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Abstract. Network measurements are crucial both to drive research and
in network operations. We introduce a taxonomy and survey the state of
the art of network measurement. We compare measurements available at
the network layer with those available at higher layers, specifically the
DNS and the Web. Both the DNS and the Web can be viewed as logi-
cal networks; this allows the direct comparison of measurement methods
available at these layers with those available at the network layer. We
argue that measurement support within the DNS and the Web is insuf-
ficient in light of the fact that they affect end-user performance as much
as the network layer. We derive some recommendations for the reuse of
network layer measurement methods in the DNS and the Web.

1 Introduction

The Internet has evolved into a system of astonishing scale and complexity,
fraught with conflicting economic interests, comprised of subsystems from an
unprecedented range of vendors, and burdened by many short-sighted fixes to
fundamental problems (such as the deployment of NATSs in response to a shortage
in TP addresses). The research community has no hope of completely modeling
the Internet [36]; only crude abstractions that focus on very specific subprob-
lems are within our reach. Therefore, we are called upon to discover the behavior
of the Internet, in addition to modeling aspects of it. The collection, analysis,
and interpretation of measurements is key to this aspect of Internet research.
It parallels other fields of study that are concerned with systems that escape
exhaustive modeling, such as econometrics and biometrics. For example, mea-
surements have revealed surprising statistical features in network traffic that
were not predicted by any models before their discovery [27]; clearly, exploratory
measurement studies deserve an important place in the research agenda.

Measurements are also crucial in the operation of the Internet. Traffic control
and engineering, i.e., routing and resource allocation to make the best use of
network resources while maximizing performance, directly depends on traffic
measurements [9]. Other examples include accounting and billing, intrusion and
attack detection, verification of service level agreements (SLAs), measurement-
based admission control [20,14,18], etc.

At higher layers, measuring traffic at popular Web sites as well as examining
problems like flash crowds [23, Chapter 11] (sudden surge in traffic aimed at a



site) require measurements where typically administrative access is not available.
Identifying the location of clients, mirroring popular sites and resources [28],
improving the performance of individual servers, and examining ways to move
popular services to edge of the network require large scale measurements.

In this paper, we give a brief survey of the state of the art of network mea-
surement. For this purpose, it is not useful to think of the Internet is terms of the
traditional layered model. Rather, we should think of the Internet as being com-
posed of multiple subsystems that exhibit network structure themselves. Chief
among these overlay networks are the domain name system (DNS) and the World
Wide Web (consisting of clients, origin servers, proxies, caches). Other examples
include content distribution networks (CDNs) and peer-to-peer networks, such
as Napster [29] and Gnutella [15].

We argue that measurement efforts within these overlay networks face similar
challenges and pitfalls as measurement efforts at the network layer, which are
arguably more mature. To structure the comparison, we examine three classes
of measurements for the network layer, for the DNS, and for the Web: topology,
state, and traffic. The topology is the static, underlying structure of each network
(e.g., physical links between routers, or the static configuration of a proxy in a
browser). The state refers to dynamic changes in the active topology and other
variables not directly related to traffic (for example, the utilization of a link would
not be considered a state variable, while the operational state of a link is). The
traffic refers to the flow of work through the network (e.g., packets through the
IP network, name resolution requests and responses through the DNS network).

Our systematic comparison illustrates the fact that logical networks, which
affect end user performance, are severely under-instrumented today. The visibil-
ity into the DNS and the Web is much more limited than at the network layer,
with the result that troubleshooting, control and engineering is significantly more
challenging for these networks. The purpose of this paper is to point out some of
these shortcomings, and to suggest possible remedies inspired by measurement
support at the network layer.

The paper is structured as follows. Section 2 briefly summarizes the state of
the art in measurement at the network layer. Section 3.1 and section 3.2 give
an analogous assessment for the DNS and the Web. We summarize our findings
and proposed remedies in Section 4.

2 IP Network Measurements

In this section, we give an overview of measurements available at the IP network
layer. For each type of measurement - topology, state, and traffic - we describe
what measurements are available externally (i.e., without having administrative
control over the network) and internally (with administrative access).



2.1 Topology

The topology of the Internet can thought of as having two levels of hierarchy:
the autonomous system (AS) level and the network domain level. We mainly
focus on the domain level.

