
Trajectory Engine: A Backend for Trajectory Sampling

N. G. Duffield, A. Gerber, M. Grossglauser
AT&T Labs - Research
180 Park Ave, Florham Park NJ 07932, USA
E-mail:

�
duffield, gerber, mgross � @research.att.com

Abstract
The management of communication networks increasingly requires detailed knowl-

edge of network usage, acquired by direct measurement. We report on the design and
implementation of a backend system for Trajectory Sampling, a method for consistent
sampling of packets across a network domain. This Trajectory Engine collects trajec-
tory samples and stores them after appropriate preprocessing. It provides a querying
and visualization tool to aid in traffic engineering and troubleshooting.

We describe the entire system, and in particular the design choices that we took
in order to balance the scale of system (due to large volumes of measured data) with
resource usage while providing useful functionality for users. In the preprocessing
stage, we focus on reassembly of trajectories from individual samples. We describe
the design of the database for efficient storage of trajectories, and its relationship with
the query and visualization interface. We test the system using a synthetic stream of
trajectory samples derived from configuration and usage data from the network of a
major service provider. We walk through several examples that illustrate how a net-
work operator might take advantage of trajectory sampling through such a tool.

Keywords
Internet Traffic Measurement, Packet Sampling, Traffic Engineering, Data Manage-
ment, Visualization

1 Introduction

1.1 Background

The efficiency of resource allocation and the quality of service provided by IP net-
works depend critically on effective traffic management. Control and engineering
functions rely on a characterization of the traffic that flows through the network [5, 6].
Traffic measurement is an integral component of these functions, both to provide input
to these functions, and to verify that their actions are having the desired effect. Virtu-
ally all traffic engineering functions, such as route optimization or planning of failover
strategies, rely on an understanding of the spatial flow of traffic through the domain.
For example, suppose we observe that some link in the backbone is overloaded. Ap-
propriate corrective action requires an understanding of which ingress points the traffic
observed on this link originates and where it is headed, what customers are affected by
the congestion, and what the traffic mix is; without this information, effective reme-
dies (e.g., rerouting of part of that traffic) cannot be taken. However, traffic flow
measurements available today are typically highly aggregated (e.g., router reports of

labels
measurement packet

completed

BRAVO
visualization
engine

Trajectory Enginerouter

network

local label buffer

output

engine
linecard
input

trajectory

collision
and
reassembly

resolution

linecard
fabric

queryswitching

trajectory
samples
database

Figure 1: The overall system consists of a measurement subsystem on every router in
the network domain, and the Trajectory Engine, a central measurement collection and
processing system.

link utilization), or indirect, relying on knowledge of the current network state (e.g.,
routing and/or forwarding tables) for their interpretation. Moreover, increasing link
speeds make it infeasible to measure and report on all flows individually.

We have recently proposed a new method for direct traffic observation called tra-
jectory sampling [4]. A subset of packets are selected on every link through which
they pass. These packets can then be used as a representative of the overall traffic.
If packets were simply randomly sampled at each link, we would be unable to derive
the precise path that a sampled packet has followed between the ingress to the egress
point. Instead, the sampling decision is based on a deterministic hash function over
the fields of the packet that remain invariant as the packet traverses the network. This
ensures that a packet is either selected on every link it traverses, or on no link at all;
we call this trajectory sampling. The proportion of packets selected can be determined
by tuning the parameters of the hash function.

A router sends a report, a trajectory sample, to a collector on each packet that it
selects. Packets comprise header information—such as the source and destination IP
address (used to route the packet) or TCP or UDP port numbers (used by end hosts to
direct the packet to the correct application)—followed by the payload. It is the header
information that we wish to report to the collector. We can compress the volume of
such reports by using another hash over the packet to produce a label. When the packet
is first sampled (at the ingress point), both its label, and header fields of interest are
reported. Given this association, only the labels need be reported thereafter, i.e. from
each interior link that the packet traverses.

As examples of the utility of the approach, the analysis of trajectory samples gath-
ered from all routers in a network domain could determine the set of paths taken by
packets between a given source and destination during a period of routing instability,
or be used to continuously monitor and identify the links at which packet loss occurs
on any given network path. These detailed analyses are infeasible to perform using
measurements currently available from production networks.

