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Abstract

This paper proposes a multipoint-to-multipoint mul-
ticast architecture for ATM networks. The necessity for
such an architecture stems from the scalability require-
ments, both in terms of state to be maintained in the
network and in terms of the group population dynamics,
of a wide range of networking applications.

We argue that approaches of using multicast servers
or meshes of point-to-multipoint Virtual Circuits (VCs)
may be inadequate solutions to this problem. We pro-
pose a true multipoint-to-multipoint architecture called
SEAM, which uses a single VC for a multicast group
consisting of multiple senders and receivers. We achieve
this without changes to ATM’'s AAL5. SEAM relies on
an additional switching feature we call cut-through for-
warding, which enables the mapping of several incoming
V(s into outgoing VCs.

We believe that SEAM is both an important and nec-
essary step in the evolution of ATM. It will enable ap-
plications relying on group multicast to benefit directly
from ATM's quality of service support and scalable band-
width and the resulting performance advantages. Also,
it considerably simplifies the problem of supporting IP
multicast over large ATM networks.

1 Introduction

Support for multi-party communications is viewed
as a critical building block for enabling transpar-
ent, scalable communication. In most of the existing
work on IP and ATM multicasting, human collabo-
rative applications such as audio/video-conferencing
and shared interactive workspaces are cited as one of
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the primary applications to benefit from a multicast
service. Since bandwidth has been and continues to
be a scarce resource in the Internet, one of the main
goals of these studies has been the gain in bandwidth
efficiency that multicast offers over unicast. The obvi-
ous goal of minimization of resource usage to a single
transmission of a message over a given link has been
paramount. We believe that another fundamental at-
tractiveness for multicasting is its ability to abstract
the identity of individual members of the group to a
single common group identity. This enables scaling
of the communication mechanism to arbitrarily large
numbers of participants and network sizes.

The emphasis on human collaborative applications
and bandwidth efficiency has led to design decisions
that can impede scalability for other more general uses
of multicast. Multicast sessions for human collabo-
ration, based on the nature of human behavior, can
be expected to be relatively static. Also, the set of
senders to the group is small: a person is often unable
to look and listen to even a few speakers at the same
time. Thus, scalability has been addressed only in
terms of the size of the receiver population. This has
led to designs based on per-source distribution trees,
such as DVMRP [1], MOSPF [2], and ATM UNT 4.0
[3].

Multicast serves as a communication abstraction
between a set of group members. In many circum-
stances, the group members are all potential senders;
furthermore, the group population can be large and
highly dynamic. The main motivation for using a
multicast service then lies in the decoupling of the
application and the group membership management.
In other words, the application is relieved of the bur-
den of tracking group membership; it can address the
group as a single entity. This proves important in
many distributed systems, where requiring the ap-
plication to track membership and manage member
arrivals and departures results in complexity and is
an additional computational burden. Such applica-
tions include distributed interactive simulation (DIS),
distributed databases and caches [4], and distributed



games.

In DIS, a multicast group represents a cell of sim-
ulated terrain, and group members are processes rep-
resenting objects moving in the corresponding cell of
the terrain. Objects “inform” other interested objects
(i.e., objects in the same cell) of their actions (move-
ment, state changes etc.) Thus, all objects are poten-
tial senders. Also, the objects’ movements between
cells can translate into frequent membership changes.

In summary, in order for a multicast service to ef-
ficiently support a wide range of applications, we be-
lieve it has to offer the following;:

1. Membership management symmetry for senders
and receivers.

2. Scalability in the total network size, the group
size, and the frequency of membership changes.

These requirements impose certain design choices.
First, the multicast group should be represented by
a single tree shared by all group members (senders
and receivers) [5]. We will elaborate on this in Section
2. Second, only network nodes (switches or routers)
on the tree for a group should have to maintain state
concerning that corresponding group. Otherwise, the
cost of setting up and maintaining a large number of
sparse groups will become excessive, as has been ob-
served with DVMRP. Third, it must be possible to
support member-initiated group membership changes.
If all membership changes have to be processed cen-
trally, the burden of communication and processing
overhead, latency, and unreliability can become ex-
cessive.

