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Abstract— Reliable multicast protocols suffer from the
problem of feedback implosion. To avoid this problem, the
number of receivers sending feedback in case of loss must be
small. However, losses experienced by different receivers are
strongly correlated, since receivers share common resources
in the multicast tree.

One approach to feedback implosion avoidance relies on
delaying feedback at the receivers. We present DTRM (De-
terministic Timeouts for Reliable Multicast), a distributed
algorithm to compute optimal deterministic timeouts for
each receiver in a multicast tree as a function of the
tree topology and the sender-to-receiver round-trip delays.
DTRM has several desirable properties. First, feedback im-
plosion is provably avoided for a single loss anywhere in the
tree, provided delay jitter is bounded. Second, the compu-
tation of the timeouts can be entirely distributed; receivers
and intermediate nodes only rely on local topology informa-
tion. Third, the timeouts computed by DTRM are optimal
with respect to the maximum response time.
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I. INTRODUCTION

HE availability of high speed transmission technology,

the ever increasing performance of workstations and
personal computers, and the convergence of the data and
telecommunications industry will foster the creation of a
powerful networking infrastructure. This environment will
enable a whole panoply of new applications, including mul-
timedia and distributed computing. It becomes increas-
ingly clear today that many of these applications will rely
on an efficient multicasting service. The recent success of
Internet multicasting on the MBone confirms this. Video-
conferencing on the Internet is rapidly becoming a standard
tool in the research community, despite the rather limited
video and audio quality.

Some applications require a reliable multicast service,
i.e., the error-free transport of information to a group of
recipients. Such applications include distribution of “non
fault-tolerant” information (such as software, news, or web-
pages), distributed computing, such as distributed interac-
tive simulation (DIS), or network management. We believe
that the importance of this type of service will increase in
the future, when distributed computing becomes common-
place.

It has been observed [2] that a receiver-based multi-
cast protocol achieves better scalability than a sender-
based one. But even a receiver-based scheme suffers from
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the NACK!-implosion problem if the losses at different
receivers are correlated. This is very likely due to the
resource-sharing in a multicast tree. When a packet is lost
on some link, then all receivers on the subtree fed by this
link experience this loss.

There are two approaches to solve this problem:
structure-based and timer-based. In structure-based ap-
proaches [3], [4], intermediate nodes in the tree process and
combine feedback information. Timer-based approaches,
such as the one discussed in this paper, do not rely on
processing by network nodes. Rather, they rely on de-
layed feedback to avoid an implosion [5], [6], [7]. They have
the advantage of not requiring network support for implo-
sion avoidance, but the potential disadvantage of higher
application-to-application delays.

Another dimension in the solution space is receiver col-
laboration: if receivers are to collaborate, then they have
to buffer correctly received data in order to be prepared to
respond to other receivers’ NACKs [6]. This also implies
that feedback has to be multicast to all receivers, i.e. that
each receiver is also a multicast source. In this work, we
assume that receivers are greedy in the sense that they im-
mediately consume data they have already received. Only
the sender buffers data for possible repairs. The receivers
unicast feedback to the source. Receiver collaboration can
be undesirable because (1) the cost of maintaining copies
of data at all the receivers instead of only at the source is
too high, or because (2) receivers do not trust each other
or want to withhold their identity from each other, or be-
cause (3) the underlying network does not offer (scalable)
multipoint-to-multipoint communication.

Proposals have been made to use random NACK de-
lay timers, which allows to reduce the expected number
of NACKs [5], [8], [6]- One reason why only these heuris-
tic approaches have been proposed is that the current In-
ternet does not provide for any Quality of Service guar-
antees. Next generation networks are expected to offer
a more elaborate service model with delay and delay jit-
ter guarantees. Currently, various bodies are working on
standardizing such services, e.g. the ATM Forum or the
Internet Engineering Task Force (IETF).

This paper presents a rigorous approach to the NACK-
implosion problem, based on the assumption that end-to-
end delay variation is bounded and known to the end-
points. We compute deterministic timeouts as a func-
tion of the multicast tree topology and end-to-end delays.
We establish an optimality criterion and present an algo-
rithm, called DTRM (for Deterministic Timeouts for Re-
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liable Multicast), that computes a timeout value for every
receiver. In a networking environment with delay guaran-
tees, NACK-implosion is provably avoided. The timeout
computation is efficient and can be distributed, in which
case neither sender nor receivers need to have knowledge
of the group membership or of the complete tree topology.
Each receiver only needs to know its round-trip delay to
the sender.

The remainder of this paper is structured as follows. Sec-
tion II discusses related work. Section III presents the con-
text of the problem in more detail. Section IV explains
how timeouts have to be set to fulfill the single-NACK
condition, and establishes an optimality criterion. Section
V presents a distributed algorithm to compute an optimal
timeout allocation. Section VI discusses the robustness and
scalability of the algorithm, and Section VII concludes the

paper.
II. RELATED WORK

In [2], Pingali et al. present an analytical comparison of
three generic reliable multicast protocols. They conclude
that a receiver-based approach, where the receivers carry
the burden of detecting losses and requesting retransmis-
sions, is preferable to a sender-based approach. They also
compare two receiver-based schemes, called N1 and N2. In
N1, a receiver unicasts a NACK to the sender immediately
after it experiences a loss; the sender then retransmits the
packet. In N2, the receiver, upon seeing a loss, waits for a
random time and then broadcasts the NACK to the entire
multicast group. The authors conclude that N2 performs
better than N1, but unfortunately, there is no indication
as to whether this advantage stems from the fact that N1
immediately responds to a loss, whereas N2 waits for pos-
sible NACKs from other receivers, or from the fact that
N2 broadcasts the NACK, whereas N1 unicasts it to the
sender. Furthermore, it is argued that only processing over-
head, but not bandwidth overhead, is costly, which seems
to apply more to LANs than to WANS.