1.2 Contribution and Requirements

The realization of trajectory sampling requires a measurement subsystem on every
router, and a central measurement collection system; see Fig. 1. In this paper we report

2

on the design and development of a prototype system for the collection and analysis
of trajectory samples. We call this system the Trajectory Engine. Our previous work
[4] focused on the mechanisms by which samples would be generated at network
elements such as routers. The motivation of the present work is to demonstrate, by
construction of the Trajectory Engine, that a stream of trajectory samples, as produced
by the routers in a representative network domain, can be used to perform complex
analyses such as those mentioned in the previous paragraph.

To this end, the Trajectory Engine performs the following functions. First, it col-
lects the trajectory samples that have been generated by routers (or interfaces cards)
and transmitted to it across the network. Second, it reconstructs complete trajectories
from these samples, and stores them in a database. Third, it offers querying primitives
on the database for use by management and control applications. Fourth, it furnishes a
graphical user interface (GUI) for the interactive formulation of queries and presenta-
tion of results in a visually useful form. In order to fulfill these requirements, we had
to identify and solve a number of design problems. We explain these in detail, and
describe our solutions in Section 2.

One challenge is the presence of label collisions: trajectory samples from different
packets can have the same label. Collisions can, in some cases, prevent reconstruction
of unique trajectories. Thus we need strategies to control the rate of collisions, identify
their occurrence, and limit their effect on the accuracy of database queries. Section 2.1
analyzes the frequencies of collisions, and describes two approaches to handle them
and compensate for their statistical effects. Section 2.2 describes a timer-based method
by which samples are grouped into complete trajectories.

The second challenge is scalability. The collection system must perform prepro-
cessing functions (trajectory reconstruction and collision resolution) in real time; the
database of trajectory samples must accommodate potentially huge volumes of accu-
mulated data, and queries may require complex data aggregations. Section 2.3 de-
scribes the trajectory sample database, and the structural decisions taken to facilitate
both fast querying, and the interaction with network configuration data used to inter-
pret the trajectories.

The third challenge is the flexibility and generality of queries that can be per-
formed on the database of trajectory samples. Trajectory samples are very general,
allowing for a wide range of queries. However, storing raw trajectory samples may
be prohibitive because the volume is too large. In this case, it will be necessary to
sacrifice some of the generality of queries to save space, by preaggregating samples
before they are stored in the database. Clearly, there is a tradeoff between scalability
and generality of queries. Section 2.3 describes the set of querying primitives, and
their employment through the GUI.

The testing and evaluation of the Trajectory Engine raises another challenge. Since
trajectory sampling is not currently implemented in production routers, we need to fur-
nish a synthetic stream of samples representative of those that would be generated in
an actual network. In Section 3 we describe how this is done using supplementary
network configuration and measured usage data from the backbone of a major net-
work service provider. We demonstrate three examples of queries supported by the

3

Trajectory Engine.

2 Design and Methodology

2.1 Label Collisions and their Handling

The Frequency of Collisions. As discussed in our earlier work [4], several packets
may happen to have identical labels. Here we summarize the analysis of the pro-
portion of labels affected by collisions. Assume there are trajectory samples from �
distinct packets, each sample carrying a label of � bits. Then the alphabet size of
the identification hash is

���
. We wish to determine the number of unique labels ,

i.e., those that are present in samples from exactly one packet. Assuming label values
to be taken with equal probability, it can be shown that this number is, on average,��� �	� ��

� � ����� �����
�� ��� . Consider now the problem of maximizing the number
of unique labels under a given constraint on their total volume ��� � � . Thus we
seek to maximize

��� �
�� ��� �	� ��� �
 over � . Let � � denote the maximizer and set
� � �!�"� � � . In [4] we establish the asymptotic behavior:

� �$#!%'&�(*) � and � �+# �%,&-() �
� as �+.0/ (1)

The probability that a given label is in collision in this case is

1325476 6 � �
� ��� �8�
� � # �
�:9 ���<; 6 4<=?>�@ � as �+.0/ (2)

Compensating for Collisions. As defined in [4], a label subgraph associated with a
label A and a measurement interval records the number of times label A is observed on
every link in the network within that interval. In the case of a collision, i.e., when the
label subgraph consists of a superposition of at least two trajectories, it is sometimes
possible to disambiguate these trajectories. This is true when the set of component
trajectories do not intersect each other. If a label subgraph contains intersecting tra-
jectories, it may not be possible to disambiguate them [4].