It is important to note that these issues are funda-
mentally tied to the scalability requirements of multi-
party communication, and do not depend on the par-
ticular network protocol, such as TP or ATM. Note
that the clear distinction of the connection-less na-
ture of IP and the connection-oriented nature of ATM
vanishes for multicast: both protocols have to main-
tain per-connection state in network nodes. The only
difference lies in how this state i1s set up and main-
tained. IP has traditionally preferred soft-state ap-
proaches based on periodic refreshes, while ATM has
preferred hard-state approaches based on explicit state
creation and deletion.

The only protocols proposed so far recognizing the
need for a shared tree are CBT [5] and the sparse
mode of PIM [6]. In ATM, member-initiated join and
leave has been incorporated into ATM Forum UNI ver-
sion 4.0 for point-to-multipoint communication. How-
ever, there has been no proposal for a “convenient”
multipoint-to-multipoint communication mechanism.

While MARS [7] uses a single tree spanning all re-
ceivers, rooted at a multicast server, senders have
to create point-to-point (unicast) connections to the
server, violating the network state scalability require-
ment above. Also, the server may be both a bot-
tleneck (due to the necessity to perform reassembly-
segmentation in the server) and a single point of fail-
ure. The number of Virtual Circuits (VCs) used on
the link to the server may be a scarce resource as well.

In this paper, we propose a true multipoint-to-
multipoint architecture for ATM, called SEAM. It is
compatible with the requirements elaborated earlier,
and 1s therefore based on a single, shared tree. A single
VC per link is used to send cells from all the senders
of the multicast group to the receivers in the group.
Conceptually, SEAM is closest to CBT, while it main-
tains the cell-switched nature of ATM. Cell switching,
i.e., forwarding small, fixed-sized cells, has been in-
troduced in ATM to simplify the switch’s hardware
architecture, and providing for higher performance.
However, manipulating sub-packet units means that
we need to be careful when forwarding from more than
one incoming VC into one (or several) outgoing VC,
because cells belonging to one packet need to remain in
sequence. We solve this problem through a small mod-
ification to cell forwarding, called cut-through forward-
ing. Short-cutting is a proposed signalling mechanism
that sets up the cell forwarding tables so that packets
span the shared tree, reducing delay and increasing
bandwidth efficiency. Short-cutting is an emulation of
reverse path forwarding on the shared tree through
an appropriate mapping of the incoming VCs onto
the outgoing VCs belonging to the same SEAM tree.
SEAM achieves the multipoint-to-multipoint commu-
nication over AAL5, with no changes to the cell head-
ers, and does not require switches to examine the cell-
payload.

One of the ancillary goals in our proposing SEAM
is a desire to support IP multicasting in ATM net-
works. An ATM backbone may have many IP routers
at the periphery. A straightforward mapping of a large
number of IP multicast addresses among these routers
using point-to-point VCs results in excessive state to
be maintained and managed in the ATM backbone.
SEAM overcomes this by having a single virtual chan-
nel associated with each IP multicast address.

The remainder of this paper is structured as fol-
lows. Section 2 explores the necessity of having a sin-
gle shared tree in more detail. Section 3 discusses
signalling, and Section 4 discusses data forwarding.
Section 5 concludes the paper.



2 Necessity of a Single Shared Tree

In this section, we show that the necessity of a sin-
gle shared tree derives directly from our assumptions
of sender/receiver symmetry and scalability. More
specifically, we focus on three aspects of scalabil-
ity: network state, dynamic membership manage-
ment, and membership coherence.

2.1 Network State

Even when the group membership is static, group
connectivity based on per-source trees or on a multi-
cast server results in a number of VCs equal to the
number of potential sources on the links towards the
receivers or the multicast server. This may be reason-
able in an environment of a few senders and a large
number of receivers. However, a large number of ap-
plications rely on a model where all group members
are receivers and potential senders.