External measurements Several classes of methods have been proposed to in-
fer the topology of the Internet from external measurements. The first class of
methods, commonly referred to as topology discovery, relies on a combination of
probing methods such as ping and traceroute, and of heuristics to sample the IP
address space in an intelligent way to find new nodes and links [17, 5].

The second class of methods relies on correlation in the packet loss process of
a multicast session. Specifically, a packet loss in a multicast session is experienced
by all the receivers downstream from the link where the loss occurred. Thus,
by observing a large number of packets at these receivers, the structure of the
multicast tree can be approximately inferred [3,31]. This corresponds to finding
a subgraph of the network topology.

The third class of methods focuses on inferring other static attributes of
the network, such as the capacity of links through active probing [2], or the
scheduling discipline [26]. On the Web, identifying and characterizing interme-
diaries (such as HTTP/1.0 and HTTP/1.1 proxies) is attempted via probing
techniques.

Internal measurements There are several additional sources of information about
network topology and configuration when one has administrative control over a
network domain. Chief among these are the router configuration files, which
provide a router’s local view of the topology, including its neighbors, links to
and from these neighbors and their capacities. From this, it is conceptually
easy to completely determine the physical network topology of the domain [11].
Complications can arise because direct manipulation of router configuration files
by operations personnel can lead to inconsistent configurations.

Inferring the topology at the AS level (a graph with currently approximately
10000 nodes) is impossible today. While it is easy to obtain a list of all the ASs,
their connectivity depends on local public and private peering arrangements
and the routing policies put in place by ISPs. Some heuristic methods to infer
subgraphs of the full AS topology are described in [16,8,13].

2.2 State

Next, we compare inferring the state of the network, assuming that the underly-
ing topology is known. Network state includes the operational state of links and
routers, the routing and forwarding tables in effect, and other variables that do
not directly depend on traffic (e.g., temperature of the CPU).



External measurements Essentially the same tools used for external topology
discovery can be relied upon to discover the operational state of links and routers
in a domain. The obvious drawbacks, as in any polling scheme, is that there
is a potential delay between a state transition and the time it is discovered;
this delay depends on the poll cycle. Also, the absence of a response to a ping
packet can imply that the target router or interface is down, or that the path to
that router/interface is down. Therefore, the results of multiple pings must be
carefully combined to infer link and router state correctly.

To obtain a snapshot of the state of routing, traceroute has been successfully
used [30]. This basically amounts to temporally sampling a small subset of rout-
ing table entries. Pathchar [19] is an extension of traceroute that is able to obtain
rough estimates of additional path characteristics (loss and delay). Beyond this,
it is virtually impossible to measure other state variables from the outside.

Internal measurements Observing the state of network elements is the realm of
network management protocols such as SNMP [34]. SNMP enables a network
management station to query remote state variables through an agent. The re-
mote variables are standardized as a MIB (management information base) tree.
In addition to this polling mode, SNMP allows the definition of events that alert
the management system synchronously to state changes. In practice, SNMP
tends to incur a relatively high overhead in routers, and its usefulness for fine-
grained tracking of network state is limited.

Another method consists in intercepting link state advertisement messages
exchanged by the intra-domain routing protocol (e.g., OSPF). This approach
has the advantage of being authoritative, in the sense that the observed state is
exactly the one that computation of routing tables is based upon [33].

2.3 Traffic

We next examine methods to measure the domain-wide traffic flow. This includes
both the load (or demand) imposed on the network domain, the routes followed
by the incoming traffic, and its loss and delay characteristics.

External measurements It is virtually impossible to estimate traffic as a whole
through a large measurement domain through external probing of that domain.
The only method that falls into this category are recent proposals for the in-
ference of sink trees in distributed denial-of-service (DDoS) attacks, such as IP
traceback [32]. In this method, routers randomly encode their address into the
identification field of the IP header. With enough samples, a target site of a
DDoS attack can reconstruct the sink tree of attack traffic through these en-
coded addresses.

Internal measurements There are several methods proposed in the literature

that infer domain- wide traffic statistics from different types of measurement.
The first class of methods called network tomography relies only on measure-

ments of link utilizations over time. The goal of these methods is to infer the



traffic matrix, i.e., the traffic intensity between every ingress and every egress
point [37,4, 35].

The second class of methods relies on aggregate flow measurements at network
ingress and/or egress points [10]. A flow is an artificial abstraction of a set of IP
packets with identical source-destination addresses (or address prefixes) that are
observed close together in time [6]. This method has some drawbacks in terms of
overhead, implementation cost, and delay; nevertheless, careful post-processing
can yield satisfactory estimates of the domain-wide traffic flow [10].

