SEAM: An Architecture for Scalable and Efficient ATM
Multipoint-to-Multipoint Communication

M. Grossglauser® * and K. K. Ramakrishnan®
2INRIA, BP 93, 06902 Sophia Antipolis Cedex, France

PAT&T Labs. Research, 600 Mountain Ave., Murray Hill NJ 07974, USA

This paper proposes a multipoint-to-multipoint multicast architecture for ATM networks.
The necessity for such an architecture stems from the scalability requirements, both in
terms of state to be maintained in the network and in terms of the group population
dynamics, of a wide range of networking applications including distributed interactive
simulation (DIS), distributed databases and games, web caches and efficient support of
IP multicasting. Our proposal, SEAM, uses a single VC for a multicast group consisting
of multiple senders and receivers. SEAM relies on an additional switching feature called
cut-through forwarding, which enables the mapping of several incoming VCs into one or
several outgoing VCs.

We believe that SEAM is both an important and necessary step in the evolution of ATM.
It will enable applications relying on group multicast to benefit from ATM’s quality of
service support and scalable bandwidth.

1. INTRODUCTION

Support for multi-party communications is viewed as a critical building block for enabling
transparent, scalable and efficient communication. We believe the fundamental attrac-
tiveness for multicasting is its ability to abstract the identity of individual members of
the group to a single common group identity. This enables scaling of the communication
mechanism to arbitrarily large numbers of participants and network sizes. Multicast ses-
sions for human collaboration, based on the nature of human behavior, can be expected
to be relatively static. Also, the set of senders to the group is small: a person is often
unable to look and listen to even a few speakers at the same time. Thus, scalability has
been addressed only in terms of the size of the receiver population. This has led to designs
based on per-source distribution trees, such as DVMRP [5], MOSPF (8], and ATM UNI
4.0 [2].

Multicast also serves as a communication abstraction between a set of group members.
In many circumstances, the group members are all potential senders; furthermore, the
group population can be large and highly dynamic. The main motivation for using a

*This author was supported in part by a grant from France Telecom /CNET.



multicast service then lies in the decoupling of the application and the group membership
management. In other words, the application is relieved of the burden of tracking group
membership; it can address the group as a single entity. This proves important in many
distributed systems problems, where requiring the application to track membership and
manage member arrivals and departures results in complexity and an additional com-
putational burden. Such applications include distributed interactive simulation (DIS),
distributed databases and caches, and distributed games.

In order for a multicast service to efficiently support a wide range of applications, we
believe it has to offer the following:

1. Membership management symmetry for senders and receivers.

2. Scalability as a function of the total network size, the group size and composition,
and the frequency of membership changes.

These requirements impose certain design choices. First, the multicast group has to be
represented by a single tree shared by all group members (senders and receivers) [4].
Second, only network nodes (switches or routers) on the tree for a group should have to
maintain state concerning that group. Otherwise, the cost of setting up and maintaining a
large number of sparse groups will become excessive, as has been observed with DVMRP.
Third, it must be possible to support member-initiated group membership changes. If all
membership changes have to be processed centrally, the burden of communication and
processing overhead can become excessive.

The only protocols proposed so far recognizing the need for a shared tree are CBT [4]
and the sparse mode of PIM [6]. In ATM, member-initiated joins and leaves have been
incorporated into ATM Forum UNI version 4.0 for point-to-multipoint communication [2].
However, there has been no proposal for a “convenient” multipoint-to-multipoint commu-
nication mechanism. Using a multicast server (e.g., an option in [3]), results in a single
tree spanning all receivers, rooted at the server. Senders have to create point-to-point
(unicast) connections to the server, violating the network state requirement above. Also,
the server is both a bottleneck (due to the necessity to perform reassembly-segmentation
in the server, and subsequent forwarding to all the receivers) and a single point of failure.
The number of Virtual Circuits (VCs) used on the link to the server may be a scarce
resource as well.

