay node (i.e., the user
behind that end-host) and the connections traversing that relay
will experience performance degradation. Thus, a good relay
selection algorithm should distribute the load such that relay
utilization is well balanced.

Notice that we treat heterogeneity in relay popularity or-
thogonally to heterogeneity in relay capacity. Although in
practice these two types of heterogeneity are likely to be
correlated (i.e., the most popular relay is the one with the
highest access bandwidth), the algorithm we propose makes
no assumption on their relationship.

A. The utilization-based d-random choices algorithm

We modify the load-based d-random choice algorithm to
consider relay utilization instead of load as the performance
metric for choosing the best candidate relay. In particular, the
chosen relay r, is given by r = arg min;er, (m;(¢) + 1)/k;.
Note that we consider the utilization of the relay node as
if it would be chosen to relay the new connection. This
algorithm will be referred to as the “utilization-based d-relay
algorithm”. Finally, if all relays have identical capacities, then
this algorithm is equivalent to the load-based d-relay algorithm
introduced earlier.

Given the similarity between the load-based and the
utilization-based algorithms, we expect the two to have similar
performances in terms of balancing their respective metrics.
This observation is well supported by the results obtained
through numerical evaluation of the utilization-based algo-
rithm (presented below). We therefore conjecture that the max-
imum relay utilization in any relay is at most log log n+O(«)
whp, where w is the average utilization in the system (i.e.,
the ratio between the total load on the system and the total
system capacity). Extending the proof of Theorem 1 to the
case of utilization is not trivial, because a ball brings different
(non-integer) utilization amounts to different relays.

B. Numerical evaluation

We adapt our simulator to consider heterogeneity on relay
capacities and implemented the utilization-based d-relay algo-
rithm. Notice that each relay node r; € R is now associated
with both a popularity level «; and a capacity x;. These two
values can be correlated (and in practice they most likely are)
and we consider two scenarios in the following evaluation:
fully-correlated and uncorrelated. In the former, we assume
a perfect match between relay popularity and capacity (i.e.,
the relay with the highest popularity is also the one with the
highest capacity, and so on). In the latter, we assume a random
matching between relay popularity and capacity (i.e., each
relay is randomly assigned a popularity level and a capacity
from their respective distributions).

As for the relay popularity, we consider the Gnutella pop-
ularity model introduced in Section I'V-C, which is based on
actual measurements on the Gnutella network. To model the
differences in relay capacities, we use a model proposed in
[7], known as the Gia capacity model. This model is also
based on measurements conducted on the Gnutella network. In
summary, the model associates capacity 1 to 20% of the relays,
capacity 10 to 45% of the relays, capacity 100 to 30% of the
relays, capacity 1000 to 4.9% of the relays, and capacity 10000
to 0.1% of the relays. These capacities are given in terms of
unit capacity, and we will assume that 1 unit of capacity is
equivalent to the load of 25 connections.

We first consider the limitations of using the load-based d-
relay algorithm when relay nodes have different capacities. We
assume a fully correlated system and evaluate the maximum
relay utilization as a function of the arrival rate. The results
are shown in Figure 5.(a), which clearly indicate that the
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using the load-based d-relay algorithm when both metrics are fully correlated; (b) Same scenario but using the utilization-based d-relay algorithm; (c) Same

scenario but with both metrics fully uncorrelated.

load-based d-relay algorithm cannot balance the utilization
effectively. In fact, the maximum utilization is much above
1, indicating that some relays are overloaded. This motivates
the need for a utilization-based d-relay algorithm.

The identical scenario above is considered again but
changing only the relay selection algorithm to the proposed
utilization-based d-relay algorithm. Figure 5.(b) presents the
results showing that utilization is much better balanced in
this case. Notice, as expected, that there is no change in the
performance of the 1-choice algorithm.

Finally, we consider the same scenario above, but when
relay popularity and capacity are uncorrelated. In the previous
case, one could argue that the relay selection algorithm re-
ceives help from the correlations, as high capacity nodes will
be selected more often due to their high popularities. Figure
5.(c) shows the result for the uncorrelated scenario when using
the utilization-based d-relay algorithm. Notice that the 2- and
4-relay algorithm perform only slightly worse than in the fully
correlated case, thus showing that the algorithm indeed spreads
the load to effectively balance utilization. Finally, notice that
the performance of the 1-relay is much worse, due to the lack
of correlation between popularity and capacity.

VI. CONCLUSION

This paper addressed the problem of efficiently and effec-
tively distributing load over a set of heterogeneous relays
in unstructured overlay systems. We prove a novel result
for the maximum load on any relay under a very general
relay popularity model when the well-known two random
choice algorithm is used for relay selection. Our theoretical
result characterizes the performance of the algorithm through
a single parameter (o)) used to measure the heterogeneity of
the relay popularity.

Under the presence of heterogeneous relay capacities, bal-
ancing the load does not lead to a balanced utilization of the
relays. We propose a simple modification to the two random
choices algorithm to consider relay utilization directly. Numer-
ical evaluations through simulations show that the proposed
algorithm can effectively distribute the load in order to balance
relay utilization, even when relay popularity and capacity are
uncorrelated. Although we have not established a theoretical
bound on its performance, we conjecture that the proposed
algorithm can indeed deliver provable levels of performance.
We leave this subject for future investigation.
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