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Abstract— We propose a time-scale decomposition ap-
proach to measurement-based admission control (MBAC).
We identify a critical time-scale T, such that: 1) aggregate
traffic fluctuation slower than 7} can be tracked by the ad-
mission controller and compensated for by flow admissions

and departures; 2) fluctuations faster than T, have to be
absorbed by reserving spare bandwidth on the link. The
critical time-scale is shown to scale as Tj/\/n, where T} is
the average flow duration and n is the size of the link in
terms of number of flows it can carry. A MBAC design
is presented which filters aggregate measurements into low
and high frequency components separated at the cutoff fre-

quency 1/Tj, using the low frequency component to track
slow time-scale traffic fluctuations and the high frequency
component to estimate the spare bandwidth needed. Our
analysis shows that the scheme achieves high utilization and
is robust to traffic heterogeneity, multiple time-scale fluc-
tuations and measurement errors. The scheme uses only
measurements of aggregate bandwidth and does not need to
keep track of per-flow information.

I. INTRODUCTION

The main drawback of traditional admission control
is the inability of the user or application to come up
with tight traffic descriptors before establishing the flow.
Measurement-based admission control (MBAC) avoids this
problem by shifting the task of traffic specification from the
application to the network, so that admission decisions are
based on traffic measurements instead of an explicit spec-
ification [8], [5], [6] (cf. Fig. 1). This approach has sev-
eral important advantages. First, the application-specified
traffic descriptor can be trivially surnple (e.g., a peak rate).
Second, an overly conservative specification does not result
in an overallocatlon of resources for the entire duration of
the session. Third, when traffic from different flows are
multiplexed, the QoS experienced depends often on their
aggregate behavior, the statistics of which are easier to es-
timate than those of an individual flow. This is a conse-
quence of the law of the large numbers. It is thus easier to
predict aggregate behavior rather than the behavior of an
individual flow.

estimates of target overflow
per-flow mean probability

and variance
Traditional
"o Pa
> [ ]

.
!

- TR
new flow

'
]
measurement '
window 1

'

a-priori traffic
descriptors

= Pr {overflow}

i \ G’éﬁ%ﬁ
flow2 -—H.n_d—-
/ link of capacity ¢

time

ﬂaw 1

1'c (burst time-scale)

T, (flow lifetime)

Fig. 1: Traditional admission control makes decisions based on
the a-priori traffic descriptors of the existing and the new flow.
Measurement-based admission control (MBAC) only uses the new
flow’s traffic descriptor, but estimates the behavior of the existing
flows.
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In order for an MBAC approach to be successful in prac-

tice, it has to fulfill several requirements.
¢ Robustness: An MBAC must be able to ensure a qual-
ity of service on behalf of applications in the same way as
its a-priori descriptor based counterpart does. This is not
trivial, as measurement inevitably has some uncertainty
to it, leading to admission errors. The quality of service
should also be robust to flow heterogeneity and to fluctu-
ations on many time-scales that are a general property of
network traffic [9], [10], [1], [4].
¢ Resource utilization: The quality of service can be
improved by being very conservative in admission control,
thereby allocating more resources per flow than necessary.
Obviously, being too conservative is undesirable, as one
also wants to maximize resource utilization, and admit as
many flows as possible under the given QoS constraints.
o Implementation: The cost of deploying an MBAC sys-
tem must be smaller than its benefits cited above. For this,
the MBAC should be modular, in the sense that adding
the measurement machinery to the existing infrastructure
should be as nonintrusive as possible. Also, the computa-
tional complexity of the algorithm used to make admission
decisions needs to be scalable in the flow arrival rate and
in the link capacity.

In this paper, we propose an MBAC design that fulfills
the above requirements. Our design is robust to fluctu-
ations on multiple time-scales in the traffic and to flow
heterogeneity, and achieves high link utilization despite the
inherent measurement uncertainty. The scheme is also easy
to implement as it only relies on aggregate bandwidth in-
formation, which implies that the MBAC does not have to
maintain per-flow information and to inspect packet head-
ers to identify flows.

Our proposed design is based on a time-scale decompo-
sitton approach. Flow arrival and departure dynamics are
explicitly taken into account. The fact that flows only re-
main in the system for a finite time gives admission de-
cisions a certain time-horizon, which we call the critical
time-scale. This critical time-scale determines the fluctua-
tions in the aggregate bandwidth that can be compensated
through flow admissions and departures. For example, a
slow increase in the aggregate bandwidth may be compen-
sated for simply by rejecting new flows and waiting for
some existing flows to depart, thereby avoiding overload.
A slow decrease in the aggregate bandwidth may be com-
pensated for by admitting more flows to benefit from the
released bandwidth. The MBAC design exploits this by de-
composing the aggregate bandwidth fluctuation into a fast
time-scale and a slow time-scale component with respect
to the critical time-scale. The fast time-scale component
is used to estimate the spare bandwidth to be set aside to
absorb short-term fluctuations that cannot be “followed”
by flow arrivals and departures. The slow time-scale com-
ponent 1s used to track fluctuations that do not need spare
bandwidth, but are compensated by flow arrivals and de-
partures. This results in higher utilization than a scheme
which sets aside spare bandwidth for fluctuations at all



time-scales. We will show that an appropriate critical time-
scale is Tj,/+/n, where T}, is the average flow duration in
the system and n is the size of the system in terms of the
number of flows it can carry.