A naive approach to handle collisions would be to simply keep trajectory samples
that can be disambiguated, and to discard the rest. However, this approach is prob-
lematic, because it can introduce bias into estimators. Consider the scenario where
there are only three possible trajectories B , C , and D , where C and D intersect each
other, while B does not intersect either C or D . Assume that the traffic flows for each
trajectory are of identical intensity. We try to estimate these flows and their intensities
from trajectory samples. Now note that a sample of the flow B can always be disam-
biguated, regardless of what label subgraph it is a part of. This is because B does not
intersect other trajectories. Therefore, we could estimate the rate of B without bias
simply by multiplying the observed number of samples of B with a normalization con-
stant (the inverse of the sampling rate). However, for every subgraph where there is at
least one sample C and one sample D , we would discard the corresponding samples
because of ambiguity. Therefore, it is clear that if we estimate the intensities of C or
D in the same way as for B , a negative bias would result.

4

To avoid this bias, we would have to renormalize our measurements appropriately.
Specifically, we would have to correct for the probability that a trajectory is part of
an ambiguous configuration. This is difficult, because this probability depends on
the (unknown) rates of all the trajectories in all the ambiguous configurations. The
problem can be formulated as a linear inversion problem. We omit the details of
this approach; an analogous problem arising in network tomography is described, for
example, in [10]. While conceptually feasible, this approach is computationally very
demanding, due to the high dimensionality of the problem. Instead, we have pursued
another approach to avoid bias, described in the next section.

Exclusion of Labels in Collision. The previous section outlined how to compen-
sate for label collisions by estimating the underlying frequencies of trajectories. An
alternative approach is to dimension the measurement system so that the frequency of
collisions is small. All labels in collision are then identified and excluded, whether
or not such collisions would give rise to ambiguities. This approach is blunter than
that of the previous section in that we make no attempt to extract any information
from colliding labels. However, since colliding labels are excluded independently of
whether they lead to ambiguities, exclusion is not biased by topology.

Collisions can be identified from ingress trajectory samples alone. If more than
one ingress trajectory sample carries the same label in a given time window, then all
trajectory samples with this label are excluded from the window. Bias arising from this
exclusion can be compensated for through statistical modeling. The simplest model
assumes that labels are uniformly distributed and that collisions occur independent of
the label. We then compensate by adjusting all trajectory frequencies upwards by a
factor

� � �<�
� �1 254<6 6
 , where
�1325476 6 is the measured collision frequency.

To be confident that this approach is feasible, we need to show that the collision
probability is quite small for a reasonable set of network parameters. Consider a
collection of trajectory samples from a domain across which packets have a typical hop
count

�
. Let the samples be directed to a single collector across a link of bandwidth � ,

and consider label collisions occurring during a window of duration � . The capacity
��� � � available for � samples of size � bits is then roughly ������� � � . Assume
� � ���	�

bits/s (roughly equivalent to an OC48 link), with � � ����

(an upper bound

for the typical domain transit time), and
� � ���

. According to (2), the collision
probability 1 25476 6 is about 3% when � and � are chosen as � � , and � � , i.e., the values
for which the expected number of unique labels is maximized.

Due to the form (2), 1 254<6 6 is quite insensitive to the assumptions; changing � � � or�
by a factor of

���
�
changes it by only about half a percent. Increasing � beyond the

domain transit time would increase � and hence allow the reduction of 1�254<6 6 . However,
this also increases the cost of determining duplicate labels, due to the increase in the
number of ingress samples that must be checked.

Collision probabilities can be lowered if the expected number of unique labels is
allowed to be submaximal. In the example, � � ��� � ; increasing � by

�����
decreases1 25476 6 by roughly an order of magnitude. The number of unique samples is likewise

decreased by about 10%. The variance of statistical estimators will correspondingly
increase by about 10%. Since the collision probability is so sensitive to the choice of

5

label size � , we recommend that it be chosen conservatively, e.g., as above by first
finding the optimal value � � value based on the largest expected traffic volumes, then
taking the actual value � to be somewhat larger.