2.2 Membership Management

We use simulation to illustrate the difference in join
performance for multicast groups based on a shared
tree (such as CBT and SEAM) and groups based on
source-based trees (such as DVMRP or ATM UNI
4.0). We first generate random network topologies,
using the algorithm proposed by Waxman [8]. The
topologies we generate have 1000 nodes and an average
outdegree of approximately 7'. We then randomly se-
lect nodes of this graph as group members. There are
three types of possible group members: pure senders,
pure receivers, or members that are both senders and
receivers. We then create a multicast group con-
necting the members. There are two types of group
connectivity: shared-tree groups (SEAM) and source-
based tree groups. For shared-tree groups, we use the
following heuristic to determine the core node. We
select as the core the node of the random topology
closest to the center of mass of the set of receivers.
For source-based tree groups, we set up a shortest
path tree for each sender (including members that are
senders and receivers) to all of the receivers. We then
randomly select a node among the non-member nodes
to i1ssue a join request. This new node can request to
join as a receiver, as a sender, or as both.

We consider two metrics to evaluate the perfor-
mance of the join request, namely latency and re-
source consumption. “Latency” measures the time it
takes to create the state in the network to include the
new member in the group. For shared-tree groups
(SEAM groups), join latency is the time to reach
the existing tree on the shortest path towards the

1 This outdegree is relatively large, but for random topologies
of this size, it is computationally hard to get smaller outdegrees,
as graphs tend to be disconnected with high probability.

core.? For source-based tree groups (meshes of point-
to-multipoint VCs), join latency is the maximum of
the join latencies to all of the source-based trees. In
other words, we assume that the multiple joins can
progress in parallel. Each hop traversed by the join
contributes a unit of time to the latency. Resource
consumption measures the total amount of processing
a join requires in the network. We simply count how
many hops are traversed by signalling messages re-
lated to this join. As in a SEAM group, there is only
one signalling message, this is of course equal to the
distance in hops between the new node and the tree.

For each random topology, we generate fifty mul-
ticast groups and one join of each type to this group
(receiver join, sender join, sender-receiver join). As
a stop criterion, we require that the 90 % confidence
interval of both metrics for the three types of joins be
within +10% of the estimated mean.

We consider two types of group members. For the
first type of group members, we assume only sending
and receiving members. Fig. 1 and 2 depict the la-
tency and resource consumption as a function of the
group size. The join latency for the shared tree is con-
siderably lower than for the collection of source-based
trees. This is because it is very likely that at least
one of the joins to the source-based trees has to travel
quite far to reach the existing tree. Of course, the ex-
act extent of the performance advantage of the shared
tree over the collection of source-based trees depends
on the network and the group topologies as well as
on the core placement. The difference in terms of re-
source consumption is extremely large, and continues
to grow with group size (cf. Fig. 2). This is because a
new group member in the source-based tree case has
to build up a new tree rooted at itself to all the ex-
isting receivers, and it has to join all of the existing
source-based trees. Thus, the join cost grows approxi-
mately proportional to the group size, whereas for the
shared tree, the cost actually gets lower as the group
size increases, as on the average, the join hits the tree
of a large group earlier.

For the second type of group members, we assume
there are only pure senders and pure receivers in the
group. The size of the receiver population is fixed at
100. We vary the number of senders. Fig. 3 and 4
depict the join latency and resource consumption for
both new senders and new receivers. We see the ex-
cellent join performance, both in terms of join latency
and of resource consumption, of the shared tree. For
the group based on source-based trees, the join latency
for senders is worst. This is because a new tree has to
be built up, and therefore the latency 1s determined

2For senders, it is sufficient to reach any part of the shared
tree, while receivers have to connect to a node on the receiver-
spanning tree.



Member join latency as a function of group size
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Figure 1: The join latency for members as a function
of the number of members. A member i1s both a sender
and a receiver.
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Figure 2: The join resource consumption for members
as a function of the number of members. A member
1s both a sender and a receiver.

by the longest path between the new sender and any
of the existing receivers. In terms of resource con-
sumption, we again observe more than two orders of
magnitude in difference between the shared-tree group
and the source-based tree group. Only for small num-
bers of potential senders are receiver joins compara-
bly cheap to the shared tree. Again, the join cost
for receivers scales up approximately linearly with the
number of sources.