In our earlier work on MBAC [6], the main issue we ad-
dressed was robustness with respect to measurement un-
certainty. Using a simple, analytical model of an idealized
MBAC, we studied the impact of measurement errors on
the quality of service. The main insight gained from that
model was an understanding of the complicated dynamics
that arise as a result of bandwidth fluctuations, measure-
ment uncertainty, flow arrivals and departures, and estima-
tion memory. These insights motivate the MBAC design
presented in this paper and serve as a basis for its perfor-
mance analysis.

In the performance analysis of our proposed MBAC, we
relax two assumptions made in our earlier work. First, we
assume that the admission controller only has information
about the evolution of the aggregate bandwidth available to
make admission decisions. This is in contrast with our ear-
lier work, where we assumed that the bandwidth of each in-
dividual flow is known. Basing admission decisions only on
aggregate information is appealing from an implementation
viewpoint, as we do not require the MBAC to gather and
maintain per-flow information. This improves the MBAC’s
scalability, as it is not necessary to inspect packet or cell
headers in order to determine flow identifiers. This also al-
lows the MBAC to be architecturally more decoupled from
the data path. Our goal in this paper is therefore to achieve
the same robustness for an MBAC relying only on aggregate
measurements that we achieve for an MBAC with per-flow
information. To achieve this goal, we seek a clear under-
standing of the impact of errors associated with aggregate
measurements.

Second, we consider the situation when flows are hetero-
geneous. As we consider the problem of admission control
in the context of an integrated services packet network,
flows can represent many different types of media (e.g.,
audio or video), they can be encoded at very different lev-
els of quality, and they can use different end-to-end control
mechanisms. Therefore, we must expect that flows are very
heterogeneous in their statistical behavior. On the other
hand, an individual flow corresponds typically to a single
instance of an application (such as a videoconference), of
an encoding method, and of a control mechanism. There-
fore, we expect an individual flow to be well modeled as a
stationary and ergodic random process. We will show that
the proposed MBAC scheme performs well without a prior:
classfication of flows into different classes and relies only on
aggregate measurements of all the flows in the system.

The paper is structured as follows. In Section II, the ba-
sic model is introduced. In the next two sections, we focus
on two issues that are central to understanding the pro-
posed MBAC design. In Section III, we first study the im-
pact on performance of admission decisions only on aggre-
gate bandwidth information, as opposed to per-flow band-
width information. In Section IV, we identify the critical
time-scale through a study of the dynamics of the system
that arise due to fluctuations of the aggregate bandwidth of
flows in the system, and due to flow arrivals and departures.
Combining the insights obtained in these two sections, we
present our MBAC design in Section V. In Section VI, we
analyze the performance of the proposed MBAC scheme
under both homogeneous and heterogeneous traffic mod-

els. Section VII contains our conclusions.

II. BAsic MODEL

We will first outline the basic model which we will use
throughout the paper to study various basic measurement-
based admission control issues, to motivate our MBAC de-
sign and finally to analyze its performance.

The network resource considered is a bufferless single
link with capacity ¢. Flows arrive over time, requesting
service. Once admitted, the bandwidth requirement of a
flow {X;()} fluctuates over time while in the system. We
assume that the flow holding time in the system is expo-
nentially distributed with mean T}; the departures of the
flows are independent of each other and independent of the
bandwidth processes {X;(-)}.

An admission control scheme decides whether to accept
or reject a new flow requesting service; a measurement-
based admission control (MBAC) scheme makes decisions
based solely on observation of the past traffic flows.! Re-
source overload occurs when the instantaneous aggregate
bandwidth demand S; exceeds the link capacity, and the
QoS is measured by the steady-state overflow probability
pr = Pr{S; > c}. The goal of an admission control scheme
is to meet a desired QoS objective p, (i.e. ps < pg) while
maintaining a high average utilization E [S;] of the link.

Several processes are of importance in this paper. We
denote {M,;} as the estimated number of flows deemed ad-
missible by a MBAC scheme at time ¢, and {N;} as the
actual number of flows in the system at time ¢. The inter-
pretation of M; is that the MBAC will continue admitting
flows until N, is greater than M;. Because M, is deter-
mined by past measurements, {M;} is a random process
and so is {N:}. Furthermore, F; denotes the set of flows
in the system at time time ¢. Obviously, |F| = N:.

Our design and analysis is based on the assumption of
a large link in which many flows can be accommodated
and no single flow dominates. The performance analysis is
asymptotic in the link size c.

III. AGGREGATE VERSUS INDIVIDUAL FLow
MEASUREMENTS

In [6], we have analyzed the impact of measurement er-
rors for MBAC schemes which can measure the individual
flow rates {X;(-)}. In this paper, we would like to design
a scheme which only makes use of the past aggregate flow
information, i.e. {S;}. This section serves to quantify the
performance loss associated with this coarser granularity
of information. The insights gained here prepare us for
the MBAC design in Section V, and are also interesting on
their own right.