We now determine the corresponding sampling probability for the example. As-
sume the samples are drawn from a network comprising

�
links of capacity � . The

total number of unique packets present in the network during a window of time � is
no more than � � � ��� � ��� �
 , where

�
is the typical number of bits per packet. Taking� � � � �����

we find � � ���
�
. Thus we would require a sampling rate no greater that

about �8� ��� , i.e. about 1 in 30, for a fully utilized network. In practice, we may want
to employ a smaller sampling rate in order to control consumption of processing and
storage resources at the trajectory engine.

2.2 Trajectory Reconstruction

In the previous section, we have assumed that the label subgraph associated with a
label is known completely. In the absence of any delays experienced by packets and
measurement reports in the network, the label subgraphs would be trivial to assemble:
we would just discretize time at the desired granularity, and count the number of times
a label value A is reported for each link in a given time window. In practice, packets
experience transmission, propagation, and queueing delays as they travel through the
network. Also, samples are subject to various delays: labels are delayed in the router’s
label buffer if a measurement packet can transport multiple labels; once it is sent out,
the measurement packet then experiences delay during the transport from the router
to the collection system.

In this section, we focus on how to reconstruct trajectories when labels arrive at
the collection system subject to random delays (cf. Fig. 2). We introduce the fol-
lowing notation. The measurement domain is a directed graph � ��� �
	
 . A trajectory
is a path, i.e., an ordered set of links

� 9 � ���
��� � 9 �
 in the measurement domain � . �
denotes the set of all valid trajectories. We make the following assumptions. Consider
a link

9
connecting two routers

-� 9
 and � � 9
 . First, we assume that for every link
9

in
the network domain, we know an upper bound � � 9
 of the total delay a packet can ex-
perience. Specifically, �
�
����� � ������������� � 9
 , where �
������� and �
�
����� are the time instants
when some packet arrives at

-� 9
 and at � � 9
 , respectively. Note that in general, � � 9

depends on the link capacity and length, the size of the buffer feeding the link, etc.
Second, we assume that the labels of sampled packets are available immediately, and
we assume that the time the label is delayed within the label buffer is bounded by ��� .
This can be enforced through a local timer that ensures that incomplete measurement
packets are dispatched after at most � � . Third, we assume that � � is an upper bound
of the time it takes a measurement packet generated by a router to reach the collection
system.

Under these worst-case assumptions, we can devise simple timer-based schemes
at the collection system to reassemble trajectories. The basic requirements are (a) to
faithfully reconstruct trajectories despite the random arrival times of its labels, and
(b) to minimize collisions, i.e., collapsing more trajectories than necessary into label
subgraphs (which we discard, as discussed in Section 2.1.)

6

collection

j
measurement

system

label from
j received

label from
i received

t

node i

delay at node i
label buffer

t
i

measurement packet

packet from

label

label

from node j

node i
label bufferlinklink

node j
label buffer

Figure 2: Components of the delay experienced by samples from a single packet.

The simplest reconstruction scheme called trajectory-based timeout would asso-
ciate a timer with every possible label value A . (In practice, the timer would only
have to be instantiated once a label of value A actually arrives). The timer is started
whenever a label A is received at the collection system. All arriving labels A are then
accumulated into a trajectory, until the timer times out.

Let us examine what the timeout value should be to ensure that a trajectory does
not get truncated. Consider a trajectory 1 � � 9 � �
���
� � 9 �
 � � . Assume w.l.g. that a
packet is received at the ingress node

-� 9 �
 at �����������+� �
. For every link

9�� � 1 , the
time �
������� � when the label is received at the collection system satisfies � ��������� ��� � � � �
	
� � 	�� ��
���� ��������� � ���
� ��� � � 9
�� ; the packet arrival time at the next router � � 9��
 satisfies
���
����� � ��� ����������� � ��������� � 	 � � 9 �
�� . Therefore, � �
������� ��� � � � � 	 � � 	�� ��
������ ������� � ��� � � � 9
�� .