Our simulation results suggest that a single shared
tree is a good solution for large scale multicast groups,
where the number of senders is not negligible.
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Figure 3: The join latency for senders and receivers as
a function of the number of senders. The number of
recelvers 1s 100.
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Figure 4: The join resource consumption for senders
and receivers as a function of the number of senders.
The number of receivers is 100.

2.3 Membership Coherence

In a per-source tree environment, providing the cur-
rent membership information to a new sender/receiver
is problematic as well. One way to provide information
on the existing sources and receivers is to have a repos-
itory of such information somewhere in the network.
The problems of keeping the repository up-to-date, en-
suring that access to the repository is not a bottleneck
in the presence of constant membership change and
providing a coherent view to new participants have to
be addressed. For example, it is difficult to deal with
the situation of providing coherent information to new
receivers while we are setting up a new source. If we



fail to provide the appropriate information, a receiver
would have no way of knowing that it is not connected
to all the current sources. A similar situation applies
to a new source, as it may not be able to ensure all
currently interested receivers have been “joined” into
the group. The obvious dependence on a highly reli-
able repository exists, and recovery from the failure of
a repository is not trivial.

With SEAM, the group abstraction provided by the
shared tree avoids the need for such a repository. The
core serves as a “beacon” towards which senders and
receivers issue joins to the single shared tree. The
join terminates at the point where a new branch has
to be added to the existing tree. There is no dan-
ger of a receiver not “seeing” all the sources, and vice
versa. Furthermore, failure of a switch (including the
core) does not result in any failure of continued oper-
ation of the multicast group (other than the natural
partitioning of the network). Recovery from a failure
also 1s simple, since the failed switch does not have to
maintain/recover any state of the current group mem-
bership.

2.4 Delay Issues

The major disadvantage of shared trees are delays
to receive data that are potentially higher than in the
case of shortest-path sender-based trees [9]. However,
it should be kept in mind that most networks exhibit
a certain degree of hierarchy. Even in a local area
network, where the network may be physically con-
nected in an arbitrary mesh, the routing layer typi-
cally organizes the network in a hierarchical fashion.
For example, routing protocols such as OSPF or IS-IS
use hierarchy to control the amount of routing infor-
mation that is being distributed all over the network.
Given this hierarchy, it can be expected that sender-
based trees will not offer significantly different delays
than shared trees, because the hierarchical structure
reduces the number of alternative paths from a sender
to a receiver. For example, a campus network is usu-
ally connected to the Internet over a single leased line.
This may be the most likely bottleneck in a wide-area
multicast session. Both shared trees and sender-based
trees would have to choose this link to reach all mem-
bers on the campus. We recognize the need to substan-
tiate this claim further through simulations, which is
the subject of our future work.

3 Signalling Support for SEAM

We first address the requirements on signalling and
group management.

3.1 Group Creation

When senders or receivers want to join a multicast
group, they send a join message towards the core. In

other words, the choice of a core needs to be made
prior to setting up any part of the multicast tree. The
question is: who is responsible for setting up the core?

We propose to have an “initiator” , who may or may
not be a future member of the group, responsible for
defining the core and disseminating the existence of
the core to the potential members. This can happen,
for example, through a name service, as proposed in
[5], or through directly contacting the members, de-
pending on the semantics of the group.

Note that it does not need to be the initiator’s re-
sponsibility to choose what switch in the network is
elected as core. In our view, the network would offer
core selection as a service. The initiator could convey
some information about the expected group member-
ship (e.g., geographical information) in order for the
network to optimize the choice of a core. The network
answers a core selection request with a handle that
the initiator may use to advertise the group. Since
any switch may potentially act as a core, one may en-
visage some form of load distribution among several
of them in the network to act as cores for different
multicast groups.