In this paper, we propose a true multipoint-to-multipoint architecture for ATM, called
SEAM. It is compatible with the requirements elaborated earlier, and is therefore based
on a single, shared tree. A single VC per link is used to send cells from all the senders
of the multicast group to the receivers in the group. Conceptually, SEAM is closest to
CBT, while it maintains the cell-switched nature of ATM.

One of the ancillary goals in our proposing SEAM was a desire to support IP multicasting
in ATM networks. An ATM backbone may have many IP routers at the periphery. A
straightforward mapping of a large number of IP multicast addresses among these routers
using point-to-point VCs results in excessive state being maintained and managed in the
ATM backbone. SEAM overcomes this by having a single VC associated with each IP
multicast address.

The remainder of this paper is structured as follows. Section 2 gives an overview of
the SEAM proposal. Section 3 discusses signalling issues, and Section 4 discusses data



forwarding issues. Section 5 considers interoperability issues with the ATM Forum’s UNI
4.0, and outlines a path for gradual migration towards SEAM. Section 6 concludes the

paper.

2. THE SEAM PROPOSAL

The defining property of SEAM is a shared tree between all senders and receivers of a
group. We use a “core” (as in [4]) as the root of the tree. Having a single shared tree per
group has a number of important advantages. First, a group will allocate only one VC
per link. Also, no per-sender state has to be maintained in switches.

Signalling is based on a group handle. A handle is a unique SEAM conversation identifier.
The handle consists of the core address plus an identifier. The core address is necessary
because it allows members and intermediate switches to know the core through the group
handle. Note that to make the handle globally unique, it is sufficient to make the ad-
ditional identifier locally (at the core) unique. Second, a simple signalling mechanism
(termed short-cutting), allows cells to take short-cuts at each switch on the tree. In other
words, each packet spans the shared tree from its sender to all the receivers, keeping
delays low.

SEAM manages group members who are only senders, only receivers, or both, in the same
way. All of these three types of members share one tree, rooted at the core. The tree’s
links are bidirectional channels. The core may be an ATM switch, not necessarily an
end-system. Segmentation-reassembly is not required at the core and only occurs in the
end-systems that are senders and receivers.

The shared tree is represented by a single VC. Thus, a switch at the “merging point” in
the network (where transmissions from different senders on the multicast group arrive on
different input links) has to be able to map multiple incoming VCs into one (or possibly
more) outgoing VCs. The switch has to perform this without interleaving cells of different
packets (thus not corrupting the packet), while not reassembling the packet and suffering
the associated delays. Switches at “merging points” in the network transmit all the cells
of a multicast packet, in order, downstream on the spanning tree before transmitting cells
of the next packet for the same multicast VC. We call this function cut-through. When a
packet on a given input port for a multicast VC is being forwarded, the switch is required
to buffer other incoming packets for that multicast VC until the End-of-Packet (EOP) of
the current packet has been forwarded. Thus, cells of a packet from an individual source
are forwarded in order so that reassembly can be performed successfully at the destination.
Cut-through affects only multicast VCs, and then only on a per-multicast VC basis. Cells
transmitted on normal unicast VCs continue to be switched in the “true-ATM” mode, and
see all the benefits of cell-switching.

An idea similar to cut-through was briefly described in [10], in the context of multicast
servers (described as hardware resequencers), that may be distributed throughout the
network. We describe the idea in greater detail in the context of a true multipoint-to-
multipoint architecture that is proposed in this paper.

Quantitative analysis on the advantages of SEAM’s shared tree in the context of ATM
may be found in [7].



3. SIGNALLING ISSUES

We now define SEAM signalling support in more detail. The mechanisms used are quite
similar to those defined in UNI 4.0 [2]. However, some extensions are necessary because
group members may be senders or receivers, and because there can be several incoming
and several outgoing multicast VCs at a switch.

3.1. Group Creation

When senders or receivers want to join a multicast group, they send a join message
towards the core. The choice of a core needs to be made prior to setting up any part of
the multicast tree. The question is: who is responsible for setting up the core?