In the analysis of this section, we do not deal directly
with flow arrivals and departures. We focus on the effect
of measurement uncertainty on the number of admissible
flows M;, and then study the resulting impact on the QoS
objective if M; flows were admitted onto the link and re-
mained in the system. A simple MBAC scheme is used as
a vehicle for this purpose. Analysis of the complete model
with flow dynamics will be done in Section VI after the full
MBAC design is proposed in Section V.

Suppose the bandwidth processes of the flows are statis-
tically independent and identical, and the stationary band-

In practice, rough information such as the peak rate of the new
flow is used as well. This can be incorporated in an obvious way in
our proposed scheme.



width distribution of each flow has mean y and variance o2.

The capacity of the link is scaled as ¢ := ny, where n can
be thought of as the system size. When the system size n
is large , the number of flows m in the system will be large,
and by the Central Limit Theorem,

g L0

irrespective of the statistics of the individual flows.

Consider then the following hypothetical admission con-
trol scheme with perfect knowledge of the parameters p
and o? a priori: accept n* flows with n* satisfying:

Q [”"‘” ! =, (1)

where () is the complementary cdf of a N (0, 1) Gaussian
random variable and p, is the QoS objective?. For large

capacities, it follows from solving (1) that

n == S+ o) 2)

mp] ~ N(0,0?)

where a, := Q7 '(p,) and o(y/n) denotes a term which
grows slower than y/n. Note that n is the number of flows

that can be carried on the link if each has constant band-

width g. Thus, ozq \/n is the amount of bandwidth margin
left to cater for the (known) burstiness.

This motivates the following certainty-equivalent MBAC
scheme using aggregate flow information. Based on esti-

mates i and ¢ of the statistics, it allows My flows in the
system at time 0, with Mj satisfying:

Q|| =, 3)

where the estimates are given by:
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is the aggregate load of flows in the system at time ¢ < 0.
3

Note that My 1s now a random quantity, a function of K
samples of the aggregate load (K > 2). We are interested in
the distribution of Mj. For ease of analysis, let us assume
that the sample times {¢;} are spaced sufficient far apart
such that the loads at distinct times are independent. For
large n, by the Central Limit Theorem,

Si = np+ Yiv/n + o(v/n)

?Note that here, as in the sequel, we are ignoring the fact that
n* is an integer and therefore eqn. (1) cannot be satisfied exactly in
general. In the regime of large capacities, however, the approximation
is good and the discrepancy can be ignored.

3Observe here that the estimation is based on n flows. In the actual
model with flow dynamics, this should be the actual number of flows
in the system which fluctuates around n. However, in a large system,
this number will be close to n and the discrepancy in replacing it by
n in the estimators are of a negligible effect.

t<0

where Y; ~ N(0,0?). Hence, the mean and variance esti-
mators are given by:

p o= (I,Zytk)—i-O 7) (4)
02 = &% +o(l) (5)
where
1 & &Y

For a fixed K, the variance estimate approaches % for
large system size n. Note however that this estimate re-
mains random, unlike the mean estimate which approaches
1, the true mean.

The randomness in the estimators translates into the
randomness in the number of flows admitted, via eqn. (3).
By performing a linearization around the nominal perfect-
knowledge operating point given by (1), it can be shown
that (as in the proof of Prop. 3.1 in [6]):

L Vi(ly .
My=n— (K;Ytk + aan) +o(v/n). (6)

7

More formally:

Proposition II1.1: As n — oo, Ma=n

NG

converges in distri-
bution to the random variable

11 &
Iy ([{ ;nk_FaqO-K) (7)

It can be seen that the fluctuation in Mj 1s due to both
the randomness in the mean and variance estimators, when
they are based only on aggregate loads. Contrast this with
the case when individual flow measurements are available,
when the uncertainty is due only to the measurement error
in the mean bandwidth estimator [6]. In that case,

Mozn—@(%;}ﬁk—l—aqo)—ko(\/ﬁ). (8)

7

Comparing eqn. (8) with (6), we see that the uncertainty
in the standard deviation o disappears with individual flow
measurements. This is because individual flow measure-
ments yield n samples per time instance for estimating the
variance, while aggregate measurements yield only one. For
large n, the effect of error in the variance estimator van-
ishes in the former case but not the latter.

It 1s also interesting to observe that My is much more
sensitive to errors in the mean estimator than in the vari-
ance estimator. This can be seen from eqn. (4), (5) and
(7). The error in the mean estimator is magnified by a
factor of y/n, while the randomness in the variance esti-
mator enters directly in (7). This is not very surprising,
considering that the mean is a first-order statistic and the
variance 1s second-order. Fortunately, the mean estimator
is much more accurate than the variance estimator when
only aggregate flow information is available, and this com-
pensates exactly for the difference in order of magnitude of
the sensitivities.



