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Abstract

Reliable multicast suffers from the problem of feed-
back implosion. To achieve scalability, the number of
receivers sending feedback in case of loss must remain
small. However, losses experienced by different receivers
are strongly correlated, since they share resources in the
multicast tree.

We present DTRM (Deterministic Timeouts for Reli-
able Multicast), a distributed algorithm to compute op-
timal deterministic timeouts for each receiver in a multi-
cast tree as a function of the tree topology and sender-to-
receiver delays. DTRM has several desirable properties.
First, the computation of the timeouts is entirely dis-
tributed; receivers and intermediate nodes only rely on
local topology information. Second, NACK implosion is
provably avoided for a single loss anywhere in the tree
if delay jitter is bounded. Third, feedback information
does not need to be processed by intermediate nodes,
and receivers do not have to collaborate.

We foresee two possible uses for DTRM. In networks
providing hard delay bounds, timeouts can be computed
once at session set-up time. In networks with unbounded
delays, such as the Internet, timeouts can be adaptively
recomputed in response to changes in estimated round-
trip times.

1 Introduction

The availability of high speed transmission technol-
ogy, the ever increasing performance of workstations
and personal computers, and the convergence of the
data and telecommunications industry will foster the
creation of a powerful networking infrastructure. This
environment will enable a whole panoply of new ap-
plications, including multimedia and distributed com-
puting. It becomes increasingly clear today that many
of these applications will rely on an efficient multicas-
ting service. The recent success of Internet multicast-
ing on the MBONE confirms this. Videoconferencing
on the Internet is rapidly becoming a standard tool
in the research community, despite the rather limited
video and audio quality.

Some applications require a reliable multicast ser-
vice, i.e. the error-free transport of information to
a group of recipients. Such applications include dis-
tribution of “non fault-tolerant” information (such as
software, news, or web-pages), distributed computing
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(database and operating systems), or network man-
agement. We believe that the importance of this type
of service will increase in the future, when distributed
computing becomes commonplace.

It has been observed [1] that a receiver-based multi-
cast protocol achieves better scalability than a sender-
based one. But even a receiver-based scheme suffers
from the NACK-implosion problem if the losses at dif-
ferent receivers are correlated. This is very likely due
to the resource-sharing in a multicast tree. When a
packet is lost on some link, then all receivers on the
subtree fed by this link experience a loss at the same
time and respond.

There are two approaches to solve this problem:
structure-based and timer-based. In structure-based
approaches, intermediate nodes in the tree process
and combine feedback information. Timer-based ap-
proaches, such as the one discussed in this paper, do
not rely on processing by network nodes. Rather, they
rely on delayed feedback to avoid an implosion. They
have the advantage of not requiring network support
for implosion avoidance, but the potential disadvan-
tage of higher application-to-application delays.

Another dimension in the solution space is receiver
collaboration: if receivers are to collaborate, then they
have to buffer correctly received data in order to be
prepared to respond to other receivers’ NACKs. This
also implies that feedback has to be multicast to all
receivers, i.e. that each receiver is also a multicast
source. We assume here that receivers are greedy in
the sense that they immediately consume data they
have already received. Only the sender buffers data for
possible repairs. The receivers only unicast feedback
to the source.

Proposals have been made to use random NACK
delay timers, which allows to reduce the expected
number of NACKs [2, 3]. One reason why only these
heuristic approaches have been proposed is that the
current Internet does not provide for any Quality of
Service guarantees. Next generation networks are ex-
pected to offer a more elaborate service model with
delay and delay jitter guarantees. Currently, vari-
ous bodies are working on standardizing such services,
e.g. the ATM Forum or the Internet Engineering Task
Force (IETF).

This paper presents a rigorous approach to the
NACK-implosion problem. We compute determinis-
tic timeouts based on the multicast tree topology and
sender-to-receiver delays. We establish an optimality



criterion and present an algorithm, called DTRM (for
Deterministic Timeouts for Reliable Multicast), that
computes, for every receiver, a timeout value. In a net-
working environment with delay guarantees, NACK-
implosion is provably avoided. The timeout computa-
tion is efficient and distributable. Neither sender nor
receivers need to have knowledge of group member-
ship or of the complete tree topology. Each receiver
only needs to know its round-trip delay to the sender.