We propose to have an “initiator”, who may or may not be a future member of the group,
responsible for defining the core and disseminating the existence of the core to potential
members. This can happen, for example, through a name service, as proposed in [4], or
through directly contacting the members, depending on the semantics of the group.

Note that it does not need to be the initiator’s responsibility to choose what switch in the
network is elected as core. In our view, the network would offer core selection as a service.
The initiator could convey some information about the expected group membership (e.g.,
geographical information) in order for the network to optimize the choice of a core. The
network answers a core selection request with a handle that the initiator may use to
advertise the group.

The creation of the group must be preceded by the selection of an appropriate core. This
may be achieved in two ways, namely (1) through a configuration server that resides on a
well-known address, or (2) by taking advantage of routing information. We note that, in
addition to disseminating reachability information, the routing system may also distribute
core location information. Since every switch is a potential core, the core selection may be
elegantly integrated into the distribution of reachability information. The core selection
may be based on an a-priori known set of participants, or on a set of ATM addresses (that
may or may not represent actual future group members) that are used as a “geographical
hint” to assist core selection.

Assuming that core selection is integrated into the routing system, the initiator simply
provides the first hop switch with a set of ATM addresses of potential or actual group
members, and requests a core address.

Initiator -> [geog_hint=Ilist<ATM address>] -> Next hop switch
The next hop switch returns the address of the core switch.
Next hop switch -> [core=ATM address| -> Initiator

The next hop switch may in fact return a list of cores, and the initiator may choose one
based on additional local considerations.

Note that this first phase is not necessary if the initiator, for some reason, already knows
the ATM address of a core, for example from a previous group. Now the initiator requests
the group setup from the core. The core defines the unique group handle as (core-address,
unique_id). The unique id may be similar to (if not the same as) the Call Identifier field
used in the “Global Call Identifier” (GCID) in UNI 4.0 to uniquely identify a “Leaf-Initiated



Join (LIJ) Call”. The initiator also provides the list of the initial set of participants (if
any) and flags that define them as senders or receivers, so that the core can add them to
the group at setup time (through core-initiated join).

Initiator -> [initial_members=list<ATM address, snd_flag, rcv_flag>] -> Core
Core -> [group_handle=(core_address, unique_id)] -> Initiator

The dissemination of group handle information to members is the initiator’s responsibility
and not part of SEAM. When SEAM is used to carry IP multicast, then the group
identification may include the IP multicast address associated with the group as well.

3.2. Short-Cutting

Short-cutting is a signalling-level mechanism that sets up cell forwarding tables in such a
way that reverse path forwarding (RPF) is emulated at each switch. This allows a packet
sent to the group to span the tree, instead of going first through the core and then back
down the receiver-spanning tree as in a multicast server approach. This reduces delay
and ensures that packets traverse any link at most once.

Short-cutting is enabled by modifications in the signalling path of the switch implemen-
tation, and does not require any changes in the data path. We introduce the notion of an
SD-bit, (for “Sender Downstream”), which is a per-port flag indicating if there are senders
downstream of that port for the corresponding group. A sender join coming in sets the
SD-bit on that port. When an SD-bit is set, the port is mapped on to all the other
ports that have a “Receiver Downstream” (RD-bit), bit set. The RD-bit is a per-port flag
indicating that there are receivers downstream of that port for the corresponding group.

In principle, SEAM also allows reconfiguration of “segments” of the shared tree upon link
failure, rather than reconfiguration of the entire shared tree. This may require appropriate
signalling support to not ‘clear’ the entire multicast call upon a link failure: only those re-
ceivers/senders downstream of the failed link need to be notified and requested to re-issue
joins towards the core (with an alternate path provided by the routing infrastructure).
This enhances reliability and scalability.