Crowcroft and Paliwoda discuss the implosion problem
in the context of group communication, where multiple
servers reply to a request from a client [5]. They ana-
lyze the performance of randomly delaying responses if all
members share the same transmission medium. The idea
of randomly delaying feedback by receivers (slotting) and
having receivers suppress redundant feedback (damping)
has been introduced in the XTP protocol [8]. The same
ideas are used in the SRM protocol [6]. The authors of
SRM present an adaptive algorithm that adjusts the inter-
vals from which the random timers are chosen to the net-
work condition. This heuristic scheme seems to work well
in a networking environment without guarantees. How-
ever, scalability is unfortunately not fully achieved, as each
multicast group member has to maintain a delay estimate
between itself and each other group member.

Papadopoulos and Parulkar [7] define a reliable multi-
cast taxonomy around an hypothetical optimal algorithm.
In their taxonomy, our approach is called sender-controlled
implosion control. They also outline an algorithm that or-

ganizes receivers into buckets, based on their round trip
delay, but not on topology. Before requesting retransmis-
sion upon loss, each receiver has to make sure that all the
receivers in buckets with smaller round trip delays have
not already requested this retransmission. The maximum
number of requests can therefore be limited by limiting the
maximum number of receivers in each bucket.

Two approaches for structure-based implosion avoidance
are discussed in [3], [4]. The fundamental difference be-
tween the two approaches is that in [3], a group member
(called Designated Receiver) is responsible for processing
a region’s feedback, while in [4], dedicated servers (called
Logging Servers) perform this function.

The feedback implosion problem has also been addressed
in a probabilistic context, such as in congestion control for
video distribution [9] and under a relaxed form of multicast
reliability called multicast-to-some [10].

III. CONTEXT

The advantage of timer-based approaches to the feed-
back implosion problem is that no network processing of
feedback is necessary. The solution is entirely end-to-end.
The network’s only role is in forwarding the feedback from
the receivers back to the sender.

sender® packet(i)
--- packet(i+1)
’ “N 7 NACK(i)
W W
receivers

Fig. 1. A packet loss experienced by multiple receivers results in a
NACK being sent back to the sender by each of these receivers.

We assume that the end-to-end delay for a packet sent
from the sender to a receiver « is constant and equal to
df. Also, we assume that the receiver-to-sender delay for
NACKs is constant and equal to dY. We call d,, = d% +d¥
the round trip delay (RTD) of receiver . Furthermore, we
assume that processing at the sender and at the receiver is
immediate (retransmission due to a NACK packet at the
source, detection of loss at a receiver upon reception of an
out-of-sequence packet).

Figure 1 shows how the NACK-retransmission scheme
works: if packet ¢ is lost on some link, then each receiver
in the subtree attached to that link observes this loss upon
reception of packet ¢ + 1, and starts a timer. When a re-
ceiver’s timer expires, it sends a NACK (i) packet back to
the sender, requesting retransmission of packet :. When a
receiver that has started a retransmission timer for packet
1 receives the retransmitted packet ¢, it stops the timer
without further action.

A NACK-implosion can be avoided if we can make sure
that for any loss, one NACK arrives early enough such that



the retransmission of the lost packet caused by this NACK
prevents further NACKSs from other receivers. For this, the
retransmitted packet has to arrive at these other receivers
before their timers expire. We refer to this requirement as
the single-NACK condition. The implicit assumption here
is that it is reasonable to prevent NACK-implosion at the
cost of increased delays in the case of loss.

IV. CoMPUTING TIMEOUTS

In this section, we first discuss how to determine some set
of timeouts such that the single-NACK condition is met in
the entire multicast tree. Then we establish an optimality
criterion. Finally, we describe a distributed algorithm to
determine an optimal set of timeouts.

Let us introduce some notation. We assume the existence
of a multicast tree. The root of this tree is the sender.
Internal nodes are called switches, and leaf nodes receivers.
Finally, by downstream we mean “towards the receivers”,
and by upstream we mean “towards the sender”.

A. How to Choose Consistent Timeouts

Assume a packet is lost on a link, and call the subtree
fed by this link the loss subtree. All receivers in the loss
subtree, and only they, experience this loss. Consider two
receivers  and [ in the loss subtree with round trip delays
do and dg and timeouts t, and tg, respectively.

Assume that an out-of-sequence packet, i.e. the packet
following the lost packet, is sent at time 0. The out-of-
sequence packet reaches receiver « at time df and receiver
B at time dg . The timer of receiver a therefore expires
at time t, + df, the one of receiver 3 at tg + dg . The
resulting NACK from receiver a reaches the source at time
to +dy, and the retransmitted packet reaches receiver § at
time t, + do + dg . Therefore, to ensure that only receiver
a sends a NACK back to the sender when both receiver a
and 3 experience a loss, we must have

We say that § fulfills the single-NACK condition with re-
spect to a. Given a timeout value t, for receiver «, we
enforce the single-NACK condition be setting

tg :=to +do +¢, (2)

where ¢ > 0 is a small constant to allow for some delay
variation without violating (1).

Our goal is to set timeouts for receivers in a multicast
tree such that any single loss on a link only results in a sin-
gle NACK coming back to the source. This can be achieved
by assigning to each subtree A a representative receiver a
with round trip delay d, and timeout ¢, such that every
receiver § # a in this subtree A fulfills condition (1).

We make the following definitions.

Definition 1: We call subtree A the subtree rooted at
node AZ?.

2We use the classical definition of subtree rooted at A, consisting of
its root A and all of its descendants [11, page 93].

Definition 2: A receiver allocation ¢ for a tree is a map-
ping of the set 7 of nodes onto the set p of leaves (receivers),
such that ¢(A) is a descendant of A for any A € 73. The
receiver ¢(A) is called the representative receiver of node
A.

Definition 8: A consistent timeout allocation (in subtree
A) associates with each receiver ¢ (in subtree A) a non-
negative timeout value ¢;, such that for any node B with
representative receiver a = ¢(B), all other receivers 8 # «
in subtree B fulfill the single-NACK condition (1) with
respect to a.
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Fig. 2. An example receiver allocation, and the corresponding con-
sistent timeout allocation.

Figure 2 gives an example of a receiver allocation and the
corresponding consistent timeout allocation. The round
trip delay d; has been set to 10 for all receivers ¢, and
e = 1. A dashed arrow from a node to a receiver means
that this receiver is the representative receiver of this node.
The numbers below the receivers are the timeout values.