We next investigate the effect of this randomness in the
number of admitted flows My on the QoS performance of
the system. To this end, consider the aggregate load at
some future time ¢ > 0 after admitting My flows and with-
out future admissions. This is a sum of a random number
of random variables, and using a version of Central Limit
Theorem ([3, p. 369 problem 27.14], we get the following
asymptotic approximation:

Mo
St = Xi(t)
i=1

Here again Y; ~ N(0,0?) and can be interpreted as an ap-
proximation for the scaled aggregate bandwidth fluctuation

at time ¢:
1 n
vAPIRIY
\/E |J:1

Substituting eqn. (6), we get

= Mop + Yiv/n + o(v/n) (9)

nu] (10)

S =mnp+ ( ZYtk aq&K) Vi +o(vn) (11)
Thus, for large n, the overflow probability at time ¢ is:

(n - —Zm) > aq} (12)

Now since the Y;,’s are N(0,0?%), the random variables

Pr{S; > nu} =~ Pr{

s Zle Y;, and 6% /o? can be interpreted as unbiased esti-
mates of the mean and variance of a N (0, ¢?) distribution
based on K independent observations. As is well-known
(see for example [2]), the two estimates are independent,
and

K-1 Ar)

o2

~ XK-1,

a Chi-square distribution with K — 1 degrees of freedom.
If we now make the further assumption that the time ¢
is sufficiently large such that X;(¢) (and therefore Y;) is

independent of X;(¢1),..., Xi(tk), then Y; — 11( ZkK 1 Y,
is independent of 6k and is distributed as N (0, K+10’ )

and hence
K
Y; ~Tr_
Ix—}—laK( Ztk) Tr-1

where Tk _1 1s the student-t distribution with K —1 degrees
of freedom [2].
We summarize this formally in the following.
Proposition I11.2: Suppose the target overflow probabil-
ity QoS is pg. Then as the system size grows:

Q7 )), (13)

where Fg i1s the complementary cdf of the Tx_1 distribu-
tion.

Note that this limit does not depend on the true mean and
variance, but only on the target QoS p,.

li_}rn Pr{S; > nu} = Frx_1 (

It is interesting to compare with the corresponding result
when individual flow measurements are available. A simple
generalization of Proposition 3.3 in [6] says that with n
independent individual flow measurements at each of K
time instants, the asymptotic overflow probability is given

by
o)

To appreciate the difference, it is instructive to examine
the density of the Tx_1 distribution:

r)

(K — 1)I(£3L) <1+ ij 1)_

where T'() is the Gamma function. For small K, this distri-
bution has a slow (polynomially) decaying tail as compared
to the doubly exponentially decaying tail of the Gaussian
distribution. Thus, for small K, the target overflow proba-
bility 1s missed significantly more in the case when only ag-
gregate measurements are available; see Fig. 2. For K = 5,
the actual overflow probability p; is very far away from p,
and decreases very slowly with the latter (the upper curve),
while p; is quite close to the target with individual flow
measurements. As expected, as K — 0o, the performance
approaches p, under both aggregate and individual flow
measurements.

(14)

rol

fr-i(z) = (15)
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Fig. 2: The overflow probability p; as a function of the target over-

flow probability pg, for various K (Student-t corresponds to aggregate
measurements according to (13), Gaussian to per-flow measurements
according to (14)).

The significant degradation observed above for small
K under aggregate load measurements can be attributed
to errors in estimation of the wariance. With non-
negligible probability, the variance can be significantly
under-estimated. In that case, the certainty-equivalent ad-
mission control scheme will be very aggressive in accepting
flows, reserve very little bandwidth margin to cater for the
burstiness. This results in high overflow probability when
the flows are actually admitted.

IV. THE CRITICAL TIME-SCALE ﬁ

The goal of this section is to identify the critical time-
scale Ty, discussed in the introduction. This notion is the



cornerstone of our time-scale decomposition approach: ag-

gregate bandwidth fluctuation slower than 7} is tracked
and compensated for by flow admissions and departure;

bandwidth fluctuation faster than 7} are absorbed by al-
locating spare bandwidth in the link.

Suppose for the moment that the number of flows in the
system 1s fixed at n, and call the aggregate bandwidth of
these n flows S?'. Also assume that flows are independent,
identically distributed random processes with mean p and
variance o2, which share a link of capacity ¢ = nu. By flow
independence, the fluctuation of S around ny is on the or-
der of oy/n. In the tracking regime, we want to compensate
for this fluctuation by controlling the number of flows N;
over time. In other words, when S? happens to be larger
than npy, i.e., exceeding the link capacity, we want to lower
the number of flows N; < n such that the aggregate band-
width of N; flows does not exceed the link capacity. Let S;
denote the aggregate bandwidth of these N; flows. Then
the fluctuation of S; around its mean has two components,
one due to the bandwidth fluctuation, and one due to the
fluctuation of the number of flows in the system:

scale TH <« Ty, /+/n have to be absorbed through overbook-
ing. See the last column of Fig. 3.

That the critical time-scale T} 1s proportional to the av-
erage flow duration T} is not surprising. What is more sub-

tle is the scaling of T, with 1/y/n. The reason for this is
that the aggregate flow departure rate grows linearly with
n, while the fluctuations grow only like \/n. As a result,
as the system scales, there are more fluctuations can be
compensated for by flow departures, manifesting in a short
critical time-scale.