3.3. Member Initiated Joins

It is obvious from the discussions in [4,6] that member-initiated joins are a necessity for
a scalable multicast service. The advantages of a member-initiated join approach over a
root, initiated approach are twofold. First, the root of a multicast tree (in our case the
core) does not need to know about or keep track of the membership of the group. This
means saving processing resources and state space. Second, a join to a group that already
has a tree set up can be terminated at the point where a new branch will be added to the
existing tree. This means saving bandwidth (due to signalling messages travelling smaller
distances), processing resources in the switches, and reduced latency [7].

We discuss the mechanisms for member-initiated joins without root-notification. Joins
with root notification are simple extensions, except that the root is the core in SEAM.
A member join is initiated by a “Leaf Setup Request (LSR)” towards the core, using the
group handle as part of the GCID field. The member uses its ATM address to identify
itself, including two flags identifying it as a sender or a receiver. The leaf setup request
progresses along the shortest path to the core until it reaches a switch at which the context



for the SEAM call exists (i.e., a switch that is already on the tree for this group). A receiver
join request may have to progress further up if this switch is not on the receiver-spanning
tree and is only on a branch of the tree with downstream senders.

A standard “Setup” procedure is initiated from the tree to extend it to the new member,
with a “Setup-Connect” message exchange between the switch on the tree and the new
member as the leaf. Cell forwarding state is set up at the switches for the group so that
short-cutting is enabled everywhere in the tree. We now define the rules for manipulation
of the cell forwarding state by the switches. First, some notation. We call RP (Request
Port) the port on which the LSR has come in, i.e., the port that is on the shortest path
towards the new member. We call DP (Designated Port) the port on the shortest path
towards the core (analogous to the “root port” in bridges). The DP has its RD-bit and
SD-bit set to 1 by default, to ensure that all the packets sent to the group are forwarded
to the core, and that receivers get all the packets coming from the core. Finally, when we
create forwarding state for a given SEAM group from the incoming VC on port A to an
outgoing VC on port B, we will say that we map port A into port B.

We describe the actions at a local switch for sender and receiver where port 1 is the DP.

e Sender-join: Map RP to all the ports with the RD-bit set to one. For example,
consider a sender-initiated join arriving at port 2 of a switch, which has the RD bit
set on ports 3 and 4. The VC for port 2 will be mapped into ports 1 (the DP), 3,
and 4.

e Receiver-join: Set the RD-bit of RP to one. Map all the other ports (with SD = 1)
into RP. Let us consider an example where ports 4 and 5 of the switch have senders
for the multicast VC. A receiver join at port 2 causes ports 1 (the DP), 4, and 5 to
be mapped into port 2.

e SenderéReceiver join: apply both rules above.

We now discuss the forwarding of join requests. Forwarding of join requests is always on
the shortest path towards the core, i.e., switches always forward the requests on the DP.

e Sender join: Forward a join until it reaches a switch that is already on the tree.

e Recetver join and SenderéReceiver join: Forward a join until it reaches a switch on
the tree which has some port other than the RP and the DP with the RD-bit set.

3.4. Core Initiated Joins

Using a single tree means that several group members can be added in one step, initiated
by the core. In a scheme using per-sender trees, this is not possible: either each sender
has to set up a tree to all the receivers, which means that the set of receivers has to be
communicated to the senders, or the receivers join the sender tree for each of the senders,
which means that the receivers need to know the set of senders. This can be an important
performance consideration for applications that depend on rapid setup of centrally con-
trolled groups. An example would be the setting up of a group teleconferencing session
with the help of a centralized server. The function of the centralized server may be to
provide security screening, the appropriate translation functions needed for the different



participants and other coordinating functions prior to the start of the session. Here, a
“core-initiated join” may prove advantageous.

The request messages for a core-initiated join always travel all the way from the core to
the new member. At each switch, we simply check if a corresponding member-initiated
join request would have traveled up to this switch or not. If it had, then the state setup
rules defined above are applied in the same way, as if the corresponding request had been
received on the port towards the member.