The third class of methods uses packet sampling. Packet sampling can either
be used at all ingress points (in analogy to flow aggregation), relying on mea-
sured or simulated routing tables to infer the flow through the domain. Another
method called trajectory sampling relies on pseudo-random sampling based on
hash functions computed over packet content to directly observe these paths [7].

3 DNS and Web Measurements

The various problems we have described in the network layer are reflected largely
in other layers as well. In general, having administrative access over all aspects
in applications that cross the network layer is harder. As examples, we examine
two application areas: Domain Name System (DNS) and the Web.

The most popular application on the Internet currently is the World Wide
Web. In terms of traffic on the Internet, the Web is currently responsible for
75% of the packets on the Internet. The rate of growth of traffic between the
millions of Web users and Web sites has grown steadily for a decade. Presently
there is significant growth at the Intranet level as well. Traffic in peer to peer
networks due to the popularity of Napster and Gnutella is growing but they are
a much smaller part of the overall traffic and remain largely concentrated in
college campuses.

Increase in user-perceived latency, redundant transfer of popular content
across the network led to deployment of caches between the clients and the
origin servers where resources reside or are generated. Once the usefulness of
caching began to crest, offloading of content delivery became popular and led to
the advent of content distribution networks (CDNs). Most CDNs use DNS-based
redirection which has caused a significant increase in DNS traffic on the Internet.

We begin with some background information and then examine why inferring
topology, state, and traffic is difficult at each of these areas.

3.1 DNS Measurements

Topology The topology of the DNS network consists of a collection of top-
level domains (such as .com, .edu, .it etc.) that are just below the root of
an hierarchy. These are then organized into separately administered zones (e.g.,
att.com). The individual zones are responsible only for registering the names
and IP addresses of a set of authoritative DNS servers with the root servers.



Client requests for translation of names to IP addresses and vice-versa are typi-
cally sent by a resolver library that contacts a local DNS server. The local DNS
server will check its cache for the request and if it does not have any pertinent
information it will forward the request to a root server. The root server will
return the names and addresses of the authoritative DNS server that can help
answer the query. The queries may proceed iteratively with each query resulting
in a pointer to the next server to be queried or recursively, whereby the queried
server will do the necessary work and return the result. Positive caching (for
hits) and negative caching (for failures) with a specific time to live value is rou-
tinely employed at the DNS servers. Most client sites have more than one local
DNS server—one or two more serve as secondary servers for backup purposes.
Figure 1 shows the various steps involved in resolving the address of the server
component embedded in a URL
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Fig. 1. DNS resolver and local DNS server

A host relying on DNS may be able to examine the static configuration file
(e.g., /etc/resolv.conf on many UNIX systems) but more recent systems rely
on DHCP (Dynamic Host Configuration Protocol) for more automated config-
urations. The extent of information available to a client is often limited to the
names of local DNS servers. The set of authoritative DNS servers that may have
to be contacted by the local DNS servers to resolve all the various addresses of in-
terest is simply too large. The set of authoritative DNS servers change from time
to time. The local DNS servers have to be kept operational at all times since
in their absence applications will not be able to conduct any remote network
activity.

Even when the set of DNS servers are within a single administrative domain,
there is no simple mechanism to obtain a list of the configured collection since
they are distributed across a large number of machines. An attempt to walk
the DNS tree hierarchy by using tools like dig [1] starting at the zone from a
server and examining the name server (NS) records would still miss servers that
are not authoritative (caching-only servers) and the unofficial secondary servers
used for fault tolerance purposes. Additionally, access control lists placed on



zones will make this process even harder. The model of interaction with remote
DNS servers is hop by hop with little or no knowledge available about anything
beyond the first hop. There is no equivalent of traceroute at the DNS layer.

State Changes occur often at the DNS layer: new domains are registered, old
ones change, cache information becomes stale, etc. The only way to learn about
changes is upon a request and failure is often based on a timeout model. Consider
the problem of a common mis-configuration known as lame delegation: a set of IP
addresses have been registered as authoritative for a particular domain. Suppose
one of them is incorrect: it is either not an authoritative server for that domain
or does not even run a name server. Queries sent to this server will time out and
be resent leading to additional unnecessary traffic. Note that a lame server may
be contacted directly or as a result of redirection from another authoritative
server for the zone.