The remainder of this paper is structured as fol-
lows. Section 2 discusses some related work. Section
3 presents the context of the problem in more detail.
Section 4 explains how timeouts have to be set to ful-
fill the single-NACK condition, and establishes an op-
timality criterion. Section 5 presents an algorithm to
compute an optimal timeout allocation. Section 6 dis-
cusses the algorithm, and Section 7 concludes the pa-
per.

2 Related Work

In [1], Pingali et al. present an analytical com-
parison of three generic reliable multicast protocols.
They conclude that a receiver-based approach, where
the receivers carry the burden of detecting losses and
requesting retransmissions, is preferable to a sender-
based approach.

The idea of randomly delaying feedback by receivers
(slotting) and having receivers suppress redundant
feedback (damping) has been introduced in the XTP
protocol [2]. These ideas have been used, for example,
in the SRM protocol [3]. SRM has been used as the un-
derlying transport system in wb, a shared whiteboard
application. The authors of SRM present an adaptive
algorithm that adjusts the intervals from which the
random timers are chosen to the network condition.

Papadopoulos and Parulkar [4] define a reliable
multicast taxonomy around an hypothetical optimal
algorithm. In their taxonomy, our approach is called
sender-controlled implosion control. They also out-
line an algorithm that organizes receivers into buckets,
based on their round trip delay, but not on topology.
Before requesting retransmission upon loss, each re-
ceiver has to make sure that all the receivers in buck-
ets with smaller round trip delays have not already
requested this retransmission. The maximum number
of requests can therefore be limited by limiting the
maximum number of receivers in each bucket.

Two approaches for structure-based implosion
avoidance are discussed in [5, 6]. The fundamental
difference between the two approaches is that in [5],
a group member (called Designated Receiver) is re-
spounsible for processing a region’s feedback, while in
[6], dedicated servers (called Logging Servers) perform
this function.

3 Context

As we try to avoid processing of feedback infor-
mation by intermediate nodes (routers or switches),
these simply forward all feedback packets towards the
sender.

We assume for the moment that the end-to-end de-
lay for a packet sent from the sender to a receiver « is

........ packet(i)
---- packet(i+1)
— NACK(i)

receivers

Figure 1: A packet loss seen by multiple receivers re-
sults in a NACK being sent back to the sender by each
receiver that has seen the loss.

constant and equal to df. Also, we assume that the
receiver-to-sender delay for NACKs is constant and
equal to dév. We call d, = daP + dflv the round trip
delay of receiver a. Furthermore, we assume that pro-
cessing at the sender and the receiver is immediate
(retransmission due to a NACK packet at the source,
detection of loss at a receiver upon reception of an
out-of-sequence packet).

Figure 1 shows how the NACK-retransmission
scheme works: if packet 7 is lost on some link, then
each receiver in the subtree attached to that link ob-
serves this loss upon reception of packet z + 1, and
starts a timer. When a receiver’s timer expires, it
sends a NACK(%) packet back to the sender, request-
ing retransmission of packet 2. When a receiver that
has started a retransmission timer for packet ¢ receives
the retransmitted packet 7, it stops the timer without
further action.

A NACK-implosion can be avoided if we can make
sure that for any loss, one NACK arrives early enough
such that the retransmission of the lost packet caused
by this NACK prevents further NACKs from other
receivers. For this, the retransmitted packet has to
arrive at these other receivers before their timers ex-
pire. We refer to this requirement as the single-NACK
condition. The implicit assumption here is that it is
reasonable to prevent NACK-implosion at the cost of
increased delays in the case of loss.

4 Computing Timeouts

In this section, we first discuss how to determine
some set of timeouts such that the single-NACK con-
dition is met in the entire multicast tree. Then we
establish an optimality criterion. Finally, we describe
a distributed algorithm to determine an optimal set of
timeouts.

Let us introduce some notation. We assume the ex-
istence of a multicast tree. The root of this tree is the
sender. Non-terminal nodes other than the root are
called switches, and terminal nodes receivers. Where
this does not lead to ambiguity, we will sometimes
confuse a subtree and its root. Finally, by downstream
we mean “towards the receivers”, and by upstream we
mean “towards the sender”.

4.1 How to Choose Consistent Timeouts

Assume a packet is lost on a link, and call the sub-
tree fed by this link the loss subtree. All receivers in



the loss subtree, and only they, experience this loss.
Consider two receivers a and 3 in the loss subtree with
round trip delays d, and dg and timeouts ¢, and tg,
respectively.