3.5. Call Teardown

Upon receiving a leaf-initiated release request, the appropriate cell forwarding state asso-
ciated with the SEAM VC needs to be removed, and the request forwarded up the tree as
needed. Deleting the state is simple: simply delete all mappings from other ports into the
RP to release a receiver, and delete all mappings into other ports from the RP to release
a sender.

In order to decide about forwarding the release request further upstream, we need to check
if the above state deletion has caused “loose ends” on the DP, i.e., either a VC on the DP
not being mapped anywhere, or a VC on the DP not having any other port mapped into
it. If such loose ends exist, then the appropriate release request is forwarded upstream,
i.e., a receiver release request in the former case, a sender release request in the latter.

4. DATA FORWARDING ISSUES

For our multicast scheme to work, we need to be able to map multiple incoming VCs into
one or several outgoing VCs at switches. If this is done simply on a cell-by-cell basis,
then cells belonging to different packets will interfere with each other, resulting in packet
corruption.

One way to circumvent this problem is by reassembling the packets at a multicast server,
perform packet-level scheduling, and re-segment one packet after the other onto an out-
bound point-to-multipoint VC (or mesh of point-to-point VCs). We show in this section
that it is possible to achieve the same without reassembly and segmentation, by taking
advantage of the AAL5 End-of-Packet (EOP) identifier, which is part of the ATM cell
header.

The packets of multiple senders transmitting to the same multicast group arrive on the
same VC. The constraint imposed by ATM is that the data on a particular VC is ordered,
and therefore, there is no need to identify cells as belonging to a particular packet. With
AALS, when a EOP cell is received, all the previous cells received on that VC belong
to that packet. When multiple senders send packets on the same VC, these need to
be unambiguously ordered and forwarded to avoid corruption. We do this by having
switches perform a function we call cut-through forwarding. Switches performing cut-
through forwarding complete packets at a time, while buffering incoming packets from
other input ports until an EOP cell has been forwarded. With cut-through, the receivers
do not have to distinguish cells of different packets arriving on the same VC (an impossible
task).

The specific actions for cut-through at a switch S are: the first cell of a packet arriving



from any input port on VC H determines that this packet arriving on that input port gets
unconditional priority to be forwarded on the outgoing VC H. Let this packet be X from
a given source. Then, all of the cells of packet X are forwarded first. Any other packet
arriving on any other input port is queued at switch S for forwarding subsequent to the
transmission of packet X. When the last cell of packet X (the EOP cell) is transmitted,
then cells queued for another packet, Y, are transmitted from switch S on the spanning
tree. From that point onwards, packet Y gets priority for being transmitted on VC H. A
switch that is not a merge point would perform pure cell-switching for the multicast VC,
by following the above rules.

Once the EOP cell is forwarded, another input port with cells awaiting transmission for
the multicast VC is selected for transmission on a round-robin basis. Every switch (at
least every merge point for multicast communication) on the tree is expected to be able
to perform cut-through.

Just as in the unicast case, the loss of an EOP cell results in that packet not being
successfully reassembled at the destination, and hence being lost. However, in multicast
with SEAM, the loss of an EOP cell for a packet on a given input port also results in
the continued queueing of the cells for that multicast VC on other input ports. Only the
transmission of a subsequent packet on that same input port (and the forwarding of its
EOP cell) would result in the queued cells on other ports being “released”. An approach
for recovering from the loss of an EOP cell is to use a “time-out”. If no cell (including an
EOP cell) has been received for that multicast VC on an input port which is currently
forwarding a packet for a period of time, then we may time-out that input port. More
details may be found in [7].

When there is a slow input port on a switch with heterogeneous ports (of different speeds),
a pure cut-through design may lead to unnecessary delay for cells arriving on the higher
speed input ports for the same SEAM VC. In such a case, one may configure the switch
to disable cut-through on slow input ports for the SEAM VC, and instead perform store-
and-forward on a per-packet basis. When a packet has been received in its entirety on
the SEAM VC on the slow input port, then the input port would contend for forwarding
the cells of the packet just as a port performing cut-through. This allows faster input
links to send a packet (or even more than one packet) using cut-through while the switch
is receiving a packet on the slow link. When the “slow packet” is completely received at
the switch, it becomes a candidate for transmission, and contends with the other input
links. This reduces the impact on other input links, and potentially increases the output
link utilization (when the flows are predominantly multicast). More details are in [7].