Note the following property that is formalized in the
lemma below. Suppose a node A is a descendant of a node
B (cf. Fig. 2). Furthermore, suppose that B’s representa-
tive a = ¢(B) lies in subtree A. All receivers in subtree B,
and in particular all receivers in subtree A, must fulfill the
single-NACK property with respect to a. Therefore, « is
also A’s representative.

Lemma 1: If ¢(B) = «, then any descendant A of B
such that « is in subtree A has ¢(4) = a.

Proof: This follows directly from the previous para-
graph. |

Another way to put this is the following. A receiver
« is a representative receiver for a consecutive sequence
of ancestors up to the first ancestor that has a different
representative receiver. No ancestor further upstream has
« as its representative receiver.

We now give the algorithm that determines the consis-
tent timeout allocation in a subtree A, given a receiver
allocation ¢. We need the following definitions.

Definition 4: The set of cotrees of a receiver « is the
set of subtrees of A not containing «, that are rooted at
children of some node on the path from the sender to a.

The following definition will be used later in the discus-
sion of lost NACKs.

3Note that if A is a receiver, ¢(A) = A.



Definition 5: The set of dependent cotrees of a receiver a
for a receiver allocation ¢ contains those cotrees of a whose
root’s parent has « as its representative receiver.

Consider Figure 3 for an illustration. The idea behind
cotrees is the following. Assume that the timeout allocation
in each cotree of « is already consistent. Then each cotree
is a possible source of one unwanted NACK when A is
the loss subtree and « is A’s representative. By adding a
constant offset s to each receiver’s timeout within a cotree
B, we can fulfill the single-NACK property with respect
to a while maintaining the timeout allocation consistent
in cotree B. This is the idea behind the algorithm below.
Given a receiver allocation ¢, it recursively computes this
offset s to be added to every cotree of the representative
receiver of every node in the tree (cf. Figure 2.) This
results in the consistent timeout allocation in subtree A.

sender

cotrees of a

Fig. 3. The cotrees of receiver a.

Algorithm 1: proc comp (A: node, s: non-negative
real, ¢: receiver allocation)

a:=¢(A).
to:=S.
for all cotrees B of a,
comp (B, to +do + €, ¢).

5  endfor
The first two steps set the timeout of node A’s representa-
tive receiver ¢(A) such that it respects the single-NACK
condition with respect to representative receivers of A’s
ancestors that lie outside subtree A. The remaining steps
recursively compute the consistent timeout allocations in
#(A)’s cotrees, with an offset such that all the receivers
in these cotrees fulfill the single-NACK condition with
respect to ¢(A). Therefore, given a receiver allocation ¢,
comp (sender, 0, ¢) computes the consistent timeout
allocation for the entire tree.

=N =

B. Optimal Timeouts

Now that we are able to compute the consistent timeout
allocation given the receiver allocation ¢, i.e., given a rep-
resentative receiver for each node, we need to establish a
sensible cost function to compare receiver allocations. For
this, let us consider for a moment how a reliable end-to-end
transport protocol based on acknowledgments (negative or
positive) works. The goal of the protocol is to deliver data

to the application error-free and in order. This means that
the transport protocol layer buffers all data following a loss,
until the lost data has been retransmitted. Only then can
the data be handed over to the application. Now, in our
framework, observe what happens to a receiver a in the
worst case (the case where nobody else’s NACK arrives at
the sender earlier than a’s) between the moment when the
receiver realizes a packet has been lost, and the moment
when this packet arrives at this receiver. The receiver runs
its timer for time t,,, and then sends a NACK, which takes
time d to arrive at the sender. The retransmitted packet
then takes df to arrive at a. The total response time is
to + do.

It makes sense to minimize the largest response time
to + du, both to minimize the buffering necessary in the
transport protocol layer, and to minimize the delay seen
by the application. Furthermore, the transport layer of the
sender also has to perform buffering, to allow for the re-
transmission of lost packets. The sender can be sure that
all receivers have received a packet if it has not received a
NACK after max{t, + do }, where we are maximizing over
all the receivers in the multicast tree?.

We therefore want to minimize

T = max{te + du} (3)
aecp

where p is the set of all receivers in the multicast tree.

C. Computing an Optimal Receiver Allocation

In the previous section, we have established a cost func-
tion for receiver allocations. We now turn to the core of the
problem, which is to find an efficient algorithm to compute
the optimal receiver allocation, i.e., the one minimizing the
cost function (3). This is a combinatorial problem, where
the number of possible receiver allocations is potentially
very large. In this section, we show that an efficient algo-
rithm does indeed exist. It is based on the fact that only
a small number of receiver allocations within any subtree
can correspond to the entire tree’s optimal receiver allo-
cation. Therefore, this problem allows for a divide-and-
conquer approach, where the possible receiver allocations
within a subtree A can be computed from the possible al-
locations of all the subtrees rooted at A’s children.

Consider a subtree A with n links and n children
Ai,..., A, (cf. Figure 4). Assume that the receiver allo-

root

Fig. 4. A subtree, consisting of a root, n links and n children.

cation inside the children are fixed, and that the timeout

4provided the NACK and the retransmitted packet are not lost
themselves.



allocation inside the children are consistent, as given by
comp (Ai, 0, ¢)

Lemma 1 says that our only degree of freedom in choos-
ing an allocation for A is choosing one of its children’s
representative as A’s representative. If we choose the rep-
resentative «; of A; as the representative of A, then we
have to add an offset s4,[¢] to all the timeouts of receivers
in the other children {Aj,...,A,} \ {4}, because these
children are cotrees of «;. The timeouts of the receivers in
A; remain unchanged.

We now make the following definition:

Definition 6: For a node A and a receiver allocation ¢,
the triple (sa[¢], Ta[d],#) is given by

salg] = dga) te
Talgl = max{ta+da} (4)

where p 4 is the set of receivers of subtree A and where the
t, represent a consistent timeout allocation in subtree A.