Assume that an out-of-sequence packet, i.e. the
packet following the lost packet, is sent at time 0. The
out-of-sequence packet reaches receiver a at time dZ

and receiver 3 at time dg. The timer of receiver «

therefore expires at time t, + dZ, the one of receiver
B at tg + d;;. The resulting NACK from receiver «
reaches the source at time £, + d,, and the retrans-
mitted packet reaches receiver 3 at time ¢, +d, + dg.

Therefore, to ensure that only receiver a sends a
NACK back to the sender when both receiver a and
3 experience a loss, we must have

tg > ta +do +e (1)

where € > 0 is a small constant. We say that 3 fulfills
the single-NACK condition with respect to a. Note
that given the assumption of constant delays, there is
no point in choosing tg larger than i, + do + €, so we
assume equality in the sequel.

Our goal is to set timeouts for receivers in a mul-
ticast tree such that any single loss on a link only
results in a single NACK coming back to the source.
This can be achieved by assigning to each subtree A
a representative receiver o with round trip delay d,
and timeout ¢, such that every receiver 8 # « in this
subtree fulfills condition (1).

Definition 1 An allocation ¢ for a tree is a map-
ping of the set T of subirees (including the tree itself)
onto the set p of receivers, such that for any subtree
A € T with representative recetver o = ¢p(A), all non-
representative receivers [ # « in A fulfill the single-
NACK property with respect to o

Figure 2: An example allocation.

Fig. 2 gives an example of an allocation. The round
trip delay d; has been set to 10 for all receivers z, and
e = 1. A dashed arrow from a switch to a receiver
means that this receiver is the representative receiver
of the subtree rooted at this switch. The numbers
below the receivers are the timeout values.

Note the following property that is formalized in
the lemma below. Suppose a tree A is a subtree of a
tree B. Furthermore, suppose that B’s representative
a = ¢(B) lies in A. All receivers in B, and in par-
ticular all receivers in A, must fulfill the single-NACK
property with respect to a. Therefore, a is also A’s
representative.

Lemma 1 If ¢(B) = «, then any subtree A of B such
that « is in A has ¢(A) = o

Proof: This follows directly from the previous para-
graph. 0O

We now give the algorithm that determines the
timeout for each receiver in a tree A, given an allo-
cation ¢. We need the following definition.

Definition 2 The set of cotrees associated with a re-
cewer o and a tree A is the set of subtrees of A not
containing ., that are also direct children of some node
on the path from the sender to «.

Consider Fig. 3 for an illustration. Basically, the
idea behind cotrees is the following. Assume that we
have already chosen timeouts within each cotree of «
such that the single-NACK property is fulfilled. Then
each cotreeis a possible source of one unwanted NACK
when A is the loss subtree and « is A’s representa-
tive. By adding a constant offset sp to each receiver’s
timeout within a cotree B, we can fulfill the single-
NACK property with respect to a while maintaining
the single-NACK property within B. This is the idea
behind the algorithm below. Given an allocation ¢, it
recursively computes this offset s to be added to every
timeout in a subtree (cf. Fig. 3.)

sender

Figure 3: The cotrees of receiver a.

Algorithm 1: Computing timeouts for a given
allocation ¢

Initialize the timeout of each receiver to zero.
Let A be the entire tree.

1

2

3 Set the offset s4 = dga) +¢.

4 Add s4 to the timeout of all receivers € cotrees
of ¢(A).

5 For each nontrivial cotree® A’ of ¢(A), set A=
A’ and repeat step 1.



Step 1 ensures that if A is the loss subtree, then
only A’s representative ¢(A) produces a NACK. Ac-
tually, it ensures the single-NACK condition for all
subtrees of A containing a (cf. Lemma 1). The only
loss subtrees left after this step for which the condition
has not been enforced are the subtrees of the cotrees
of a. Therefore, the process is repeated recursively for
the cotrees.