The fundamental advantage SEAM achieves with cut-through is that we do not have to
look at the payload of the cell to do efficient multipoint-to-multipoint communication.

4.1. Performance Evaluation of Cut-Through

SEAM takes advantage of cut-through to perform cell-by-cell forwarding for a multicast
VC. When only a single multicast packet is arriving at a switch, we can take full advantage
of ATM switching and the associated latency improvements. When multiple packets for
the multicast VC are being received at a switch simultaneously, we queue packets from
other input flows while forwarding, on a cell-by-cell basis, one of the packets. As a result,
we will observe latencies always better than packet-by-packet forwarding at the “merge



Mean Queue Length for varying Link Util. Cell Loss Percentage at Full Link Util.

160 20 T
*0.250t1’} o '16ths ——
140 10.5util == 18 ’83“5’ P
*0.75util’ B -
*0.9util’ -x- 16
7 120 3
g BENS EEEay g
£ 100 ; g B é 12
o i iz} g w
2 & - 3 10
3 / g
E} g 3
O 60 B g
é 4 5 6
40 ;
a e
20 / 2
0 0
0 2 4 6 8 10 12 14 16 400 500 600 700 800 900 1000
Number of Input Ports Cell Buffers per Port

Figure 1. (a) Mean Queue Length per Port vs. No. of Input Ports for varying output link
utilization. (b) Cell Loss Probability vs. Cell Buffers per Port for 8 and 16 port switches.

point” in the shared tree. From a packet forwarding perspective, cut-through gives the
same latency advantages as cut-through bridging did for packet networks. The primary
performance metric we examine here is the mean queue length at each input port.

The use of SEAM results in a slight increase in buffering at an input port compared to
pure cell switching. We briefly examine the buffering requirements imposed on switches
as a result of implementing cut-through through simulations. We model a single switch
with varying number of input ports receiving packets addressed to the common multicast
VC. The switch forwards all received data over a single output port at 155 Mbits/sec.
The switch implements the data forwarding aspects of cut-through: i.e., forwards cells
from a given input port until the EOP cell is forwarded; the next input port is selected
on a round-robin basis after the current packet has been forwarded entirely.

If we were to assume that the packet sizes were fixed, the packet arrival instants were
deterministically distributed, and the arrivals would not exceed the total capacity of
the output link, then the buffer requirement per port would be minimal. At most one
maximum-sized packet’s worth of buffering would be needed per input port. With “per-
fect” traffic management of the entire multicast group, we could expect it to be the case,
especially if even the short-term rate of cell arrivals across all input ports does not exceed
the capacity of the output link. Some of the goals of explicit rate algorithms for ATM’s
Available Bit-Rate Service [1] make an attempt at it, albeit for unicast connections.

We also need to understand the buffer requirements when there is variability in both the
packet inter-arrival time and the packet size. For our simulations, the inter-arrival time of
packets is exponentially distributed. The size of the packet is uniformly distributed in the
range of (2,200) cells. This is approximately the range of TP packet sizes anticipated over
ATM links. We control the mean aggregate packet arrival rate to not exceed the capacity
of the output link. However, both variance in the packet inter-arrival time (exponentially
distributed) and the packet size (uniformly distributed) contribute to queueing at the
switch. The cells of a packet arrive at the full link rate, so that we have the maximum
burstiness within a packet. We examine the buffering requirements for varying levels of
aggregate utilization of the output link, ranging from 25 % to 90 % of the link capacity.
The number of sources (number of input ports on switch) is varied from 1 to 16.