Although the discussion here is informal, the main point
is to motivate the MBAC design to be presented in the next
section. The importance of the critical time-scale will be
demonstrated more precisely in the performance analysis

of the proposed MBAC (Section VT).
V. THE MBAC DESIGN

A. Basic Architecture

Our proposed MBAC design derives directly from the
observation in the previous section that fluctuations on a

time scale slower than 7}, should be absorbed by tracking,

S¢ = Sf' =(n—Ny)pto(v/n) = ”N+\/E0Wt—(n—Nt)ﬂ+(0(\§ﬁ)and fluctuations on a time-scale faster than T, by over-
16

where {W; } is a zero mean, unit variance Gaussian process
with autocorrelation function e=t/T» p(t), where p(t) is the
autocorrelation function of an individual flow. The factor
e~t/Tr i because the set of flows F, present in the system
changes over a time-scale of T}, and the bandwidth of two
different flows is independent.

Because flows cannot be preempted from the system once
admitted, the number of flows can only be lowered by let-
ting flows depart from the system. The rate at which flows
depart from the system in turn is approximately n/Tj,
where T} is the average flow holding time. This corre-
sponds to a “bandwidth departure rate” of nu/T,. An
increase in S7 can therefore be compensated by flow de-
partures only if the rate of change of S7 does not exceed
nu/Th.

First, assume that the aggregate bandwidth S? fluctu-
ates over a single time-scale T,*. It is therefore unlikely
that the rate of change of Si* exceed O(o+\/n/T.). As a re-
sult, the tracking regime is possible whenever o+/n/T. <

nu/Th, or T > %% We therefore identify

T = Th//n

as the critical time-scale of the system. Thus, in the case

when T. > Tj, the aggregate bandwidth fluctuation is
completely compensated for by flow admissions and depar-
tures, resulting in a near full utilization of the link. See the
first column of Fig. 3.

On the other hand, in the overbooking regime where T, <

Th, S; ~ n*pu++/noeW . In this case, the amount of spare
bandwidth is given by p(n — E[N;]) = pu(n — n*). See the
second column of Fig. 3. In this regime, full link utilization
cannot be achieved.

More generally, aggregate bandwidth fluctuates over
multiple time-scales. The components having time-scale
TE > Ty, /+/n can be compensated for through flow admis-
sions and departures, while the components having time-

4Informally, this means that the power of the process {W;} is con-
centrated around 1/7. in its power spectral density.

booking. This suggests decomposing the aggregate band-
width process S; into a high-frequency component S and
a low-frequency component S¥ such that S; = SH + Sk,
both with a cutoff frequency of l/ﬁ We can obtain such
a decomposition through a low-pass and a high-pass filter,
both with cutoff frequency l/ﬁ (cf. Fig. 4).

.
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Fig. 4: The decomposition of the measured aggregate bandwidth
into a high-frequency component for the variance estimator and a
low-frequency component for the mean estimator.

Then the high-frequency process S is used in order to
estimate the amount of spare bandwidth that has to be
put aside in order to accommodate fast time-scale fluctu-
ations through overbooking. Hence, we wish to estimate
the variance o of SH. The low-frequency process SF is
used to estimate the “current mean” f; of the flows. This
determines the current number of flows that should be in
the system in order to accommodate the slow time-scale
fluctuations through tracking.

B. Variance Estimator

How should we estimate the variance o% of the high-
frequency component of the aggregate traffic? Recall now
the main insight we gained from Section III:

e With only aggregate measurements, the performance
of a MBAC can be quite poor if there are only a small
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Fig. 3: The tracking and the overbooking regime. In the tracking regime, bandwidth fluctuation is absorbed by a corresponding fluctuation
of the number of flows in the system; in the overbooking regime, bandwidth fluctuation is absorbed by overbooking resources, i.e., setting
spare bandwidth aside to accommodate the fluctuation of the aggregate load.

number K of independent load measurements. Either
the target is missed significantly, or a very conserva-
tive admission control scheme is needed to compensate
for the measurement errors. This effect 1s mainly due
to estimation error in the variance.

This suggests that a long measurement window for esti-
mating the variance o% is needed for robust performance
and high link utilization. Essentially, we need more mea-
surements over time to make up for the lack of measure-
ments over individual flows. Since the fast fluctuations by

definition occur at time-scale ﬁ or shorter, one can expect
to get roughly independent measurements of T} spaced at

Ty, apart. The above observation thus translates into the
need of a measurement window with length much larger

than ﬁ

ment window length with the desired scaling property is
T}y, the average holding time of a flow.

With this choice of measurement window size, a natural
question 1s the robustness to non-stationarities, especially
due to heterogeneity of flows entering and leaving the net-
work. We will address this issue when we analyze the per-
formance of the MBAC design under a heterogeneous traffic
model.