3.2 Member Initiated Joins

It is obvious from the discussions in [5, 6] that
member-initiated joins are a necessity for a scalable
multicast service. The advantages of a member initi-
ated join approach over a root initiated approach are
twofold. First, the root of a multicast tree (in our case
the core) does not need to know about or keep track
of the membership of the group. This means saving
processing resources and state space. Second, a join
to a group that already has a tree set up can be termi-
nated at the point where a new branch will be added
to the existing tree. This means saving bandwidth
(due to signalling messages traveling smaller distances,
or hops), processing resources in the switches and re-
duced latency.

New members who wish to join the multicast group
either as senders or receivers issue a join request. This
join request travels towards the core on the shortest
path, until it hits a switch that is already on the re-
quested group’s tree. A new branch is then created
from that switch to the joining member. Basically,
the procedure is similar to that of receivers joining a
point-to-multipoint VC in UNT 4.0 [3], but we general-
ize it to both sending and receiving members. Similar
options as proposed originally for UNT 4.0 (without
sender participation, with sender notification, with
sender permission) may be used.



senders

senders

(@ (b)
Figure 5: Updating of the RD bit upon receiver join.

3.3 The Receivers-Downstream (RD) Bit

The use of a single shared tree among all receivers
and senders requires us to introduce a small amount
of per-link state to avoid wasting resources by trans-
mitting to sender-only end-systems. In order to avoid
forwarding packets to members who are only senders,
we associate a flag with the group at each “on-tree”
switch. The flag, called the “Receivers Downstream”
bit, indicates if there are any receivers downstream
from this port. Consider situation (a) in Fig. 5:
RD=0 at switches S1-S3 means that the respective
ports only have senders downstream, and therefore no
packets need to be forwarded on these ports.

If a new receiver connects to the existing tree at a
port that has the RD bit cleared, then the forwarding
table in some upstream switches have to be updated,
so that packets will be forwarded down to the new
receiver. The join request therefore has to travel to-
wards the core on the tree and update the forwarding
table in each switch. The join request stops when it
hits the core or a switch with the RD bit set on at
least one other port, which means that packets sent to
the group already reach this switch. At each switch
traversed on the tree, forwarding tables have to be up-
dated such that packets will be forwarded towards the
new receiver.

The core acts as any other SEAM switch. The only
exception is that all data gets forwarded to the core,
even if it does not have receivers on its other ports.
This is because the RD bit is not helpful since receiver
joins only go as far as the core. There is no clean way
to have the signalling progress beyond the core to the
set of switches downstream, until the point where we
reach switches that all have their RD bit set. There-
fore, by requiring the data to be forwarded to the core,
irrespective of the RD bit, switches in the tree are led
to believe that there are always receivers on the other
side of the core.

3.4 Core Initiated Joins

Using a single tree means that several group mem-
bers can be added in one step, initiated by the core.
In a scheme using per-sender trees, this is not possi-
ble: either each sender has to set up a tree to all the
receivers, which means that the set of receivers has to
be communicated to the senders, or the receivers join
the sender tree of each of the senders, which means
that, in turn, the receivers need to know the set of
senders. This can be an important performance con-
sideration for applications that depend on rapid setup
of centrally controlled groups. An example would be
the setting up of a group teleconferencing session with
the help of a centralized server. The function of the
centralized server may be to provide security screen-
ing, the appropriate translation functions needed for
the different participants and other coordinating func-
tions prior to the start of the session. Unlike “simple
teleconferencing” with member-initiated joins, we also
envisage a need for a small set of multicasting appli-
cations that are centrally coordinated and managed.
Here a core-initiated join is advantageous.

3.5 Short-Cutting
This is the second building block of SEAM, wherein

we avoid having all the transmissions go to the core
(which may be an end-system, or a switch with cut-
through capability) before being forwarded to the re-
ceivers. Anytime a cell is received at a switch S on a
VC H, and if the context for VC H has been estab-
lished (i.e., the switch knows it is in the spanning tree
for conversation H), then the switch forwards the ar-
riving cell on all the links of the spanning tree other
than the one it was received on. This is the concept of
Reverse Path Forwarding (RPF) that protocols such
as DVMRP exploit as well. The only constraint is that
the forwarding is only on the links where the “Re-
ceivers Downstream” (RD) bit is set. We leave the
issue of how the spanning tree is built to the routing
protocol.