Figure 1(a) shows the variation of the mean queue length for varying numbers of input



ports, for 4 different average utilization levels of the output link. The mean queue length
increases as the number of ports increases. Even when the output link is 90 % utilized,
the mean queue length is within 200 cells (one maximum size packet) for the 16 port case.
Thus, the average buffer requirement appears reasonable. We also looked at the maximum
queue length per port (realizing that this is not a good measure to examine, in a statistical
sense): it was about 1550 cells for the 16 port case, when the utilization was 0.9. Given
the variability in the packet inter-arrival time distribution and the cell-level burstiness,
this requirement of no more than 8 packets for the total buffer is reasonable. Realize our
simulations are as if the ATM network was operating with no congestion control (except
that there is no long-term overload).

We also examine the cell loss probability at high average link utilizations, when the number
of cell buffers is varied from 200 cells to 1000 cells (5 max. size packets), in Figure 1(b).
For the 16 port case, the link was utilized 94.11 % and for the 8 port switch, 88.88 %. The
cell loss probability is higher, about 19 %, for the larger switch (since the link is shared
by more ports) but goes down fairly rapidly, to about 3 %, with increasing buffer sizes.
One can anticipate that the actual packet loss probability could be reduced substantially
by using mechanisms such as partial packet discard [9], since the switch is already keeping
track of the EOP cell processing.

5. INTEROPERABILITY: MIGRATION FROM UNI 4.0 TO SEAM

As SEAM requires the cut-through capability of ATM switches, its deployment may be
gradual. It is therefore important to provide for interoperability between SEAM switches
and non-SEAMable switches. In this section, we propose an interoperability architecture
between non-SEAMable islands, (i.e., one or several switches not having the cut-through
capability) and SEAM environments.

SEAM switch

O non-SEAMable switch

---- SEAM mpt2mpt VC
------ pt2mpt VC

Figure 2. Interoperability between SEAM-able & non-SEAMable switches.

Consider the situation given in Fig. 2. There is an island of two non-SEAMable switches,
S2 and S3. The questions we have to address are:
(a) How do we connect SEAMable switches having a SEAM multipoint-to-multipoint VC
belonging to the same group through the island?
(b) How do we connect senders and receivers inside the island to the SEAM group? We



assume that the switches in the non-SEAMable island have the capability of setting up
point-to-multipoint VCs.

To efficiently use signalling resources, we use the SD-bit (sender-downstream) at each
SEAMable switch. It allows a SEAMable switch to set up connectivity to the non-
SEAMable island for forwarding transmissions of the group from senders on the SEAM
environment when such senders are present. The solution we propose can be summarized
as follows.

1. Each sender (Snd1l) in the non-SEAMable island sets up a point-to-multipoint VC
reaching all island receivers (Rcvl, Rev2) as well as all border SEAM switches having

the RD bit set on at least one port, other than the one connected to the island (e.g.,
at switches S1, S4).

2. Each border SEAM switch having the SD bit set on at least one other port than the
one connected to the island (e.g., S1) sets up a point-to-multipoint VC to all the
non-SEAMable island receivers (Revl, Rev2) as well as the other bordering SEAM
switches having the RD bit set on at least one other port than the one connected
to the island (e.g., S4). If no SD-bit is set, then the point-to-multipoint VC into
the island rooted at that switch is not necessary. This avoids the signalling message
making progress and a VC being set up unnecessarily.

3. Border SEAM switches (S1, S4) map all of the incoming point-to-multipoint VCs
from the island into the SEAM multipoint-to-multipoint VC on the other ports.
Reverse Path Forwarding is done per port, i.e., an incoming VC from the island is
not forwarded into the point-to-multipoint VC to the island on that port.

4. Border SEAM switches map the point-to-multipoint VC into the island into the
SEAM multipoint-to-multipoint VC as well.