Since Ty, = 5—';—, a natural choice of the measure-

C. A Specific MBAC Scheme

We have identified the basic architecture of the MBAC
design: a low-pass filter at cutoff L to track the slow time-

scale fluctuation of the aggregate trafﬁc and a measure-
ment filter of memory length T} to estlmate the variance
of the fast time-scale fluctuations. To analyze performance,
we have to fix specific filters. So consider a low-pass filter
with impulse response

1 t
gt = = exp(—=)u 17
vE ( Th) t (17)

where u; 1s the unit step function. Let

1 "
hy '= — -
LT exp( Th)

be the filter for estimating the variance. If S; is the aggre-
gate load at time ¢, the estimated (slow time-scale) mean
is then : -

0 Nt‘r

where N is the number of flows in the system at time .
The high-pass component of the aggregate load is:

/lt == gTdT (18)

sH .= St—/ Sy_rhodr
0

and the estimate of the high-pass variance is given by:

o 2
[f{T—/ Sf{uhudu] hydr.  (19)
Nt—'r 0

The number of flows M; admissible by the MBAC in

time ¢ is given by
Q( ikt Mejie ) _ p
VMol ¢

VI. PERFORMANCE OF MBAC SCHEME

We now sketch the performance analysis of the MBAC
scheme proposed above in a fully dynamical model with
flow arrival and departures. We assume a worst-case sce-
nario, where the effective arrival rate is infinite, i.e. there
are always flows waiting to be admitted into the network.
Thus, admission control decisions are made continuously
at all times. Clearly, the performance of any admission
control algorithm under finite arrival rate will be no worse
than its performance in this model. Due to space limita-
tions, the details of the analysis are described in the journal
version of this paper [7].

(20)

A. Homogeneous Flows

We first consider the homogeneous case when the band-
width process {X;()} of each flow is identically dis-
tributed, stationary and ergodic. The mean rate of

each flow is pu and the covariance function is p(t) :=
E[(X;(0) — 1) (X;(t) — p)]. The capacity c is scaled as npu.



Recall that M; is the number of flows the MBAC deter-
mines should be admissible in the link at time {. We can
analyze the distribution of this process in a similar way as
in Section IIT using Central Limit Theorem, and obtain:

Mt_n—%(Zt—}—aqot )—1—0(\/_)

(21)
where Z; = (g *Y): (% represents the convolution opera-
tion), and {Y;} is a zero-mean Gaussian process with co-
variance function p(t), representing the (scaled) fluctuation
of the aggregate bandwidth. The process {Z;} is the low-
pass version of {Y;}. The number of admissible flows at
time ¢ is a random quantity with fluctuation of order y/n
due to the randomness in the statistical estimators fi; and
6. The term —\/nZ; represents the tracking of the slow
time-scale fluctuations by the MBAC; the term —/na o
represents the spare bandwidth catered for the fast time-
scale fluctuations.

It can be shown, as in [6], that the number of flows N;
actually in the system is given by:

Ny =sup {M; — D[s, t]}
s<t

(22)

This relationship quantifies precisely how much control
the admission scheme has on the number of flows in the
system. At time ¢, the ideal number of flows desired in the
system 1s M;. But N; is close to M; only if the flow depar-
ture rate is very high. For finite departure rates, N; exceeds
M; and to still provide the desirable level of QoS, spare
bandwidth has to be allocated in the admission scheme.

We now scale up the system by letting n — oo with

the critical time-scale T}, fixed, such that the average flow

holding time scales as Ty = 1/nT}),. Under this scaling, the
number of flows departed in [s,¢] can be calculated to be:

(/).

Dis,t] =

(23)

Also, the variance estimate ¢ can be shown to converge:

Proposition VI.1: As n — oo and with the flow holding
time scaling as T, = /nT}, {67} converges in distribution
to a constant oy, where

ofr = Var [X;(0) — (g * X:)(0)]
is the variance of the high-frequency component of a flow
bandwidth process.

The result can be understood intuitively as follows. The
hlgh frequency component has fluctuations at time-scale

Th or shorter, so roughly samples spaced at Th apart are
independent. The measurement window for the variance

estimator is of time-scale T, = /nT}. For large n, the es-
timate of the power in the high-frequency component will
be very accurate. This is analogous to taking a large num-
ber K of independent measurements of the aggregate load
in the simple model studied in Section III.

Using now equations (21), (22), (23), Proposition VI.1
and similar argument as in Section III, we can obtain the
asymptotic distribution of the aggegrate load as n — oco:

S = np+/nsup {Yt -7, — Ti(t —5)— oqu'H} +o(\/n)
s<t h
(24)

and the corresponding overflow probability p; converges to:

Pr {sup {Yo —Zs + %8} > aqUH} .
s<0 Th

The expression (25) can be interpreted as a hzttmg probabil-
ity of a Gaussian process ({Yo — Z5}) on a moving bound-
ary, and an approximation of such a probability can be
obtained, given the covariance function p(t) [6].

Let us consider two specific examples to obtain a better
intuitive understanding of these general results.

1) Single Time-Scale Traffic: Suppose now the indi-
vidual flow has covariance function

(25)

plt) = o exp(~

with correlation at a single time-scale T,.. Consider first the

regime when T, < Tj; this can be considered as a separa-
tion between the burst and flow time-scales. In this case,
the variance of the high-pass component o is the same
as the variance o of an individual flow, and the overflow
probability is given by:

Pr {sup {YO + is} > aqUH}
s<0 Th
= Pr{Yy > a,0} =p,.