For a subtree A, T4[¢] is the maximum response time
(i.e. the cost) of subtree A, and s4[¢] is the offset that we
have to add to A’s siblings if we choose A’s representative
as A’s parent’s representative. We call the set of all triples
(sald],Tald],¢) for a subtree A the characteristic set of
A. Note from (4) that sa[¢] and T4[¢] only depend on
the receiver allocation in subtree A. In other words, two
different receiver allocations that are equal within subtree
A do not give rise to two elements in the characteristic set.
For ease of notation, we do not make this explicit. As an

Fig. 5. An example tree; an optimal allocation and the resulting
timeouts with e = 1 are shown.

example, the following tables gives the characteristic sets
of nodes A, B and C of the tree in Figure 5, as well as the
corresponding consistent timeout allocation. The optimal
allocation shown in Figure 5 is framed.

| s8[d] | Tsld] | ¢ [ ta | t5 |
2 4 B~a |0 |2
3 4 B—pg|3 |0

| scldl [ Tolél | ¢ [ty [ ts |
4 8 C—~|0 |4
5 8 C—d6 |5 |0

5~

sald] [ Tald] [ ¢ |

6 6 1%

2 10 Ao, B—a, CH—y |0 |2 |2 |6
2 10 Ao, B—a, C—6 |0 |2 |7 |2
3 11 A—3,B—3,C—~y |3 |0 |3 |7
3 11 A—p,B—pC—6 |3 |0 |8 |3
4 8 A~y B~aq Cr—~y |4 |6 |0 |4
4 8 A~y B—p3,C—~y |7 |4 |0 |4
5 9 A—é6,B—a, C—6 |5 |7 |5 |0
5 9 A6, B—p,C—6 |8 |5 |5 |0

We now show that the characteristic set of each node
can be computed from the characteristic sets of its chil-
dren, which means that the optimal allocation ¢opr can
be computed by divide-and-conquer. If ¢(4;) = ¢(A), in
other words, if A;’s representative is also A’s representative,
then it follows from Definition 6 and Algorithm 1 that

sald]
Talg] =

SA, [¢]

maX(TAl [¢] ’ ie{l ma;ﬁ\{l}

(5)
{s4,[9] +Ta,[0]})

For a receiver «, the characteristic set contains only the
following element.

SA[¢] = dy+te
Tal¢] = da
p(A) = {A—a} (6)

This follows readily from Definition 6.

The previous observations can now be used to devise a
recursive algorithm that finds an optimal allocation ¢ pr
that minimizes T'4[¢]. Any non-leaf node (switch or sender)
in the tree can compute its characteristic set based solely on
the characteristic sets of its children using (5). The optimal
allocation ¢opr is then simply the one minimizing T[],
where S is the sender. To find each receiver’s timeout,
Algorithm 1 can be applied.

Let us look at the size of A’s characteristic set as a func-
tion of the sizes of the children’s characteristic sets. Let m;
be the size of A;’s characteristic set. From (5) we see that
we have n choices for placing A’s representative in one of
A’s children. Furthermore, in each child A;, we can choose
among m; allocations. Thus, the size of A’s characteristic

set is
n
m=n- Hm,-.
=1

This algorithm suffers from the combinatorial explosion
of the size of the characteristic set, as expressed by (7).
In fact, this algorithm does nothing else than explicitly
enumerate all possible receiver allocations for the entire
tree and compute the cost for each of these allocations.
This, of course, becomes rapidly impractical as the tree
size increases. In the remainder of this section, we show
that only a small subset of the characteristic set, which
we refer to as the constrained characteristic set (CCS), is
necessary for each node in the computation of ¢popr, and
we find a tight upper bound on the size of this set.

(7)




Lemma 2: Consider two elements (sa[¢],Ta[¢],¢) and
(sa[],Ta[®],) in the characteristic set of a node
A, where ¢ and ¢ differ in subtree A. Assume that
sa[p] > sa[¢] and Ta[p] > Ta[¢)]. Then an optimal re-
ceiver allocation ¢opr can be found without considering
(sald], Talé],¢) in the computation of the characteristic
set of A’s parent®.

Proof: Assume that ¢ and 1 are identical outside
subtree A, i.e. that for any X not a descendant of A,
we have either ¢(X) = ¥(X) ¢ pa (the set of subtree
A’s receivers), or both ¢(X) € A and ¥(X) € A (but
possibly different). This poses no restriction on the proof,
as the elements of A’s characteristic set only depend on the
allocation within subtree A. Let B be A’s parent.

Each element in a node’s characteristic set corresponds
to a receiver allocation in the subtree rooted at this node.
Call (sp[#],TB[¢],¢) and (sp[¢],Tr[1],v¥) the elements
of B’s characteristic set resulting from (5).

Consider the two cases where (a) B’s representative is in
subtree A, and (b) where it is not. In case (a), it follows
from Definition 6 and the assumption in Lemma 2 that

sB[¢] = sald] = sa[¥] = spl¥]. (8)
Thus,
Tol¢] = max(Tald],  max  {sald] +Tx[e]})
> max(Taly], , max  {sale] + Txly]})
= Ts[y]. (9)

because T'a[¢] > T[] by assumption and T'x[¢] = Tx [¢]
because X is outside subtree A (i.e. X is not a descendant
of A), and where c¢(B) represents the set of B’s children.
In case (b), let Y be B’s child such that subtree Y con-
tains B’s representative receiver ¢(B) = 9(B). Then

sB[¢] = sy[g] = sy[¥] = sB[Y].
The fact that X and Y are outside subtree A implies that

(10)

Tglg] = max(Ty[¢], xeolmR | }{Sy[¢]+Tx[¢]}
sy[¢] + Tad])
> max(Ty[¢], max  {sy[]+Tx[¢]},

Xee(B)\{Y,A}
sy [¢] + Taly])
= Tpl] (11)

It follows that the same property that holds for
(s4[¢],Tal¢],¢) and (sa[¢],Ta[¢],%) holds for the two

elements of B’s characteristic set as well, namely

splo] = sBlY]

Tpl¢] > Tr[¥]
By induction, it holds for two elements of the character-
istic set of sender S. As we need to find the element

5In the special case of two equalities, we need to consider one of the
two elements, but not both.

