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I. SUMMARY

In this paper, we develop bounds on the achievable rate for
deletion channels. Deletion channels occur when symbols are
randomly dropped, and a subsequence of the transmitted sym-
bols is received. Our initial motivation for studying these
channels arose in the context of information transmission over
finite-buffer queues in packet-switched networks, where the
receiver does not have access to side-information on which
packets were dropped. This also motivated our study on the
effect of large alphabet sizes on the achievable rate.

In deletion channels, unlike erasure channels, there is
no side-information about which subsequence is received.
Clearly, the capacity of the erasure channel is therefore a sim-
ple upper bound for the capacity of the deletion channel. The
natural question which arises is about how much worse (in
terms of information transmission rate) a deletion channel is
compared to an erasure channel. This might shed light on
the amount of “redundancy” actually needed for transmission
over packet loss channels.

The deletion channel is a special case of inser-
tion/deletion/substitution channels' which model the effect
of synchronization errors and have a long history ([1, 2] and
references therein.) Even in the presence of memoryless dele-
tions, there is no single-letter characterization for achievable
rates. All the published literature deals with the binary al-
phabet case. For memoryless deletion channels [1, 2] showed
that

Caet > 1 — Ho(pa), pa <0.5 (1)

where Ho(pg) = —(1 —pa)log(1 —pa) — pqlog(pa) is the binary
entropy function. We provide an alternative proof for this
result which also yields lower bounds for larger (non-binary)
alphabet sizes and when the deletion process is stationary and
ergodic. We also derive bounds that improve (1) by using
codebooks with memory.

Our main result is that the achievable rate in deletion
channels differs from that of erasure channels by at most
Ho(pg) — palog % bits, where py is the deletion probability,
K is the alphabet size and Ho(-) is the binary entropy func-
tion. We sharpen these bounds by giving a characterization of
achievable rates using input codebooks with memory for the
non-binary deletion channel. These lower bounds, when spe-
cialized for the binary deletion channel, improve the bounds
reported in (1).

II. PROBLEM STATEMENT AND MAIN RESULT

The K-ary deletion channel is defined as follows. Let
z = (¢1,...,Zn) be a codeword, where z; € {1,...,K}. A
deletion pattern D is a binary vector (Di,...,D,), where
D; = 1 indicates that the i-th symbol of x is deleted, and
D; = 0 indicates that the ¢-th symbol is received at the out-
put. We are mainly interested in i.i.d. distributions (with
Pr{D; = 1} = pq) for the binary sequence D;, but Theorem
I1.2 also applies when D is stationary and ergodic. Note that
the deletion channel has memory in that p(y|z) does not be-
come a product distribution even for an i.i.d. deletion process.

We first prove lower bounds for the capacity of the dele-
tion channel. We do this using random codebooks generated
with a first-order Markov process. Intuitively, we expect such

!In an insertion channel, additional symbols can randomly be
inserted into the codeword. Substitutions are the familiar symbol
errors for noisy channels.

codebooks to perform better than memoryless codebooks be-
cause its codewords tend to contain rums, i.e., sequences of
identical symbols. The information can then be viewed as be-
ing encoded as a sequence of runlengths. If no run is deleted
completely in the channel, the channel acts as a DMC for
the runlengths. This motivates the use of first-order Markov
chains, which generate i.i.d. runlengths. Our main result is
the following.

Theorem I1.1 Given an i.i.d. deletion pattern with deletion
probability pa, and a K-ary input alphabet, the capacity of this
channel is lower bounded as

Cact > sup [(pa—1)log{(1 —q)A +qB} — 7] nats (2)
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The proof requires calculating the probability that a ran-
dom subsequence of a codeword generated by the first-order
Markov chain is a subsequence of another random codeword.
The parameter p of Theorem II.1 essentially controls the
tradeoff between small probability of runs being completely
deleted (long runs are better) and the length of the sequence
of runs (short runs are better). Note that the optimization
in (2) for a given p can be accomplished in closed form as it
results in a simple quadratic equation in <. In the binary case,
the bound (2) is sharper than (1).

We can specialize the result for i.i.d. codebooks by making
p= %, which results in the following theorem. Note that for
i.i.d. codebooks, we can actually prove a stronger result for
stationary and ergodic deletion patterns.

Theorem I1.2 Given a stationary and ergodic deletion pat-
tern with long-term deletion probability given by pa (with
pa < 1—1/K), and an input alphabet size K, the capacity
of this channel is lower bounded as

Caer > log (%) + (1 —pa)log(K —1) — Ho(pa).- (3)

This result when specialized to the binary case (K = 2)
results in the Gallager-Zigangirov result given in (1). As
mentioned earlier, the erasure channel provides an obvious
upper bound of (1 — pg)log(K), which therefore shows that
we have sandwiched the deletion channel capacity to within
Ho(pa) — palog 725 bits per (input) symbol.

One question that we are pursuing is that of tighter upper
bounds for the deletion channel. For example, one promis-
ing approach is a channel that only conveys side-information
about runs (sequences of identical symbols) that are com-
pletely deleted.
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