Short-cutting is enabled by modifications in the sig-
nalling path of the switch implementation, and does
not require any changes in the data path. Figure 6
illustrates how forwarding tables have to be set to
achieve short-cutting.

In principle, SEAM also allows reconfiguration of
“segments” of the shared tree upon link failure, rather
than reconfiguration of the entire shared tree. This
may require appropriate signalling support to not
‘clear’ the entire multicast call upon a link failure:
only those receivers/senders downstream of the failed
link need to be notified and requested to re-issue joins
towards the core (with an alternate path provided by
the routing infrastructure). This enhances reliability



1,VvCY 1,vC1] ciq

2, VCYvcy 2,VCi1g

1,vcCy

2, VCT

3, vC1id

1, vCy vC2

2,VvC2

3, VCY vC2
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and scalability.

4 Data Forwarding Issues

For our multicast scheme to work, we need to be
able to map multiple incoming VCs into one or several
outgoing VCs at switches. If this is done simply on
a cell-by-cell basis, then cells belonging to different
packets will interfere with each other (they will be
interleaved, resulting in packet corruption).

One way to circumvent this problem is by reassem-
bling the packets, perform packet-level scheduling, and
re-segment one packet after the other onto an out-
bound point-to-multipoint VC (or mesh of point-to-
point VCs). A multicast server typically used to do
this function of reassembly and forwarding [7] makes
for an obvious performance bottleneck and means that
switches have to process packets. We show in this sec-
tion that it is possible to achieve the same without
reassembly and segmentation, by taking advantage of
the fact that the AALD end-of-packet identifier is part
of the ATM cell header.

A handle H for the group is used at the time of
signalling to set up the SEAM VC. There is a one-
to-one correspondence between the handle H and the
VC on each individual link. Although the VC id may
be different on each link, we will use the same term
“H” for the SEAM VC, whenever this does not lead
to confusion.

When multiple senders transmit to the same multi-
cast group, identified by the handle, then their pack-
ets arrive on the same VC. The constraint imposed
by ATM is that the data on a particular VC is or-
dered, and therefore, there 1s no need to identify cells

as belonging to a particular packet. With AAL5, when
a end-of-packet cell is received, all the previous cells
received on that VC belong to that packet. When
multiple senders send packets on the same VC, these
need to be unambiguously ordered and forwarded so
that there 1s no corruption of the data transmissions.
We do this by having switches perform a function
we call cut-through forwarding. Switches performing
cut-through forwarding complete whole packets at a
time, while buffering incoming packets from other in-
put ports until an End-of-Packet (EOP) cell has been
forwarded. Then, another port with an incoming VC
for this group is selected for forwarding.

EOP

[l
—_— —
in-port 1 out-port 1
EOP switch
1/ v v e [l A
—
in-port 2 out-port 2

Figure 7: Cut through for VC H: Packet Y gets for-
warded, while Packet X is buffered until cell 5Y with
EOP for packet Y goes through switch.

With cut-through, the receivers do not have to dis-
tinguish cells of different packets arriving on the same
VC (an impossible task). The specific actions for cut-
through at a switch S are: the first cell of a packet
arriving from any input port on VC H determines that
this packet arriving on that input port gets uncondi-
tional priority to be forwarded on the outgoing VC H.
Let this packet be Y from source B. Then, all of the
cells of packet Y are forwarded first (e.g., Figure 7).
Any other packet arriving on any other input port is
queued at switch S for forwarding subsequent to the
transmission of packet Y. When the last cell of packet
Y (signified by the end-of-packet cell) is transmitted,
then the cells queued for packet X are transmitted
from switch S on the spanning tree. From that point
onwards, packet X gets priority for being transmitted
on VC H. A switch that is not a “merge point” would
perform pure cell-switching for the multicast VC, even
when following the above actions. Unicast VCs are
unaffected by cut-through.