This scheme has the following properties. First, SEAM switches not connected to a non-
SEAMable island do not need to have any knowledge about the island (e.g., S5). Second,
border SEAM switches (S1, S4) need to know about all of the island senders (e.g., Snd1)
(in order to do a leaf-initiated join to the point-to-multipoint VC rooted at these senders)
as well as about other border SEAM switches (for the same purpose). The same holds for
island receivers (Revl, Rev2). Basically, inside the island, the situation is as if there were
no SEAM multipoint-to-multipoint VCs. Border SEAM switches are, in the general case,
both senders and receivers for the non-SEAMable island. Third, as we “emulate” short-
cutting inside the island with multiple point-to-multipoint VCs, we get the same delay
as if there were only SEAM switches. Fourth, scalability in terms of sender population
is obviously not achieved inside the island, as the number of point-to-multipoint VCs
grows with the number of senders and bordering SEAM switches. However, the scheme
is scalable in the number of islands; each island is isolated in the sense that it does not
need to know about other islands.

We think that gradual migration from simple point-to-multipoint VCs with leaf-initiated
joins, as proposed in UNI 4.0, to SEAM capable switches will be straightforward. Since
deploying SEAM switches enhances scalability in sender population, a sensible strategy
would be to place SEAM switches first at points where a large number of senders are
expected.



6. CONCLUSIONS

We proposed an efficient scheme, called SEAM, for multipoint-to-multipoint communica-
tion in ATM networks. The scheme allows for scaling up to a large number of potential
senders and receivers. SEAM uses a single shared spanning tree for all senders and re-
ceivers, thus using a single VC for the entire group. The key mechanism of SEAM is called
cut-through forwarding. A SEAM switch forwards complete packets for the multicast VC,
taking advantage of the AAL5 EOP bit to determine when to switch to forwarding a new
packet. Non-SEAM VCs are unaffected by cut-through.

We have discussed the details of SEAM’s signalling extensions. Joins and leaves for senders
and receivers are fully symmetric from the user’s point of view. We have argued that
SEAM puts a minor additional burden on the switch design, while greatly enhancing the
scalability of ATM multicast. We have also presented some simulation results indicating
that the buffering requirements using SEAM are modest. Finally, we have shown that a
gradual migration to SEAM is possible, by defining how SEAM should interoperate with
non-SEAMable islands.

REFERENCES

1. ATM Forum Traffic Management Specification Version 4.0. ATM Forum Specification
/af-tm-0056.000, ATM Forum, April 1996.

2. ATM User-Network Interface (UNI) Signalling Specification Version 4.0. ATM Forum
Specification /af-sig-0061.000, ATM Forum, July 1996.

3. G. J. Armitage. Multicast and Multiprotocol support for ATM based Internets. ACM
Sigcomm Computer Communication Review, 25(2), April 1995.

4. Tony Ballardie, Paul Francis, and Jon Crowcroft. Core Based Trees (CBT). In Proc.
ACM SIGCOMM ’93, San Francisco, Calif., September 1993.

5. S. Deering. Multicast Routing in Internetworks and Extended LANs. In Proc. ACM
SIGCOMM ’88, Stanford, California, August 1988.

6. S. Deering et al. An Architecture for Wide-Area Multicast Routing. In Proc. ACM
SIGCOMM 94, London, August 1994.

7. M. Grossglauser and K. K. Ramakrishnan. SEAM: Scalable and Efficient ATM Mul-
ticast. In Proc. IEEE INFOCOM ’97, Kobe, Japan, April 1997.

8. J. Moy. Multicast Extensions to OSPF. In Request For Comments 1584, Network
Working Group, IETF, March 1994.

9. A. Romanow and S. Floyd. Dynamics of TCP Traffic over ATM Networks. IFEE
JSAC, 13(4):633-641, May 1995.

10. L. Wei, F. Liaw, D. Estrin, A. Romanow, and T. Lyon. Analysis of a Resequencer
Model for Multicast over ATM Networks. In Proc. 3rd Intl. Workshop on Network and
Operating System Support for Digital Audio and Video (NOSSDAV ’92), San Diego,
CA, Nov. 1992.