4.2 Optimal Timeouts

Now that we are able to compute the timeouts given
the allocation ¢, i.e. given a representative receiver for
each subtree, we need to establish a sensible cost func-
tion to compare allocations. For this, let us consider
for a moment how a reliable end-to-end transport pro-
tocol based on acknowledgments (negative or positive)
works. The goal of the protocolis to deliver data to the
application error-free and in order. This means that
the transport protocol layer buffers all data following a
loss, until the lost data has been retransmitted. Only
then can the data be handed over to the application.
Now, in our framework, observe what happens to a
receiver a in the worst case (the case where nobody
else’s NACK arrives at the sender earlier than a’s) be-
tween the moment when the receiver realizes a packet
has been lost, and the moment when this packet ar-
rives at this receiver. The receiver runs its timer for
time tq, and then sends a NACK, which takes time
dY to arrive at the sender. The retransmitted packet

then takes dap to arrive at aw. The total time is ¢, +d, .
It makes sense to minimize the largest ¢, +dq, both
to minimize the buffering necessary in the transport
protocol layer, and to minimize the delay seen by the
application. Furthermore, the transport layer of the
sender also has to perform buffering, to allow for the
retransmission of lost packets. The sender can be sure
that all receivers have received a packet if it has not re-
ceived a NACK after max{t,+dq }, where we are max-
imizing over all the receivers in the multicast tree?.
We therefore want to minimize

T = max{tq + do} (2)
aEp

where p is the set of all receivers in the multicast tree.
4.3 Computing an Optimal Allocation

Consider a subtree A with a root, n links and n
children Ay,..., A, (cf. Fig. 4). Assume the alloca-

Figure 4: A subtree, consisting of a root, n links and
n children.

tions inside the children are fixed, and that timeouts
have been determined inside each child such that the

2provided the NACK and the retransmitted packet are not
lost themselves.

single-NACK condition holds. Lemma 1 says that our
only degree of freedom in choosing an allocation for
A is choosing one of its children’s representative as
A’s representative. If we choose the representative a;
of subtree A; as the representative of tree A, then
we have to add an offset s4,[¢] to all the timeouts
of receivers in the other children {Ay,...,A,}\ {4:}.
because these children are cotrees of a;. The timeouts
of the receivers in A; remain unchanged.

We now make the following definition:

Definition 3 For a subtree A and an allocation ¢, the
triple (sal¢],Tal¢),¢) is given by

SA[¢] = d¢(A) + €
Tal¢] ggﬁ{ta +do} (3)

where p 4 is the set of receivers of subtree A and where
the to have been computed using Algorithm 1 in subtree

A.

For a subtree A, T4[@] is the cost function we are
trying to minimize, and s 4[¢] is the offset that we have
to add to A’s siblings if we choose A’s representative
as A’s parent’s representative. We call the set of all
triples (sa[¢],Ta[¢],¢) for a tree A the characteristic
set of A. Note from (3) that sa[¢] and Ta[¢] only
depend on the allocation for A and its subtrees. In
other words, two different allocations that are equal
within A would not give rise to two elements in the
characteristic set. For ease of notation, we do not
make this explicit. As an example, the following

Figure 5: An example tree; an optimal allocation and
the resulting timeouts with € = 1 are shown.

tables gives the characteristic sets of nodes A, B and
C of the tree in Fig. 5. The optimal allocation shown
in Fig. 5 is framed.

(seld] [ T[4 [ ¢ [ ta [ t5 |
2 4 B— « 0 2
3 4 ‘Br—)ﬁ‘3 ‘0 ‘
[scldl [ Tcle] | ¢ [ i [ s |
4 8 C— 0 4
5 8 ‘CI—)& 5 ‘0 ‘




b
S|

]

5
=

R
o~
)
o~
12
o~
=

NS

2R[wwme R

TTHYITTT

TITIITITT

®p

TITIITTs

[S I I EUCRCR VR N | VY
s ] s s s s S
S o222 >

00Ut =W o o+

(205 ! ol No SRCREN HIN
O OB B W -IN O

=IO © N N

3 b tof b by bt b
Qaqaaaaq

S

We now show that the characteristic set of each
subtree can be computed from the characteristic sets
of its children, and that the optimal allocation ¢opr
can be found this way. If ¢(4;) = ¢(A), in other
words, if A;’s representative is also A’s representative,
then it follows from Definition 3 and Algorithm 1 that

salg] = sald] (4)

T4 [¢] = maX(TAz [¢]7 ie{l,I..n.%\{l}{SAl [¢] + T4, [¢]})

If A is a trivial subtree (i.e. the subtree contains
only a receiver @), then a is A’s representative. The
single corresponding element (sa[¢], Tal¢],¢) in A’s
trivial characteristic set is given as follows.

salp] = do+e
Talg] = dao
p(4) = « (5)

This follows readily from Definition 3.