We must ensure that for all possible trajectories, the timeout is longer than the
difference between the receive times � of any two labels pertaining to the same packet.
This is achieved by setting the timeout to

��� ��� �!	 � � 	�"$#�%&
('
)
��
 & �

� 9
 (3)

However, this approach suffers from the following problem. Consider two packets B
and C that map to the same label value A . Assume that the timer associated with A
is started by the arrival of a label of B , and that C arrives at its ingress node before
that timer times out. Furthermore, assume that some of the measurement packets that
report C from interior nodes arrive before the timeout, but its ingress measurement
packet arrives after the timeout. In this case, we would not be able to detect the packet
collision (which relies on duplicate ingress reports), and the partial trajectory would
be wrongly attributed to the first packet B only. While in most cases, it would be
straightforward to discard this partial trajectory by other means (e.g., considering the

7

PACKET TABLE

Traj_Id Links

REVPATH TABLE

Traj_Id Links

Tcp_flags Bytes Traj_IdDest_PortSrc_Ip Dest_Ip Src_Port

PATH TABLE

TypeRouter Ip

etcIP address ...

ROUTER TABLE

Router:If Router:Ifetc etc... ...

ToSProt

Figure 3: The relational representation of trajectory samples requires four tables.

network topology), this is undesirably complicated.
We therefore propose a more fine-grained, link-based timeout approach. The timer

associated with label A is (re)started every time a label A arrives at the collection sys-
tem. As before, when the timer times out, the trajectory is considered complete. This
approach is slightly more complex in that every arriving label requires a timer reset;
however, this approach avoids the “edge effect” of the trajectory-based approach, i.e.,
a packet cannot partially leak into a label subgraph.

The timeout � � must be chosen to ensure that for any network link
9
, the time

difference between the arrivals of labels from the endpoints

-� 9
 and � � 9
 of

9
is less

than the timeout. This must hold for all links:

� � ��� �!	 � � 	�"$#�%��
�� � � 9
 (4)

The link-based timeout ensures that every sampled trajectory is completely in-
cluded in exactly one label subgraph. However, there is no upper bound on the number
of trajectories that could potentially be included in a label subgraph. In normal opera-
tion, the distribution of the number of trajectories included in a single label subgraph
falls off geometrically. Only in situations where a particular label occurs unusually
often (e.g. an attack on the measurement system with packets specifically designed to
have identical labels) could a label subgraph fail to be complete because the link timer
never times out. We guard against this with a cutoff timeout associated with the label
subgraph, which times out after a large multiple of � � .
2.3 Storage, Querying and Visualization of Trajectories

In this section we discuss more fully the requirements for systems to implement the
trajectory database. In practice we were able to meet these requirements through use
of in-house data management systems that had been created with applications such as
Trajectory Engine in mind: the Daytona data management system [7], and the BRAVO
data visualization tool [5]. We review their capabilities in this Section.

8

Tradeoffs and Requirements. Certain trade-offs must be weighed in deciding a for-
mat for the trajectory database. These must be evaluated in the context of potentially
large data volumes: in the example of Section 2.1, even with a mean sampling prob-
ability of

��� � �
, the Trajectory Engine should accommodate up to

��� �
reconstructed

trajectories per second when the network is fully loaded.
The first tradeoff is of resources for preprocessing vs. query speed. Storage of

reconstructed trajectories in a flat file will be fast; on the other hand user queries will
be slow to execute. In view of the data volumes that we anticipate, we require the
option of employing indexing to speed up queries.

The second tradeoff is generality of queries vs. data volume. Preaggregation
of trajectories could speed up specific queries, but would reduce the set of possible
queries. Our main motivation in building the trajectory engine was to field complex
queries on traffic patterns. For this reason, we favor generality. In fact, the only data
reduction that we employ is to discard timestamps and instantiate new data files every
minute. There is virtually no loss of querying generality in practice, since the timeout
employed in trajectory reconstruction is of this order.

The Daytona Data Management System. The Daytona data management system
[7] met our requirements. It offers several definitive advantages over other systems.
The primary advantage is speed. Daytona translates its Cymbal high-level query lan-
guage into C, which is then compiled into a native machine executable; most other sys-
tems interpret their SQL. Cymbal is a powerful and expressive 4GL that synthesizes
a procedural language with several declarative languages including SQL. Its ability
to express complex queries, together with its parallelism, enable its effective use of a
suitably endowed storage server. Daytona uses Unix as its server, thus saving on code
and complexity. Daytona reduces disk usage through a combination of partitioning
and compression techniques. This is a great advantage for an application such as the
Trajectory Engine, since the amount of data to be stored is potentially enormous. Hor-
izontal partitioning features allows aggregation of trajectories over time-slices, in this
case of one minute duration. A current Daytona application manages tables containing
75 billion records, added at an average rate of at least 3,000 per second.