It has been estimated that there may be up to 25% of all DNS zones with lame
delegations. There are two problems in identifying and removing lame delega-
tions. The lame delegations are rarely discovered since often the only indication
of their presence is additional latency and a redundant server will eventually
answer the query. Even if they are identified, fixing the problem requires in-
teractions with administrators (who are hard to locate). Finally, there is no
guarantee that the problem will indeed be fixed. Although the rate of change
of information at the DNS layer is significantly less than at the network layer,
issues of scale and distributed control make it harder to determine and correct
state problems.

Traffic There are no known mechanisms to trace the DNS traffic as it percolates
through the hierarchy. Although logs are maintained on several servers (primar-
ily to detect scan attempts by hackers) they disclose at best partial information.
The handing off of control to a backup server via DNS’s zone transfer mecha-
nism (a common occurrence) is not known to other servers since the mechanism
is meant to be transparent to the end users. The recent significant increase in the
DNS traffic due to overlay networks like Akamai (whereby URLs of content dis-
tributed resources are replaced with alternate CDN company specific ones whose
address resolution can be controlled for load balancing purposes) became visible
only because the rewritten URLs can be seen in the HTML text. Other CDNs
do dynamic URL rewriting making such detection even harder. DNS servers of
CDN companies often give out short TTLs to have more fine-grained control
over the use of the mirror servers. With each short TTL expiration the CDN can
balance the load on its network of servers. However, this results in additional
DNS traffic with questionable performance improvements. Furthermore, obtain-
ing a complete list of sites to which requests get redirected is hard since the CDN
resolution is designed to give different answers at different times depending on
the client’s location.

Inside the network, one can obtain flow records via tools like netflow or
by running packet tracing programs like tecpdump. In both cases, the task of



extracting DNS traffic for purpose of identifying problems is pretty complex
although there is currently some work in progress in this direction [24]. The
problems at the internal level include obtaining a complete view of all DNS
traffic entering and exiting the network. Even if the complete information is
obtained at high cost, the local configurations are not known which results in at
best a partial view of what is actually occurring.

3.2 Web Measurements

As mentioned earlier, Web traffic accounts for 75% of all packets on the Internet.
A Web transfer requires interaction with a variety of protocols and often with
multiple entities on the Internet. The suite of protocols include the Domain Name
System (DNS) protocol, the transport layer protocol (often TCP) for transport-
ing the requests and responses reliably between the Web client and the server,
and HTTP (HyperText Transfer Protocol [12,23]—the protocol underlying the
World Wide Web and serves as the language of Web messages.

A single user click can result in the involvement of several entities [23, Chap-
ter 15] including the following:

— A browser (and often a client side cache).

— Several Web intermediaries such as Web proxies or gateways. The proxy may
be directly configured, be invisible to users (interception proxy), or be part
of a large proxy farm.

— A surrogate server in front of the actual Web server deployed to balance the
load at the Web site.

— The DNS server at the client/proxy side and additional redirected lookups
due to rewritten URLs (due to content distribution overlay networks such as
Akamai or Digital Island) and advertisement servers (who contribute images
and text to the full container document).

The number of parties involved on an end to end basis in a single Web
transaction can be more than a handful.

Topology The resources requested on the Web by clients like browsers (or quite
often programs like spiders), can often be served from different locations either
locally through surrogates on the server side or remotely at mirror sites. The set
of entities on the Web include clients, proxies, gateways, servers, surrogates, mir-
rors. The choice of mirrors is dynamically decided. A user’s request may traverse
several of these entities. Often the user has only control over the next-hop proxy
and thus identifying all the entities is hard. The recent advent of HTTP /1.1
version of the protocol [12,23,22] allows intermediaries to identify themselves
through a new HTTP header (Via). But given the widespread prevalence of
HTTP/1.0 proxies in the Internet for the foreseeable future, those entities may
not participate in this enhancement. Furthermore, the presence of interception
proxies (the ones that dip into the network layer to examine suspected HTTP
traffic and possibly redirect them) exacerbates the difficulty of knowing all the
entities that are involved in a transaction.



State A resource may be cached at a proxy or at a dynamic mirror site. For load
balancing and fault tolerance purposes a set of resources may be available from
multiple sites in case some sites are inaccessible at any given time. Learning
about the state of a specific server is hard due to possible redirection at the
HTTP or DNS level.