The previous observations can now be used to de-
vise a recursive algorithm that finds an optimal allo-
cation ¢opr that minimizes T4[¢]. Any non-terminal
node (switch or sender) in the tree can compute its
characteristic set based solely on the characteristic
sets of its children using (4). This can be done for
each node in the tree in a recursive manner, until the
root S of the tree (the sender) knows its characteristic
set. The optimal allocation ¢opr is then simply the
one minimizing Tg[.]. To find each receiver’s timeout,
Algorithm 1 can then be applied.

Let us look at the size of A’s characteristic set as
a function of the sizes of the children’s characteristic
sets. Call A;’s set size m;. From (4) we see that we
have n choices for placing A’s representative in one of
A’s children. Furthermore, in each child A;, we can
choose among m; allocations. Thus, the size of A’s
characteristic set is

n

m:n-Hmi. (6)

i=1

Thus, this algorithm suffers from the combinatorial
explosion of the size of the characteristic set, as ex-
pressed by (6). In fact, this algorithm does nothing
else than explicitly enumerate all possible allocations
for the entire tree and compute the cost for each of
these allocations. This, of course, becomes rapidly
impractical as the tree size increases. In the remain-
der of this section, we show that only a small subset
of the characteristic set, which we refer to as the con-
strained characteristic set (CCS), is necessary at each
node in the computation of ¢opr, and we find a tight
upper bound on the size of this set.

Lemma 2 Consider two elements (sa[¢],Ta[d], ¢)
and (sa[¢),Ta[],4) in the characteristic set of a
subtree A, where ¢ and ¢ differ in A. Assume that
salg] > sa[y] and Talp] > Ta[y)]. Then an opti-
mal allocation ¢opr can be found without considering
(sa[¢], Tald],¢) in the computation of the character-

istic set of A’s parent>.

Proof: Assume that ¢ and 9 are identical outside
A, i.e. that for any X not subtree of A, we have either
$(X) = ¢(X) & pa (the set of A’s receivers), or both
#(X) € A and 9(X) € A (but possibly different).
This poses no restriction on the proof, as the elements
of A’s characteristic set only depend on the allocation
within A, and such a pair of allocations always exists.
Let B be the parent subtree of A.

Each element in a subtree’s characteristic set cor-
responds to an allocation in this subtree.  Call
(s[¢). Talél, ) and (sl¢],Tl¢].%) the clements
of B’s characteristic set resulting from (4).

Counsider the two cases where (a) B’s representative
isin A, and (b) where it is not. In case (a), it follows
from Definition 3 and the assumption in Lemma 2 that

sBlp] = salg] > sal] = sp[¢]. (7)
Thus,
Told] = max(Tald)_max {sald] + Txld])
> max(Talyl,_max  {sals] + Txlo])

= Tg[y]. (8)

because T4[¢] > Ta[¢] by assumption and Tx[¢] =
Tx[¢] because X is outside A (i.e. X is not subtree of
A), and where ¢(B) represents the set of B’s children.
In case (b), denote with ¥ B’s child in which B’s
representative receiver ¢(B) = 4(B) lies. Then

sp[¢] = sy[¢] = sy[¢] = sB[Y]. (9)
The fact that X and Y are outside A implies that
Told] = wax(Tylgl | max {svid] + Txld])
sy[¢] + Ta[4])
> max(Ty[vy], XEC(%I?\}JEY,A}{SY['I'[)] + Tx[¥]},
sy[v] + Tal¢])
= Tg[Y] (10)

It follows that the same property that holds for
(sa[¢], Tald],¢) and (sa[¢],Talt],4) holds for the

two elements of B’s characteristic set as well, namely

spl¢] > sp[¢]
Tsl¢] > Tz[Y]

3In the special case of two equalities, we need to consider
one of the two elements, but not both.