(ss|d], Ts[¢], ) that minimizes T's[¢], it follows that there
cannot be a single optimal allocation ¢ as there always ex-
ists another allocation 1 that is at least as good, i.e. has an
equal or lower T's. Therefore, to find some ¢opr through
(5), it is not necessary to consider (sa[¢],Ta[¢],¢) . This
completes the proof. |

The next lemma states that there exists a global opti-
mum such that if B is any node and A is a child of B,
then the receiver allocation in subtree A is locally optimal
(i.e. it minimizes T'4[¢]) if B’s representative ¢(B) is not
in subtree A.

Lemma 3: Assume a node A with n children Ay,..., 4,,
and assume that A;’s representative ¢(A;) is selected as
A’s representative. Then in order to find a globally op-
timal allocation, it is only necessary to consider the ele-
ments (s4,[¢],Ta,;[¢],¢) of the characteristic set of A;,
Jj€{1,...,n}\ {i} that minimize T4, [¢].

Proof: ~As A’s representative is not in subtree A;,
sa[®] = sa,|¢] is independent of the choice of receiver al-
location in subtree A;. Also,

Tal¢] = max(T; 9], {sail¢] + Ta;[elh) (12)

{, ,}\{}

shows that selecting a receiver allocation ¢ that does not
minimize T4, [¢] can only increase T4[¢]. Thus, selecting a
¢ that does not minimize T'4;[¢] results in elements in A’s
characteristic set that need not be considered by virtue of
Lemma 2. Therefore, if A’s representative is not in subtree
A;, we only have to consider elements of A;’s characteristic
set that has minimal T4, [¢]. ]

Lemma 2 and Lemma 3 increase the efficiency of the re-
cursive algorithm to find ¢opr. Lemma 2 limits the size
of the characteristic set of a node, and Lemma 3 makes the
computation of a node’s characteristic set from its chil-
dren’s characteristic sets more efficient, by limiting the
number of combinations that have to be considered. We
call the subset of the characteristic set that needs to be
taken into account at each node the constrained character-
istic set (CCS).

We now prove a theorem that gives a tight upper bound
on the size of the constrained characteristic set if in the
recursive computation, elements are deleted at each node
according to Lemma 2.

Theorem 1: Let h denote the height of a node (and of
the subtree rooted at this node), defined as the number of
links on the longest path from this node to some receiver
in the subtree rooted at this node®. If elements of the
characteristic set of a node are deleted according to Lemma
2, then the size of this set is at most max(h,1).

Proof: The proof makes use of the following two lem-
mas.

Lemma 4: A trivial node of height 0 (i.e. a receiver) has
a constrained characteristic set of size 1.

Proof: This follows readily from the fact that there
is only one possible receiver allocation for a single node, as
noted previously (cf. Eqn. (6)). [ |

8For example, the tree shown in Figure 2 is of height 3.



Lemma 5: A tree of height 1 has a constrained charac-
teristic set of size 1.

Proof: A subtree A of height 1 consists of a node and
n receivers aq,...,a, directly attached to this node. We
can assume w.l.g. that do, < do, < ... < do,. If two
round-trip delays were equal, allocating one or the other
is equivalent, and it is therefore enough to consider one of
them.

There are n elements in the characteristic set of this
tree, corresponding to selecting one of the n receivers as
the representative. If receiver «; is chosen as representa-
tive, then the element of the characteristic set, denoted by
(sal@i], Tal¢:], ¢:) can be computed from (6) and (5).

SA[¢1'] = dai+€

Talps] = maX(TA[qﬁz’]aje{lf_f}_&f}\{i}{SA[@]+TA[¢j]})
= e bt A s (13)

Therefore, sa[p1] < salpe] < ... < salpn]. Also, as

max;eq1,...n)\{i}19a; } = da, whenever i < n, it follows
that TA[¢1] < TA[¢2] <...< TA[¢n—1]- As for TA[¢n],

Talpn] = do,, +€+da,_, > Ta[p1] = do, +€+da, (14)

In particular, equality only results for n = 2. There-
fore, there is only the element corresponding to allocat-
ing receiver o; with smallest delay as A’s representative in
CCS4. [ |

We have proved the assertion for the cases where h =
0 and h = 1. We are now ready to complete the proof
for any h. For this, consider a subtree A and denote the
receiver in A with the smallest round-trip time with amin
(assuming it is unique.) Denote the roots of the cotrees
of amin in subtree A with A;,..., A,, as shown in Figure
6. We prove the theorem in two steps. First, we show

Ay Az

a Ag
min

Fig. 6. The cotrees of receiver a,;, with the lowest round-trip delay
in the entire subtree.

that there is exactly one element in CCS,4 corresponding
to allocating an;, as A’s representative. Second, we show
that all other possible elements in CCS4 correspond to
selecting A’s representative in one particular cotree of apin-
This results in the desired bound on the size of CCSy4.

To show that there is exactly one element in CCS 4 corre-
sponding to selecting a.min as A’s representative, note that
this choice corresponds to an element (sa[¢],Ta[¢], ¢) of
CCS4 that minimizes s4[¢] = d + ¢, by definition of

Qmin

Qmin- Among all allocations that have am, as A’s repre-
sentative, by virtue of Lemma 3, only one allocation mini-
mizing T'4[¢] corresponds to an element in CCS4.

To bound the number of other elements in CCSy, let
T{FT be the minimal Ty, [] in cotree A;. Let THET =
maxizl,m,n{TgP 71, and the corresponding cotree the dom-
inant cotree DC (assuming, for the moment, that it is
unique). This is the cotree with the highest cost for its
local optimum.

Lemma 3 states that if am;, is A’s representative, then a
necessary condition for an allocation to be in CCS4 is that
it corresponds to the locally optimal receiver allocation in
each cotree of aimin. Therefore, Ta[@] = sa[d] + TET.