The widespread presence of caching proxies makes it much harder to deter-
mine the actual number of requests generated for a particular resource. Down-
loading a container document (such as an HTML file which includes links to one
or more embedded resources, such as images or animations) requires contacting
several servers due to the growing use of CDNs and the presence of advertise-
ments (often located on remote machines). Since the CDNs often dynamically
decide the mapping between strings and the actual machines that serve the dis-
tributed content, it is not possible to obtain stable latency metrics. The end to
end measurements of interest include user perceived latency, load on the network,
and load on the servers. However, inferences regarding load on a remote server
is very hard to obtain. Simple hacks like examining TCP sequence numbers can
be risky in the presence of redirections at the HT'TP and DNS layer. Caches
introduce the well known problem of staleness: a significant fraction of HTTP
requests are validation queries to ensure that a cached resource is the same as
the current instance on the origin server. There are risks to a cache assigning
freshness time overriding the origin server’s wishes.

Traffic The end to end traffic on the Web is both simply too large and too
complex to estimate. Companies like Media Metrix and Keynote attempt to
present sampled figures by examining traffic at a few interchanges and extrap-
olating from them. As discussed above, such studies miss the cached responses,
failures, etc. Some studies have been carried out to perform end to end measure-
ments [25] that examine improvements due to the new version of the protocol
such as reduction in the number of TCP connections due to persistent connec-
tions feature, cache effectiveness, content delivery from multiple sites (CDNs,
ad servers etc.), and latency reduction due to the ability of downloading partial
responses. Yet, there is not a statistically reliable sampling technique for esti-
mating end to end traffic, due to the complexity of the Web, the widespread
prevalence of intermediaries, and implementations that are not compliant with
the protocol specification, etc.

Even on an intra-net level, a Web server may not know what fraction of
requests directed towards it reach it eventually due to the possibility of proxy
cache farms in the path. The server would have to know about the configuration
information of all clients in order to obtain a good estimate or indulge in cache
busting [23].

Currently the best known traffic artifacts are logs maintained at the proxy
and server level. The logs record several fields including the IP address of incom-
ing request, time of request, the HTTP method, URL, protocol version, response
code and content length. Even this relatively small subset of items logged has
problems associated with how they are interpreted. The ‘client’ IP addresses



recorded could be the last hop proxy and not the original client. A long response
in transit may never reach the client who may have aborted the request; yet the
server log might indicate that several thousands bytes of response were sent.

4 Conclusion

We have argued that network measurements are crucial both to drive funda-
mental discoveries and for the purpose of control and engineering. At the IP
network layer, this need is fairly obvious, and instrumentation support at the
network layer is reasonably mature as a result of pressure on vendors to include
measurement support in their products. However, end-user performance depends
as much on the performance of logical networks such as the DNS and the Web
as on the network layer proper. This suggests that the granularity and scope
of measurements available at these layers should match that at the network
layer. We have illustrated in this paper that this is not the case through a direct
comparison of the state of the art at the network layer with the DNS and the
Web.

We have described network measurements for topology, state, and traffic.
There is a range of methods for each category. Administrative access to a network
domain is usually required to gain access to measurements of sufficient quality
to perform traffic engineering. Nevertheless, a range of clever methods are also
available to obtain useful snapshots of network topology, routing state, and traffic
loads.

At the higher layers the problem of inference is more complicated since topol-
ogy, state, and traffic have several additional entities and hidden artifacts (some
of which are known, such as lame delegations at the DNS layer). Additionally,
interesting questions such as user-perceived latency or end-to-end delay are in-
herently more complicated due to the involvement of multiple protocols and
intermediaries. The problem is further compounded by implementations of Web
components that are not fully compliant with the protocol specification [21].
In some cases application level protocols have attempted to mimic some of the
useful ideas in the network layer. For example, HTTP/1.1 introduced the Via
and Max-Forwards header to expose some of the topology information about
intermediaries and to better target the requests.

We believe that the additional measurement support at the application layer
could be inspired by tools and methods that have proved valuable at the net-
work layer. For example, an equivalent of traceroute in DNS to track a request,
pathchar in HTTP to derive performance properties of nodes (proxies) on the
path to the server, or native support for request sampling, would be useful for
troubleshooting, testing, and control. While the details of such a suite of higher-
layer tools would certainly reflect the application area, we hope that the foregoing
discussion has shown conceptual similarity between the network layer and other
application areas to motivate the reuse of the expertise gained at the network
layer.
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