Data Storage Tables. Packet trajectories are stored using four tables; see Figure 3.
Each packet with an identified trajectory gives rise to an entry in the PACKET table,
comprising the header information as reported by the packet’s ingress router. These
are the source and destination IP addresses and port numbers, TCP flags (if any), IP
protocol, Type of Service, and packet size in bytes. Since many packets may follow
the same trajectory, we do not enumerate trajectories in the packet table. Instead we
include there only a trajectory ID, which is a key into the PATH table, whose entries
specify observed packet trajectories. Each such trajectory is specified by one or more
links, a link comprising two objects: an identifier for a router, and an identifier for
an interface on the router. For certain types of query we find it useful to create the
REVPATH table, comprising the set of reverse paths of the entries in PATH. The
router identifier is a key to the ROUTER table, each entry of which specifies a router
type (used to indicate whether the router is at the network core or edge), the router’s

9

loopback IP address, and lists the IP addresses of the router’s interfaces. The ROUTER
table is populated using independent network configuration data.

Data Visualization and Querying. We required a GUI to the trajectory database
that would provide an interactive network map that could be used to specify database
queries and present their results. The construction of such a system requires a large
development effort. Rather than starting from scratch, we were able to reuse and
adapt an existing tool that has been developed in house for related purposes. BRAVO
[5] was developed to assist network operators in visualizing network topology and
network traffic flows. BRAVO’s underlying data model comprises objects, such as
routers and links, and demands, which are traffic intensities associated with subsets
of objects, e.g., between given ingress and egress routers. Using the GUI, users may
select and/or aggregate demands (e.g. all demands sourced by a given customer) and
display their intensities by modifying visual attributes in the GUI of the associated
objects (e.g. the width or color of routers or links that carry the demands). What-
if capabilities allow the user to determine the impact for network load of alternate
patterns of demand due e.g. to routing changes or link failures.

BRAVO’s underlying data model is very flexible. In particular one can model new
types of demands. The facility to select, query and display demands is a class property,
with which any demand object is hence automatically endowed. Consequently, we
were relatively quickly able to tailor BRAVO to our needs. For our application, a
demand is a traffic intensity associated with a trajectory. The demands are calculated
in response to user queries at the GUI. The queries are translated to Daytona queries,
whose execution returns the appropriate demands to BRAVO. We now describe the
data query primitives employed.

Database Query Primitives. Queries to the trajectory engine are specified by three
types of arguments: those relating to the paths, packet headers, and times. A query
returns a list of trajectories for which packets were found obeying the restrictions
specified in the query arguments, together with the aggregate number of packets and
bytes of packets that followed each trajectory.

(i) Path Arguments: specify a set of links that result in the selection of a set of trajectory
identifiers from the PATH table. They comprise a qualifier that takes one of three
values, followed, possibly, by a list of links. The qualifier oneSelected causes selection
of those trajectories that contain one link from the list. The qualifier allSelected causes
selection of those trajectories that contain all links in the list. The qualifier all is null:
it imposes no restriction on the set of trajectories.

(ii) Header Arguments: restrict attention to packets whose header fields occupy certain
ranges. Individual values for all header fields may be specified. In addition, 32 bit
masks for the IP source or destination addresses may be specified, allowing selection
based on IP address prefix.

(iii) Time Arguments: specify the start and end of the interval of times over which
packets may be selected. Recall, this time is based on arrival of the ingress trajectory
sample at the trajectory engine, expressed at a one-minute granularity.

10

3 Simulation Results and Application Examples

We describe experiments designed to test the Trajectory Engine under realistic condi-
tions and to illustrate its use in common traffic engineering tasks [2, 5]. Since trajec-
tory sampling is not currently implemented in production routers, we did not have a
ready-made stream of trajectory samples at our disposal. Instead, we created a data-
driven simulation that generates a synthetic stream of trajectory samples.