Thus the target QoS is met using our scheme. In this case,

the traffic fluctuations are all of a faster time-scale than 77,
and resources has to be overbooked to absorb them. If we
overbook by any amount less than the full variance ¢ of
the fluctuation, the QoS target would not have been met.

For general T., we numerically compute the overflow
probability using the formula in Section 4.3 of [6]. This is
plotted in Fig. 5 for two values of p,. We see that the ac-
tual overflow probability p; is close to the target p, across
the whole range of T,. As T, increases beyond the criti-

cal time-scale T}, the spare bandwidth reserved to absorb
the high-frequency burstiness is reduced accordingly, thus
maximizing utilization while still meeting the target QoS.
Contrast this with the performance of the per-flow scheme
considered in [6], which always reserves spare bandwidth
equal to o, the total variance. When T, is of the order or

larger than Ty, this results in over-allocation of resources,
as seen in the drop in py.

2) Multiple Time-Scale Traffic: Let us now consider
the situation when an individual flow has correlation at
two time-scales T and T}, with covariance function:

[l

T, )
For any 7%, T;, the overflow probability can again be com-
puted numerically as before, but it is perhaps more insight-

ful to look at the scenario where Ty < T} and T; > Tj.
Using eqn. (25) and (24), it can be seen that the over-
flow probability meets the target QoS p,, while the aver-
age utilization E[S;] & ny — ofag/n. In this scenario, the
admission controller tracks the slow time-scale (7Ty) traf—
fic fluctuation perfectly, and leaves a spare bandwidth of
o ag\/n to absorb the fast time-scale fluctuation (7% ). The

2
p(t) = 0'? exp <—%) +o?ex
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Fig. 5: Overflow probability of the proposed aggregate scheme and
a per-flow scheme which always overbooks at o.

choice of T;L as the memory time-scale of the low-pass fil-
ter is important to keep the utilization high. For if the
memory time-scale T;,, of the low-pass filter is chosen to be

larger than 7T}, and close to T, some of the slow fluctuations
is filtered into the high-frequency component, resulting in
a larger than necessary spare bandwidth. In the extreme

case when T,,, > T, a spare bandwidth of | /o2 + 0? ag/n

is kept, resulting in an over-conservative scheme.

B. Heterogeneous Flows

Consider the following heterogeneous traffic model: the
1th flow is given by

X;(t) = pi + o3 Ui(2),

where p; and o; are random variables, identically dis-
tributed and independent from flow to flow. The processes
{U;()} are independent, identically distributed with zero
mean and unit variance, and are stationary and ergodic
with covariance function py (¢); they are also independent
of p;’s and o;’s. They represent the in-flow statistical fluc-
tuations. The random variables p; and o7 represent the
long-term mean and variance of the flow; they differ from
flow to flow but remain fixed once the flow is in progress.
The processes {U;(-)} represent the in-flow statistical fluc-
tuations which we model as statistically identical and in-
dependent of y;’s and o;’s for simplicity. The random vari-
ables y; and ¢ has the following statistics:

Elu]=pn,  Var[w] =
One can think of the distribution of (u;,o?) as modeling
the typical flow mix. At any time, the composition of flows
in the network may deviate from this typical mix.

The aggregate load in the system is given by

St = NtﬁH‘Z(Mi —p)+VnVi +o(vn),  (26)

where {V};} is zero-mean Gaussian process with covariance
function the same as the process {o;U;(+)}. We decompose
the load into three terms: 1) Nyy, which can be thought of

as the aggregate load if all flows are transmitting at their
average rate y; and the flow mix is exactly the same as the
typical mix; 2) >, (u; — p), where the sum is over the flows
currently in the system, 1s the deviation of the current mix
of the flows from the typical mix; 3) y/nV;, which is the
fluctuation of the flows from their long-term average rates.

Using the Central Limit Theorem for a random num-
ber of summands, we can approximate the second term by
VL7, where {L;} is a zero mean Gaussian process with
covariance function

pr(t) = v exp(—t),

as a consequence of the flow departure process. This is the
slow time-scale fluctuation in the aggregate load due to the
change in flow mix over time. The scaling by Tj emphasizes
the fact that this process is evolving at the time-scale of
the flow arrivals and departures.

The covariance function of the Gaussian process {V;} is
given by:

py (1) = B [o20:(0)U:(1)] = oo (1).

We note that the time fluctuation in the flow variances
due to heterogeneity has disappeared in the approximation
(26) of the aggregate load; only the typical variance o?
matters. On the other hand, the fluctuation in the mean
rates {\/nL;/r,} remains. The reason is that the aggre-
gate load is much more sensitive to the mean fluctuation, a
first-order effect, than variance fluctuation, a second order
effect. We have in fact seen this phenomenon in Section
ITI, where we performed a measurement error analysis.

Continuing on the performance analysis, the low-pass
mean estimator is given by (via eqn. (18)):

1 1 1
[y = —L —Z —
pe = p+ Jn t/T, + Jn t+0(ﬁ)

where 7; = (g * V);. We note that the filter can track
the slow time-scale fluctuation {L;;7,} perfectly; this is

because the filter has a much shorter time-scale 7}, than

Ty = \/ﬁﬁ

The number of admissible flows is given by:

n ~
M, =n— % (Lej7y + Zt + aq6f') + o(v/n) (27)

where 67 is the high-pass variance estimator given by eqn.
(19). We have the following convergence result.