Let v be another allocation such that A’s representative
a = YP(A) # Qmin is not in the dominant cotree DC. It
follows that DC is either a cotree of «, or it is a subtree of
a cotree of a. For the single-NACK property to hold with
respect to a, the offset s4[¢)] = dn + € has to be added
to all the timeouts in a’s cotree, and in particular, to the
timeouts in DC. Then T4 [¢)] must be at least s 4 [¢]+T39E7,
as by definition T9E7 minimizes Tpc[.]. As sa[t)] > sa[d]
and therefore T'4[¢)] > T[], ¢ is not in A’s CCS (Lemma
2).
Thus, A’s CCS has always exactly one element corre-
sponding to amin as A’s representative, and possibly other
elements corresponding to allocations that place A’s rep-
resentative « in amin’s dominant cotree DC. For each such
choice of a in DC, the same argument as before can be
used to show that there is only one allocation 1 possible in
A’s CCS: « uniquely determines s4[¢], and thus only the
element minimizing T'4[¢)] survives.

It follows that ||CCS4|| < ||CCSpc||+1. Also, height (A)
> height (dominant cotree)+1. Therefore, by induction
anchored on Lemma 5, the assertion is proved.

If armin’s dominant cotree DC is not unique, i.e. THET =
TET = TRET, then A’s CCS has only one element, cor-

responding to ¢(A) = @min. To see this, assume there are
two dominant cotrees, DC; and DC5. Let 9 be an alloca-
tion such that 9(A) is in DCy. Due to DCs, T4[¢)] must
be at least sa[t)] + TSET. Therefore, there is no element
in A’s CCS corresponding to . This is easily extended
to more than two dominant cotrees. This completes the
proof. |

V. DISTRIBUTED OPTIMAL TIMEOUT COMPUTATION

This section explains how the computation of each node’s
CCS, and therefore the computation of the optimal receiver
allocation and of the corresponding consistent timeout al-
location, can be distributed. The key result from the previ-
ous section, namely the bound on the size of a node’s CCS,
limits the size of the messages that have to be exchanged
in the distributed computation. We also show that only
little state has to be maintained in nodes.

Each element of a node’s CCS corresponds to a “can-
didate receiver allocation” in the subtree rooted at this
node, i.e. an allocation that might be globally optimal.
Suppose that a node that has computed its own CCS from
its children’s CCSs does not know the complete allocation



function ¢ corresponding to each element of its CCS, but
only (a) in what child subtree lies its own representative
receiver, and (b) which among the possible candidate al-
locations should be chosen in each child. Then it can be
seen that any node’s representative receiver for some re-
ceiver allocation in this node’s CCS can be determined in
the following way: start at this node and note which is
the candidate receiver allocation in the child containing
the representative receiver. Go to this child node, which
knows in which of its children is its representative receiver
for this candidate application. Do this recursively until you
reach the representative receiver.

to parent
s T

8 21
7 23

child index

21 2 3
23 1 2

[ee]

7
T
5 T 1 =
] z
2 7 ] 15 ] 38 [ 12

from child 1 from child 2

Fig. 7. The topology information associated with the allocations in
a node’s CCS can be distributed.

Furthermore, Lemma 3 states that we need to know (b)
above actually only for the child subtree containing the rep-
resentative receiver, because the other children’s allocation
is locally optimal. Thus, instead of the full allocation func-
tion ¢, we only need to associate with each CCS element
(a) a pointer to the child containing the representative re-
ceiver, and (b) an index into that child’s CCS. Figure 7
illustrates this: the node receives two CCSs from its two
children, and computes its own CCS. Internally, it main-
tains for each element of its CCS the pointer to the child
subtree containing the representative receiver, and an index
into that child’s CCS. It sends its own CCS to the parent.
In the end, the root knows its own CCS. It can then pick
the element (sp pr, Topr) that minimizes the cost function
T.

The downstream part of the algorithm computes the ac-
tual timeouts. Each node receives an index into its CCS
and an offset from its parent. Call this offset S and the se-
lected CCS element (s,T,child,index). Each node now
sends to its representative child child the offset S and
index. It sends to all of its other children an offset S + s,
and as index the one corresponding to the child’s local op-
timum (cf. Lemma 3). If the node is a receiver, then the
offset S it receives from its parent is its timeout value.

The following example illustrates the distributed algo-
rithm. The topology of the network is depicted in Figure
5. Table I shows the computation each node performs in
the upstream part of the protocol. The element chosen in
the root’s CCS as the best is underlined. Compare this to
A’s full characteristic set in Section IV-C.

Table IT shows the downstream part of the protocol. The

| Node | child CCS | own CCS
B ] CCS = (1] [{Gd.al)]
CCSs = {(3,2)}
C CCS’Y = {(4’ 3)} {(478a'77 1)}
CCSs = {(5,4)}
A CCSp ={(2,4)} | {(2,10,B,1),(4,8,C,1)}
CCS¢ = {(4,8)}

TABLE 1

THE UPSTREAM PART OF THE DISTRIBUTED TIMEOUT COMPUTATION.

| Node | child | index | offset ]
A B 1 4
C 1 0
B « 1 4
3 |1 6
C 0 1 0
6 1 4
TABLE II

THE DOWNSTREAM PART OF THE COMPUTATION.

resulting timeouts are reported in Figure 5. It is interesting
to note that the receiver with the smallest round-trip delay
is not the tree’s representative in the optimal allocation.

VI. DISCUSSION

The algorithm shown in the previous section computes
an optimal set of timeouts. Theorem 1 bounds the size
of the upstream messages by the height of a node. In a
balanced tree with n receivers and outdegree m, this height
is O(log,,,(n)). For example, assume that a multicast group
has 4096 participants, and that each switch only has two
children (m = 2). Then the constrained characteristic set
of the root is at most of length log,(4096) = 12. Note that
no node in the tree has to know the entire topology, and
that communication is local: each node only communicates
with its parent and its children. For general trees, the
number of elements in the upstream messages can never
exceed the diameter of the underlying network topology.

In this section, we discuss other aspects of scalability
and robustness. We address the issues of lost NACKs and
delay variation. We then examine the impact of the tree
topology on the timeout values and on the response times
as computed by DTRM. Finally, we discuss how to handle
dynamic group membership changes.