The data driving the simulation comprises configuration data (topology, routing)
and flow measurements from the backbone of a major service provider. This data is
used to generate a stream of events corresponding to the incidence of packets at every
router in the network. Thus, both the network topology and the traffic at a coarse
granularity of interest for traffic engineering (minutes to hours) is realistic. Only the
generation of fine-grained labels relies on assumptions embodied in the simulation.
We briefly state these assumptions.

A measured traffic flow is a record describing a set of packets with some common
property (here, identical source and destination IP address) that traverse a router in-
terface close together in time [3]. The record contains fields describing the common
property of the flow’s packets, and aggregate metrics over the flow (total number of
packets and bytes, start and end time, etc.).

Our simulation uses flow measurements available from a subset of ingress links
into the backbone network. We generate labels from these measurements as follows.
First, we map the measured flows onto the network topology. We do this by joining
the flow data with topology and configuration data (such as link weights available to
the OSPF routing protocol) to determine the path followed by every flow. Second, we
assume that the packets making up the flow are uniformly spaced between the flow’s
start and end times. (It would be straightforward to simulate other arrival processes,
e.g., Poisson). Third, we select each packet of the flow independently with probability1 , where 1 corresponds to the desired sampling rate. Fourth, we generate a random
label for each selected packet. This label appears at every router along the path of the
packet. We make the simplifying assumption that packets are not delayed: the label
corresponding to a packet concurrently appears on all routers on its path. It would be
straightforward to refine this model to include random packet delays between routers.

We perform a sanity check of the simulated trajectory sampling information as fol-
lows. We have available the link utilization, averaged over 5-minute periods, for every
backbone link. This information is obtained through polling of standard SNMP/MIB-
II counters [9]. We compare this measured link utilization to that predicted by flow
measurements, by aggregating all the flows traversing a given link. We find good cor-
respondence between the two measurements, which suggests that the simulated traffic
is a good approximation of the real traffic.

The label stream is fed into the Trajectory Engine described in the previous sec-
tion. We note that, of the data driving the simulation, the topology data alone is used
by the Trajectory Engine; it has no knowledge of the routing state of the network. All
the traffic metrics described below are derived from trajectory samples alone. We next
describe three examples of how the Trajectory Engine assists a network operator in
common traffic engineering tasks.

11

Figure 4: A graphical representation of the flow of traffic from another ISP. The link
color represents the percentage of traffic from that ISP on the link.

Example 1: Studying the impact of peering traffic. The flow of traffic between
two ISPs that have a peering relationship depends in a complex way on interdomain
routing policies implemented by these and other ISPs [8]. For effective traffic engi-
neering, it is therefore important to be able to examine peering traffic in detail, and to
infer how that traffic flows through the network domain.

Figure 4 illustrates how this can be achieved using the Trajectory Engine. First,
the set of links that connect to the peer ISP of interest are selected; this can be done
either through the GUI, or by a search on the table of links (this is a standard BRAVO
capability.) In the query window, we set the path argument to oneSelected (cf. Section
2.3), which will restrict the trajectories to those traversing (at least) one of these peer-
ing links. After also selecting the time interval of interest, launching the query results
in a representation as shown in Fig. 4. This representation is useful for a network op-
erator to verify if peering traffic is routed as expected through the domain, to diagnose
to what extent congestion problems may arise as a result of the load generated by this
particular peer, and assess where the peering traffic encounters performance problems.

An example of a concrete and difficult problem arising in peering is route flapping.
Route flapping due to fluctuation in routing tables in peer networks is suggested when
traffic originating at a given external IP source address is incident through multiple
peering points. At long time-scales this may be indistinguishable from load balanc-
ing. However, using the Trajectory Engine to compare the distribution of such traffic

12

inside the network in successive intervals of the time-scale of minutes can reveal such
flapping. This approach is even more powerful for detecting flapping of routes en-
tirely in the domain, since these will not be detectable from measurements made at
the network boundary.

Example 2: Focusing on a particular application. In this example, we do not
restrict the link set with which trajectories have to overlap. Rather, we focus on a
particular application. Specifically, we focus on HTTP requests from web browsers
(or web proxies) to web servers (or other web proxies). We achieve this by selecting
destination port 80 in the query window, because this is the default destination port for
the http protocol. This kind of query would be useful to detect and diagnose problems
with web hosting centers, web proxies, or with content distribution networks (CDNs),
which dynamically redirect queries based on the current load distribution and on the
location of the client.