Proposition VI.2: As n — oo and with the flow holding
time scaling as T}, = /nT}, {6} converges in distribution
to a constant o, where

of = Var [Vo — (g% V)o] = 0*Var [U(0) — (g * U)(0)].

Although this proposition is identical to the correspond-
ing one (Prop. VI.1) for the homogeneous case, the reason
why it is true is more subtle. Recall that the memory time-
scale for the high-pass variance estimator is T}. Hence, the
heterogeneous mix of flows actually changes significantly
during this time. However, the low sensitivity of the ag-
gregate load to the fluctuation of the variances ensures that
the variance estimator remains accurate.

Combining eqns. (26), (27) and Prop. VI.2, the aggre-
gate load and the overflow probability can be computed to



be:

i —
St:np—i—\/ﬁsup{vt—Zs—u
s<t Th

- aan} + o(v/n)
and

Pr{Sy > nu} =~ Pr {sup {Vg — 7, + g} > aqO'H}
s<0 Th

Comparing these results with (24), we observe that the
(asymptotic) overflow probability and the utilization for
the heterogeneous model are the same as those for a ho-
mogeneous model where each flow has the same mean rate
¢ and the same variance o. There are two reasons for
this. First, the process {Lt/Th} describing the change of the
mean rates of the flow mix in the system is completely fil-
tered into the low-frequency component and perfectly com-
pensated for by admission control. Second, the fluctuation
due to change in flow variances o; has an insignificant im-
pact on the aggregate load and the overflow probability.
This ensures that although the memory time-scale for es-
timating the high-pass variance is of the order of T}, the
estimates will not be significantly corrupted by outdated
data.

The above performance analysis of the proposed scheme
under a heterogeneous traffic model gives further evidence
to the efficiency and robustness of the design, particularly

in the choice of T} as the filter time-scale for tracking the
low-pass mean and 7}, as the memory time-scale for esti-
mating the high-pass variance. For example, if the low-pass
ﬁlterﬁgime—scale were chosen to be of the order of 7}, and

not T}y, then unnecessary spare bandwidth will have to be
reserved for the slow time-scale fluctuations due to flow het-
erogenelty In the extreme case when the filter time-scale
is much larger than 7T}, an excess bandwidth proportlonal
to v, the standard deviation of g in the flow mix, is needed.
This corresponds to the case when very conservative admis-
sion control is performed, solely based on prior knowledge
of flow statistics and without benefiting from the on-line
measurements.

VII. CoNCLUSION

Admission control schemes generally make a time-scale
separation assumption between the burst time-scale and
the flow arrival and departure time-scale. Under this as-
sumption, admission control only relies on burst time-scale
statistics, such as the effective bandwidth, to make admis-
sion decisions. The flow lifetime does not enter the picture,
which considerably simplifies the analysis of the system, as
one faces essentially a static situation: based on the burst
statistics, the goal is to compute the admissible number of
flows such that the QoS target is met.

By taking flow arrival and departure dynamics into ac-
count, we have shown the fundamental importance of the
critical time-scale. Fluctuations on a shorter and on a
longer time-scale with respect to this critical time-scale
can be controlled in different ways. Fast time-scale fluc-
tuations have to be absorbed by the overbooking regime,
i.e., setting sufficient spare bandwidth aside to accommo-
date them. Slow time-scale fluctuations can be compen-
sated for by tracking, i.e., adjusting the number of flows
in the system through flow arrivals and departures. This
decomposition has led to a specific MBAC approach based

on a time-scale decomposition of bandwidth fluctuations
through low and high-pass filtering.

We have then evaluated the performance of our MBAC
approach for both homogeneous and heterogeneous flow
models, under the assumption that the window length for
the variance estimation is on the order of the average flow
holding time. This analysis allows us to account for the
measurement uncertainty in the mean estimator, and to
compute a corrected QoS target pﬁ] such that the overflow
probability is close to the target.

Our MBAC scheme based on aggregate time-scale de-
composition fulfills all of the requirements stated in the
introduction. First, it is robust with respect to flow hetero-
geneity as well as bandwidth fluctuations on multiple time-
scales. Also, we have explicitly quantified the correction to
be applied to the QoS target p, in order to compensate for
measurement uncertainty, rather than relying on unspeci-
fied external parameters that need to be adjusted. Second,
it achieves high resource utilization. In fact, exploiting the
tracking regime allows us to maximize resource utilization,
as we do not set aside spare bandwidth unnecessarily for
slow time-scale fluctuations. This has been illustrated in
Figure 5, where it can be seen that the overflow proba-
bility remains close to the target overflow probability p,
when T, grows large, which means that it does not un-
necessarily sacrifice bandwidth for fluctuations which fall
into the tracking regime. Third, our scheme is amenable
to an efficient implementation. Aggregate bandwidth in-
formation can be obtained in a switch or router simply by
counting packets, without inspecting packet headers and
without maintaining per-flow information.
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