Thus, our requirement on switch S performing cut-
through is to identify the first cell of an incoming
packet on a given multicast VC H, and to transmit
cells received on that input port only, until the last cell
of that packet has been transmitted. The cells from
other input ports that arrive in the meanwhile on VC
H are queued for forwarding subsequent to sending the
last cell of the packet currently being forwarded. Once
the EOP cell is forwarded, another input port with
cells awaiting transmission for the multicast VC is se-
lected on a round-robin basis for transmission. Every
switch (at least every merge point for multicast com-
munication) on the tree is expected to be able to per-



form cut-through. We assume the support of per-VC
queueing in the switches at least for multicast VCs.

Thus, a requirement we impose on switches is the
need to recognize the EOP bit (for an AALS packet)
to enable cut-through. AALD support of this nature is
becoming more and more prevalent in ATM switches.
This is because the notion of packet-discard is becom-
ing a necessary aid to manage congestion, requiring
switches to recognize the EOP flag. It is precisely
this feature we exploit to achieve the ability to cut-
through, in addition to the storage of cells of a packet,
while a previous packet is being forwarded for that
VC. A similar mechanism is briefly described in [10]
in the context of multicast servers (called “hardware
resequencers” ). However, implementation issues have
not been studied in detail.

The fundamental advantage of SEAM achieved with
cut-through is that we do not have to look at the pay-
load of the cell to do efficient multipoint-to-multipoint
communication, and no changes are required for the

cell header or AALSD trailer.

Another observation we make i1s that LAN Emu-
lation and TP Multicast over ATM (wherein a frame-
work of point-to-multipoint VCs is used in conjunction
with a multicast server to achieve the multipoint-to-
multipoint service) use multicast servers. It is antici-
pated that switch vendors will begin to incorporate the
server in the switch itself, so as to make ATM more
attractive for deployment in traditional LAN environ-
ments. These switches will therefore incorporate the
ability to switch frames. SEAM can exploit this func-
tionality, and take advantage of switching frames only
when essential (when there are multiple packets for the
same SEAM VC contending for an output port of the
switch), and allowing the switch to take full advantage
of cell-switching whenever possible. Furthermore, we
avoid reassembly and segmentation.

4.1 Recovery from Lost EOP Cells

Loss of an end-of-packet (EOP) cell causes cut-
through to have somewhat more serious consequences
than the unicast case. Just as in the unicast case, the
loss of an EOP cell results in that packet not being suc-
cessfully reassembled at the destination. That packet
is lost. However, in multicast with SEAM, the loss of
an EOP cell for a packet on a given input port also
results in the continued queueing of the cells for that
multicast VC on other input ports. Only the trans-
mission of a subsequent packet on that same input
port (and the forwarding of its EOP cell) would result
in the queued cells on other ports being released. An
approach for recovering from the loss of an EOP cell
is to use a timer. If no cell (including an EOP cell)
has been received for that multicast VC on an input
port which is currently forwarding a packet for a pe-

riod of time, then we may time-out that input port.
The actions taken upon timeout would be:

1) To generate an EOP cell for that VC with a “null
payload” so as to complete the packet loss event. This
allows other switches to avoid the overhead associated
with identifying the packet loss and having a timeout.

2) Once the EOP cell is forwarded, then allow the
normal process of cut-through to continue. Another
input port with cells awaiting transmission for the
multicast VC is selected on a round-robin basis for
transmission.

The setting of the timer for the multicast VC would
have to be appropriate so that the loss of an EOP cell
does not result in excessive delays. This is a func-
tion of the link speeds, and certainly based on the
minimum rate that the VC may transmit at. One
timer would be required per multicast VC at each in-
dependent forwarding point (one per SEAM VC for
the switch, if it is an input buffered switch; or one
timer per SEAM VC for each output port, if it is an
output buffered switch).