By induction, it holds for two elements of the root
S’s characteristic set. As we need to find the element
(ss[¢], Ts[¢],¢) that minimizes Ts[¢], it follows that
there cannot be a single optimal allocation ¢ as there
always exists another allocation 7 that is at least as
good, i.e. has an equal or lower Ts. Therefore, to find
some ¢popr through (4), it is not necessary to consider
(sa[#], Tal¢],¢) . This completes the proof. O

The next lemma states that there exists a global
optimal such that if B is any subtree and A is a child
of B, then the allocation in A is locally optimal (i.e.
it minimizes T4[¢]) if B’s representative ¢(B) is not
in A.

Lemma 3 Assume a subtree A with n children
A1,..., A, and assume that A;’s representative ¢(A;)
1s selected as A’s representative. Then in order to find
a globally optimal allocation, it is only necessary to
consider the elements (sa;[¢), Ta,[d],¢) of the char-
acteristic set of Aj, j € {1,...,n}\{¢} that minimize
TAj [¢)]

Proof: As A’s representative is not in Aj, sa[¢] =

s4,[¢] is independent of the choice of allocation in A;.
Iso,

Talg] = max(Talo). _ max {oa,[6]+Ta,01})
(1)

shows that selecting an allocation ¢ that does not min-
imize T4, [$] can only increase T4[¢]. Thus, selecting
a ¢ that does not minimize T'g,[¢] results in elements
in A’s characteristic set that need not be considered
by virtue of Lemma 2. Therefore, if A’s representative
is not in A;, we only have to consider elements of A;’s
characteristic set that has minimal T4, [¢]. O

Lemma 2 and Lemma 3 increase the efficiency of the
recursive algorithm to find ¢opr. Lemma 2 limits the
size of the characteristic set at each node, and Lemma
3 makes the computation of a node’s characteristic set
from its children’s characteristic sets more efficient, by
limiting the number of combinations that have to be
considered. We call the subset of the characteristic set
that needs to be retained at each node the constrained
characteristic set (CCS).

We now prove a theorem that gives a small and
tight upper bound on the size of the constrained char-
acteristic set if elements are deleted at each node ac-
cording to Lemma 2.

Theorem 1 Let h denote the height of a node, defined
as the number of links on the longest path from this
node to some leaf in the subtree rooted at this node*. If
elements of the characteristic set of a node are deleted
according to Lemma 2, then the size of this set is at
most max(h,1).

Proof:

lemmas.

The proof makes use of the two following

4For example, the tree shown in Fig. 2 is of height 3.

Lemma 4 A trivial tree of height 0 (containing just
a receiver) has a constrained characteristic set of size
one.

Proof: This follows readily from the fact that there
is only one possible allocation in a trivial tree, as noted
previously (cf. Eqn. (5)). O

Lemma 5 A tree of height 1 has a constrained char-
acteristic set of size one.

Proof: A tree A of height 1 consist of a switch and n
receivers directly attached to this switch. We can as-
sume w.l.g. that do, < d,, < ... < d,,. If two round-
trip delays were equal, allocating one or the other is
equivalent, and it is therefore enough to consider one
of them.

There are n elements in the characteristic set of this
tree, corresponding to selecting one of the n receivers
as representative. If receiver ¢ is chosen as representa-
tive, then the element of the characteristic set, denoted

1E)y) (sal[#i], Tal¢i], i) can be computed from (5) and
4).

SA[¢2'] = dai +e€
Talp:] = max(Ta [¢i]7j

= do, +e+ max
je{1l,...,n}\{i}

e, oy {saldil + Taloslh)

{da; } (12)

Therefore, sa[d1] < sa[p2] < ... < sa[pn]. Also,
as maxje(i,... n}\{i}1da; } = do, whenever i < n, it
follows that Ta[¢1] < Tal¢p2] < ... < Ta[¢pn_1]. As
for Ta[bn],

TA[¢n] = dozn +e+ dan_l > TA[¢1] = dal +e+ dal
(13)
In particular, equality only results for n = 2. There-
fore, there is only the element corresponding to allo-
cating receiver @y with smallest delay as A’s represen-
tative in CCS4. 0O

We have proved the assertion for the cases where
h =0 and h = 1. We are now ready to complete the
proof for any h. For this, consider a subtree A and
denote the receiver in A with the smallest round-trip
time with amin (assuming it is unique.) Denote the
cotrees of apiy in A with Aq,..., A,, as shown in Fig.
6. We prove the theorem in two steps. First, we show
that there is exactly one element in CCS 4 correspond-
ing to allocating i, as A’s representative. Second,
we show that all other possible elements in CCS 4 cor-
respond to selecting A’s representative in one partic-
ular cotree of amin. This results in the desired bound
on the size of CCSy4.