Example 3: Analyzing an overloaded link. Our last example shows how the Tra-
jectory Engine can be used to “drill down” into a problem. Packet loss at a given router
is determined by subtracting from the total traffic on inbound links to the router, the
traffic on outbound links, after removing from consideration traffic whose source or
destination address includes either the router’s loopback address, or one of the router
interface addresses. TTL expired packets would also have to be accounted for in
practice. Clearly, the proportion of lost packets can be determined from an algebraic
combination of the appropriate demand intensities. The tool can also be used to dis-
play packet loss at all routers in a single picture, with loss rate indicated by node
color. Such a picture gives an immediate high-level view of network performance.
Once overloaded links and/or routers have been identified, one can focus on traffic
traversing them, and decide on appropriate corrective action, such as adjusting routing
state in order to reroute to a less congested path.

4 Conclusions and Further Work

This paper reported on the Trajectory Engine, a prototype back-end system to receive
trajectory samples from network elements, reconstruct and store packet trajectories in
a database, and furnish queries through a GUI. The goal was to demonstrate how such
a system could provide network operators with new diagnostic tools not available with
current network measurements. The main technical challenges arose from the effects
of label collisions in samples, the potentially enormous amounts of raw data involved,
and the need to find a satisfactory compromise between query generality on the one
hand, and data volumes and query speed on the other. The rationale for the design
choices that we employed to meet these challenges constitute the main work reported
here. These were: how sampling parameters could be chosen so as to control both
sample volumes, and the frequency of label collisions; a timer-based mechanism for
the reconstruction of trajectories; and the systems and configuration employed for data
management and querying.

13

Work in progress is to develop a more sophisticated simulation environment, cen-
tered around ssfnet[1]. This will enable the generation of a more realistic stream
of synthetic trajectory samples under which to test trajectory reconstruction.

Further work in progress is developing a method to compensate for label collisions
after disambiguation, as outlined in Section 2.1. This holds the potential to compen-
sate for more frequent label collisions, thus extending the rate at which samples can
be usefully collected. We are also studying the problem of trajectory reconstruction
when trajectory samples are transported unreliably to the engine. This would relieve
the sampling routers of the burden of buffering samples until they are acknowledged.

Finally, the resource cost for storage and processing of trajectories arising from
large networks may preclude the exclusive use of unaggregated trajectories. This mo-
tivates formulating an aggregation scheme for the storage of trajectories (at least for
historical data) that minimizes information loss for the set of likely queries, even if
general queries are less fully supported.

Acknowledgments. Thanks to Joel Gottlieb, Carsten Lund, and Fred True for assis-
tance with usage and configuration data, Carsten Lund for help applying BRAVO, and
Rick Greer for guidance on Daytona.

References
[1] Scalable Simulation Framework (SSF). http://www.ssfnet.org.

[2] D. O. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao. Overview and
Principles of Internet Traffic Engineering. , Internet Draft, November 2001.

[3] Cisco Corp. Netflow Services and Applications (white paper). August 1999.

[4] N. G. Duffield and M. Grossglauser. Trajectory Sampling for Direct Traffic
Observation. IEEE/ACM Transactions on Networking, 9(3):280–292, June 2001.

[5] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford. NetScope:
Traffic engineering for IP networks. IEEE Network Magazine, March 2000.

[6] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and F. True. De-
riving traffic demands for operational IP networks: Methodology and experience.
IEEE/ACM Transactions on Networking, June 2001, pp. 265-279.

[7] Rick Greer. Daytona And The Fourth Generation Language Cymbal. In Proc.
ACM SIGMOD ’99, June 1999.

[8] John W. Stewart III. BGP4. Addison-Wesley, Reading, Mass., 1999.

[9] William Stallings. SNMP, SNMP v2, SNMP v3, and RMON 1 and 2 (Third
Edition). Addison-Wesley, Reading, Mass., 1999.

[10] Y. Vardi. Network Tomography. Journal of the American Statistical Association,
vol. 91, pp. 365–377, 1996.

14