4.2 When to Perform Cut-Through

When there is a slow input port on a switch with
heterogeneous ports (of different speeds), a pure cut-
through design may lead to unnecessary delay for cells
arriving on the higher speed input ports for the same
SEAM VC. Consider a switch with a fast output link
and two input links, one that is fast (comparable to
the output link) and another that is a slow input link.
A packet arriving from the fast input link is able to
saturate the output link. We can cut-through such a
packet without potentially wasting downstream band-
width by blocking packets for the same group arriving
on other ports. On the other hand, a packet arriving
on the slow incoming link cannot saturate the output
port. During the time this packet uses the output
port, link bandwidth proportional to the bandwidth
difference between the fast output port and the slow
input port is lost. Ideally, we would like this lost band-
width to be exploited by packets concurrently arriving
on the fast link. Therefore, we propose to store-and-
forward packets arriving on incoming links that cannot
saturate the output links. In other words, these input
links would receive an entire packet before contending
for access. More specifically, we suggest to perform
cut-through on input port 7 if

C; > Iolélél{co} (1)
and store-and-forward otherwise, where Cj is the link

bandwidth of port j, and O is the set of output ports
for this multicast group.

When there are multiple “active” input ports, then
the switch follows a round-robin policy (motivated by



fairness issues) to determine which input port’s cells
should be forwarded. A “cut-through port” is active if
it has at least one cell queued. A “store-and-forward
port” is active if it has at least one packet queued.

5 Conclusions

SEAM 1is an efficient scheme for multipoint-to-
multipoint communication in ATM networks, with the
potential to scale up to large, dynamic groups. SEAM
uses a single shared spanning tree for all senders and
receivers.

We proposed the use of a unique handle (translates
to a single VC on a link) to identify all packets as-
sociated with a given multicast group. Each multi-
cast group has an associated “core”, which is used as
the focal point for routing signalling messages for the
group. The handle is a tuple (core address, unique-id
at core) that is unique across the network. We allow
for member-initiated joins to the single core-based tree
by senders and receivers as well as core-initiated joins.
We exploit the proposed capabilities of leaf-initiated
joins in ATM networks specified in UNT 4.0.

We compared through simulation the performance
differences for member joins in a shared tree versus
source-based trees. We observed that the SEAM join
latency for a new member is significantly smaller than
with source-based trees because the join travels far
fewer hops. The consumption of resources by joins
reduces (especially for senders) with a shared tree as
the group size increases (for a given network topol-
ogy). This is in contrast to a dramatic increase in re-
source consumption by joins (especially for receivers)
in a source-based tree.

We introduced two new features in SEAM: “cut-
through” forwarding and “short-cutting” to achieve
efficient multicasting with low-latency for communi-
cation between senders and receivers. Cut-through
forwarding in a switch enables the mapping of sev-
eral incoming VCs into outgoing VCs at a switch. A
switch capable of cut-through forwards a multicast
packet from one input port at a time, taking advan-
tage of the AALbD end-of-packet cell to identify when
to “switch” to forwarding a new packet. Incoming
packets from other input ports are buffered until it
is their turn, thus ensuring packets are transmitted
on an outgoing VC atomically. Our preliminary sim-
ulation results indicate that the buffer requirements
imposed by cut-through are modest. Short-cutting is
the signalling mechanism allowing packets to follow
the shortest path along the shared tree by emulating
reverse-path forwarding. We avoid the packet having
to go all the way to the core and then be forwarded
back to the receivers, and therefore avoid it traversing
links twice. No changes are needed to the cell header.

We believe no scheme is complete without address-
ing issues of migration. We have worked out the de-
tails of a SEAM-based environment working quite effi-
ciently along with islands of non-SEAMable switches.
The interoperability is such that only “boundary”
SEAM switches need to be concerned with non-
SEAMable islands, and within those islands, we fully
exploit the point-to-multipoint capabilities of current
ATM signalling.

Thus, we believe we have proposed a truly scalable
and efficient ATM multicasting architecture. Issues
of traffic management and reliable multicasting, both
important topics, are the subject of our future work.
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