To show that there is exactly one element in CCS 4
corresponding to selecting amni, as A’s representa-
tive, note that this choice corresponds to an element
of CCS4 (sa[¢],Tal¢],¢) that minimizes sa[¢] =
da,,,, + €, by definition of ami,. Among all alloca-
tions that have apni, as A’s representative, by virtue
of Lemma 3, only one allocation minimizing T4 [¢] cor-
responds to an element in CCS4.
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Figure 6: The cotrees of receiver o, ;) with the lowest

round-trip delay in the entire tree.

To bound the number of other elements in CCS4,
call the minimal T4,[] in cotree A; TZPT. Let
_____ n{TZPT}, and the corresponding
cotree the dominant cotree DC (assuming, for the mo-

ment, that it is unique). This is the cotree with the
highest cost for its local optimum.

ngT = max;—1

Lemma 3 states that if ami, is A’s representative,
then a necessary condition for an allocation to be in
CCS4 is that it corresponds to the locally optimal
allocation in each cotree of amin. Therefore, T4[¢] =

salg] + THET.

Let 9 be another allocation such that A’s repre-
sentative & = ¥(A) # Qmin is not in the dominant
cotree DC. It follows that DC is either a cotree of «,
or it is a subtree of a cotree of @. For the single-
NACK property to hold with respect to «, the offset
sa[Y] = do + € has to be added to all the timeouts in
a’s cotree, and in particular, to the timeouts in DC.

Then T4[¢] must be at least sa[y)] + TSET, as by def-

inition TSET minimizes Tpcl.]. As sa[yh] > sa[¢] and

therefore T4 [1)] > T[], ¢ is not in A’s CCS (Lemma
).

Thus, A’s CCS has always exactly one element cor-
responding to @i, as A’s representative, and possi-
bly other elements corresponding to allocations that
place A’s representative & in auyj,’s dominant cotree
DC. For each such choice of @ in DC, the same argu-
ment as before can be used to show that there is only
one allocation 4 possible in A’s CCS: a uniquely de-
termines s4[¢], and thus only the element minimizing
T4[¢] survives.

It follows that size (A’s CCS) < size (dominant
cotree’s CCS) +1. Also, height (A) > height (dom-
inant cotree)+1. Therefore, by induction anchored on
Lemma 5, the assertion is proved.

If amin’s dominant cotree DC is not unique, i.e.
nglT = ngf = THET, then A’s CCS has only
one element, corresponding to ¢(A4) = @min. To see
this, assume there are two dominant cotrees, DC} and
DC5. Let 4 be an allocation such that ¢(A)isin DC.
Due to DCs, Talt)] must be at least sa[y] + TSET.
Therefore, there is no element in A’s CCS correspond-
ing to 1. This is easily extended to more than two
dominant cotrees. This completes the proof. O

5 Distributed Optimal Timeout Com-
putation

Each element of a node’s CCS corresponds to a
“candidate allocation”, i.e. an allocation that might
be globally optimal. Suppose that a node that has
computed its own CCS from its children’s CCSs does
not know the complete allocation function ¢ corre-
sponding to each element of its CCS, but only (a) in
what child lies its own representative receiver, and (b)
which among the possible candidate allocations should
be chosen in each child. Then it can be seen that any
node’s representative receiver for some allocation in
this node’s CCS can be determined in the following
way: start at this node and note which is the candi-
date allocation in the child containing the representa-
tive receiver. Go to this child node, which knows in
which of its children is its representative receiver for
this candidate application. Do this recursively until
you reach a receiver.

to parent
5 T
8 21
7 23

child _index

from child 1 from child 2
Figure 7: The topology information associated with
the allocations in a node’s CCS is distributed.

Furthermore, Lemma 3 states that we need to know
(b) above actually only for the child containing the
representative receiver, because the other children’s
allocation is locally optimal. Thus, instead of the full
allocation function ¢, we only need to associate with
each CCS element (a) a pointer to the child containing
the representative receiver, and (b) an index into that
child’s CCS. Fig. 7 illustrates this: the node receives
two CCSs from its two children, and computes its own
CCS. Internally, it maintains the pointer to the rep-
resentative child and this child’s CCS index. It sends
the CCS to the parent. In the end, the root knows its
own CCS. It can then pick the element (sop7,TopT)
that has the lowest cost function T'.