A. Lost NACKs and Delay Variation

Let us briefly consider what happens if the unique NACK
gets lost. In this case, every dependent cotree (cf. Defini-
tion 5) of the receiver having produced the NACK sends
an additional NACK. This number is bounded above by



hi(m — 1), where h; is the height of the loss tree and m is
the largest outdegree of any node in the loss tree. In the
example above with 4096 receivers, this number would be
12 if the loss tree is the entire tree. This illustrates that
a NACK loss results in a reasonable number of additional
NACKSs, placing only a small burden on the sender.

subtree B

Fig. 8. Delay variation on a link (A, B): Ap is the delay variation
on this link of the out-of-sequence packet, Ay is the delay vari-
ation of the NACK packet, and Ag is the delay variation of the
retransmitted packet.

While the underlying assumption of DTRM is that de-
lay variation remains bounded and can be absorbed by the
parameter ¢, it is interesting to observe that the same prop-
erty of graceful degradation holds for delay variation on a
link (cf. Fig. 8).

Let us assume that on some link AB, the delay of the
original out-of-sequence packet is varied by Ap and that
of the retransmitted packet by Ag. Also, if the NACK
originates in subtree B, let its delay be varied by Ay . Let L
denote the root of the loss subtree. We have to distinguish
three cases.

1. The loss occurs on or below AB: In this case, if Ay +
Agr > ¢, one additional NACK is produced by each
dependent cotree of ¢(L). The situation is equivalent
to a lost NACK.

2. The loss occurs above AB and ¢(L) lies in subtree
B: Let us first look at additional NACKSs from within
subtree B. If Ay + Ag > ¢, then each cotree of ¢(L)
in subtree B produces an additional NACK (as ¢(L)
is B’s representative, all of these cotrees are depen-
dent). Next, let us look at additional NACKs from
outside subtree B. If Ap + Ay > ¢, then each de-
pendent cotree of ¢(L) outside subtree B produces an
additional NACK. Thus, if both conditions are true,
then there is an additional NACK from each depen-
dent cotree of ¢(L). Again, this is equivalent to a lost
NACK.

3. The loss occurs above AB and ¢(L) is not in subtree
B: In this case, no additional NACKSs can be produced
outside subtree B. If —Ap + Agr > ¢, then subtree B

Host RTD | Optimal timeout
ibp.fr 22ms 118ms
sics.se 70ms 118ms
umd . edu 108ms Oms
virginia.edu 113ms 118ms
umass.edu 119ms 241ms
uky.edu 154ms 198ms
utexas.edu 157ms 241ms
berkeley.edu 172ms 241ms
usc.edu 177ms 241ms
washington.edu | 181ms 241ms
fokus.gmd.edu | 273ms 118ms
TABLE II1

THE RECEIVERS OF THE MBONE SESSION, WITH THE RTDs FROM

pax.inria.fr.

produces one additional NACK.

Therefore, delay variation at a single link can at most
produce as many additional NACKs as a lost NACK. The
situation where delay variations occur on all links is hard
to analyze. The number of NACKSs produced per loss will
likely depend on many factors, such as the distribution of
delay variation, and its temporal and spatial correlation.
We do not propose DTRM for such an environment of un-
predictable, unbounded delay variations. It is likely that
only adaptive schemes that compute timeouts based on
measurements of the network condition will be sufficiently
robust. It is a reasonable goal for such heuristic, dynamic
schemes to get as close as possible to the performance of
a provably optimal scheme in idealized conditions. Thus,
we advocate the use of DTRM as a performance evalua-
tion baseline of such heuristics. On the other hand, if the
network can make some delay jitter guarantees, which is a
quality of service parameter that future networks, such as
ATM, are expected to support, then the desirable proper-
ties of DTRM (timeout optimality, graceful degradation)
can be fully exploited.

B. Timeouts and Response Times

We study the timeouts and response times computed by
DTRM in two different scenarios. First, we take a typical
MBone session, with participants in the US and in Europe,
and apply DTRM in order to get a feel for the timeout
values obtained in a realistic setting. Second, we give a
bound on the maximum response time, and we compute
the average response times for balanced trees where all the
receivers have equal round-trip delays.

The MBone session membership we have used is re-
ported in [12] (cf. Table IIT). We assume that the IP
host pax.inria.fr at INRIA is the sender and the other
11 hosts are the receivers. We have used ping to measure
round-trip delays between pax and all the receivers. We
have then used traceroute to determine the tree topology.
Note that traceroute provides us not with the MBone
topology, but with the tree topology that would result if
all the IP routers were multicast-capable. Given that the
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Fig. 9. The tree topology and the round-trip delays for a typical MBone multicast session.

MBone is an overlay network to deal with old (i.e., non
multicast-capable) IP routers, this approach yields more
realistic topologies than simply using the current MBone
tree.

We can make several interesting observations from the
timeout values obtained in this setting (with ¢ = 10ms).
First, the largest timeout (241ms) in the tree is smaller
than the largest round-trip delay’ of 273ms. The cost of
this timeout allocation, i.e. the maximum response time,
is 422ms, for receiver washington.edu (181ms + 241ms).
Thus, the timeout values obtained in this example group
are quite reasonable. A maximum response time of less
than twice the largest round-trip delay in a multicast ses-
sion spanning such a large geographical area is reassuring.

However, the above group, of course, is quite small (11
receivers). We therefore finish this subsection with a dis-
cussion of upper bounds of the maximum response time,
and with an expression for the average response time for
balanced trees. We first obtain an upper bound on the
largest timeout value t; occurring in the tree. For this,
assume an arbitrary allocation. As mentioned earlier, the
timeout of each receiver is the sum of all d; + ¢ for all re-
ceivers i that are representatives of ancestors of i. It is
straightforward to observe that in a tree of height h, this
sum cannot be larger than h(dmax + €), where dmax is the
largest delay of any receiver in the tree. Thus, the maxi-
mum response time is bounded from above by

h(dmax + f) + dmax~ (15)

Again, if the tree is balanced, then h = O(log,,,(n)).

We now discuss the average response time, which we de-
fine as follows. Assume that a single loss occurs with equal
probability on any link of the tree®. Then the average re-

"Note that he largest RTD is between INRIA, France, and the ge-
ographically second-closest site, GMD Fokus in Germany.