The downstream part of the algorithm computes
the actual timeouts. Each node receives an index into
its CCS and an offset from its parent. Call the offset
S and the selected CCS element (s, T, child,indez).
Each node now sends to its representative child chzld
the offset S and ndex. It sends to all of its other
children as offset S + s, and as index the one corre-
sponding to the child’s local optimum (cf. Lemma 3).
Finally, the receivers set their timeouts to the offset
value they receive from their parent.

The following example illustrates the algorithm pre-
sented in the previous section. The topology of the



[ Node [ child CCS [ own CCS
B CCS, = {(2,1) {(2,4,, 1)}
CCss = {(3,2)
C CCS‘)‘ - (4!3) {(4585 Y, 1)}
CCSs = {(5,4)
A CCSg = {(2,4)} {(2,10,B,1),(4,8,C,1)}
CCS¢c = {(4,8)}

Table 1: The upstream part of the distributed timeout
computation.

[ Node [ child J index [ offset |

A B 1 4
C 1 0
B o 1 4
B 1 6
C ¥ 1 0
[ 1 4

Table 2: The downstream part of the computation.

network is depicted in Fig. 5. Table 1 shows the com-
putation each node performs in the upstream part of
the protocol. The element chosen in the root’s CCS
as the best is underlined. Compare this to A’s full
characteristic set in Section 4.3.

Table 2 shows the downstream part of the protocol.
The resulting timeouts are reported in Fig. 5. It is
interesting to note that the receiver with the smallest
round-trip delay is not the tree’s representative in the
optimal allocation.

6 Discussion

The algorithm shown in the previous section com-
putes an optimal set of timeouts. Theorem 1 bounds
the size of the upstream messages to the height of a
node, which is O(logn) in a balanced tree. For ex-
ample, assume that a multicast group has 10000 par-
ticipants, and that each switch only has two children.
Then the constrained characteristic set of the root is
at most of length [log,(10000)] = 14. Note that no
node in the tree has to know the entire topology, and
that communication is local: a switch only commu-
nicates with its parent and its children, and receivers
only communicate with their parents.

Let us briefly look at what happens when the
unique NACK gets lost. If this occurs, then every
cotree of the global representative (the entire tree’s
representative) produces one NACK. Assuming a bal-
anced multicast tree of outdegree m, there are at
most m — 1 cotrees at each level. Thus, the num-
ber of additional NACKs produced would be at most
(m — 1)[log,,(n)], where n is the number of receivers.
In the example above, this number would be 14. In
other words, a NACK loss results in a reasonable num-
ber of additional NACKs, placing only a small burden
on the sender.

We have so far talked about a single sender and
multiple receivers. In a multicast group with multiple
senders, each receiver would need to know its round
trip delay to each of the senders (as in [3]). In shared-
tree group multicast (e.g. [7]), the core might take

the role of the retransmitter, which would improve
scalability by only requiring a single timeout at each
receiver despite multiple senders.

7 Conclusion and Future Work

We have presented a rigorous solution to the
NACK-implosion problem in reliable multicast. A
scalable algorithm to compute optimal timeouts has
been derived. This algorithm has several advantages.
First, the computation of the timeouts is entirely dis-
tributed. No node in the tree (sender, switches, re-
ceivers) needs to maintain global information, and
communication to compute timeouts is local between
neighbors in the tree. The protocol messages remain
small even for very large multicast groups. Second,
the single-NACK property is deterministic, i.e. we
are guaranteed that only one NACK results from a
single loss, provided that the NACK and the retrans-
mitted packet are not lost themselves. Third, this al-
gorithm computes a set of timeouts that is optimal
with regard to the window size of the transport proto-
col layer. This maximizes the efficiency of the multi-
cast service by minimizing the buffering requirements
in the transport layer, and by minimizing the delays
seen by the application. Fourth, switches don’t need
to process or merge NACK packets — they simply for-
ward them to the sender. This is compliant with the
ATM paradigm of end-to-end segmentation and re-
assembly. Also, switches don’t need to do any inter-
mediate buffering of data on behalf of the multicast
session.
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