8Including a “virtual” link feeding the root, as we do not exclude
the case where the loss subtree is the entire tree.

sponse time is the expected value of d; +t;, i.e. the response
time of receiver ¢, where i is the representative receiver of
the loss subtree. For the sake of exposition, assume the fol-
lowing balanced tree. Each switch in the tree has outdegree
m. The tree is of height h and has exactly m” receivers.
Furthermore, all receivers have identical round-trip delays
equal to d. Using this tree has the advantage of making all
allocations equivalent in terms of the resulting timeouts.
We denote the average response time by #,.

The average response time Z, can be found through a
simple recursion. For a tree of height h, the average re-
sponse time can be expressed as

_ T
=t 1
th nhv ( 6)
where
Th= 3 dsa)+tga) (17)

Aer
is the sum of the response time of the representative re-
ceivers of all tree nodes, and where

mhtl — 1

np = (18)

m—1
is the number of nodes in the tree. Note that Tj41 can be
written in the following way

Thy1r = mTy + (m — 1)np(d+€) +d. (19)

The term mT}, is due to the fact that a tree of height h+1
contains m subtrees of height h. The term (m — 1)n,(d +
€) is due to the offset d + ¢ that we have to add to each
receiver’s timeout in all but one of these subtrees in order to
fulfill the single-NACK condition with respect to the tree’s
representative. Finally, the term d is due to the fact that
the tree’s representative (which has ¢ = 0) has a response
time of d. This recursion yields

mh(m —1)
mht —1

(d+ h(d+€)] - nl”hi_le.

e (0)

th =



In summary, both the maximum and the average re-
sponse time scale like O(log,,, (n)), which ensures scalability
even to very large groups. Furthermore, we have observed
that these bounds are quite pessimistic for heterogeneous
topologies and RTD distributions. For example, note that
for the tree topology depicted in Fig. 9, the actual max-
imum response time is 422ms, while A = 5 and dpax =
273ms results in a bound of 1688ms. The actual average
response time is 194.5ms.

C. Dynamic Membership Changes

Another concern for scalability are group membership
changes. Because it must be expected that in large groups,
the rate of receiver joins and leaves is high [13], their as-
sociated overhead must remain small (e.g. in terms of sig-
nalling, resource allocation, updating internal state, but
also timeout computation.) We outline a solution to this
problem. For this, we have to assume that after a time-
out computation, all on-tree switches must maintain the
following state from the last timeout computation:

1. The offset S they have received from their parent.

2. The child subtree A in which lies their representative
receiver.

3. The variable s from the entry in CCS4 that was se-
lected in A.

First, consider the case when a new receiver joins. The
new receiver is attached to the existing tree at a node X.
Our solution consists in assuming that this new receiver is
not a representative (except for itself). This means that
X can simply instruct the new receiver to use the timeout
value S + s to insure the single-NACK condition.

Second, consider the case when a receiver leaves. If the
receiver is not a representative of any subtree, then clearly
the receiver can go away without harming the single-NACK
property. However, if the receiver is a representative of one
or several ancestors, then the situation is different. Denote
by C the highest ancestor for which the receiver in ques-
tion is the representative receiver. Then, if we just let the
receiver go away, all the cotrees of that receiver within C
would produce a NACK if C were the loss subtree - the
situation is equivalent to C’s NACK being lost.

In other words, before we release the receiver, we need
to find a new representative for C. This can be achieved
by applying the distributed timeout computation locally
within subtree C, while pretending that the receiver wish-
ing to leave did not exist. Once a new set of timeouts has
been computed within C, the receiver can leave.

There is no guarantee that the join and leave operations
described above conserve the global optimality of the re-
ceiver allocation. However, note that their impact tends
to be very locally constrained. For example, in a tree with
outdegree m, the probability that a randomly picked re-
ceiver is not a representative is equal to 1 —m~!, and the
probability that it is only a local representative (i.e. of its
parent only) is equal to m~1(1—m~1), etc. In other words,
in practice the impact of join and leave operations has a
high probability of remaining very locally constrained.

When the cost of the tree moves too far away from the
optimum, it becomes necessary to recompute all the time-
outs. This can be done in two ways, namely on a periodic
basis, or on a demand-driven basis. In the latter case, the
source could distribute a threshold cost in the downstream
part of the protocol. Any receiver in the tree whose timeout
exceeds this threshold would spawn the recomputation.

In conclusion, we observe that dynamic membership
changes can be accommodated efficiently in DTRM. The
probability that a membership change can be treated lo-
cally is high, which is an important requirement for scal-
able group management. The tradeoffs involved in the re-
computation of the timeouts will be the subject of further
research.

VII. CONCLUSION AND FUTURE WORK

Timer-based approaches to avoid feedback implosion in
reliable multicast protocols have the advantage of requiring
no network-level processing of feedback. We have presented
a distributed algorithm to compute deterministic timeouts.
This algorithm has several advantages.

First, the computation of the timeouts can be entirely
distributed. No node in the tree (sender, switches, re-
ceivers) needs to maintain global information, and commu-
nication to compute timeouts is local between neighbors
in the tree. The messages remain small even for very large
multicast groups. Second, the single-NACK property is de-
terministic, i.e. we are guaranteed that only one NACK re-
sults from a single loss, provided that the NACK and the re-
transmitted packet are not lost themselves. If they are lost,
then the number of additional NACKs remains acceptably
small. Third, this algorithm computes a set of timeouts
that is optimal with regard to the maximum response time
experienced by the sender and the receivers. This maxi-
mizes the efficiency of the multicast service by minimizing
the buffering requirements in the transport layer, and by
minimizing the delays seen by the application. Fourth,
both the maximum and the average response time scale as
0O(log,,(n)). Dynamic group membership changes can be
efficiently handled.

The usefulness of timer-based feedback implosion control
is not limited to reliable multicast, of course. Any multi-
cast protocol that relies on feedback from receivers about
events occurring on links inside the multicast tree could
take advantage of it. An important example is multicast
congestion control, where feedback is used to reduce the
source rate in case of congestion on a link.

We expect DTRM to prove useful also as a benchmark-
ing baseline for heuristics for timeout computation, such as
those designed to operate in networks without delay guar-
antees. The potential of these heuristics can be estimated
from a comparison with this optimal algorithm.
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