FALCON: Fault Management

via Alarm Warehousing and Mining

Matt Grossglauser Nick Koudas Yongseok Park
AT&T Labs-Research AT&T Labs-Research Coree Networks
mgross@research.att.com koudas@research.att.com yongseok@coreenetworks.com

Alice Variot
AT&T Labs-Research

variot@research.att.com

Abstract

The ability to manage faults in large scale networks is of vast importance for successful and effective
network management operations. In this paper, we describe FALCON, a project underway at AT&T
Labs-Research focusing on fault management in IP networks. FALCON’s goal is to automate various
fault management tasks through warehousing and mining technologies.

We describe FALCON’s architecture and comment on its components. We present ALVIS, an alarm
navigation and visualization tool developed to explore alarms generated by AT&T’s IP backbone. ALVIS
displays alarms of multiple network elements as a set of state time series in a single picture, thereby reveal-
ing interesting structure and anomalies in the data. We also describe KALHAS, FALCON’s data mining
agent, currently under development, and outline our vision and current research agenda towards fault
management automation through successful development and deployment of state of the art incremental

mining and stream computation techniques.

1 Introduction

IP networks are growing in several dimensions, including the number of nodes and routers, the types of
applications and services supported by the network, the number of customers and the classes of traffic. This
increase in scale goes hand in hand with an increase in complexity, because it fundamentally complicates
distributed control mechanisms, such as resource allocation and routing. Since the number of network
elements increases, the probability of faults occurring somewhere in the network increases as well. Faults
occur more frequently, but they also propagate more widely, since services and resources rely on each other.
For example, if a router fails, the network will be partitioned; the management system will then generate
alarms for every network element outside its partition, because these elements cannot be reached by polling
packets any longer.

The increase in scale and complexity hampers efficient network management operations, which in turn
incurs costs and affects overall network reliability. Faults occur so frequently and trigger such a large
number of alarms that network operators quickly become the bottleneck in the recovery process. The alarm

information is too low level and too redundant for operators to interpret in real-time.

Fault and ALarm COrrelation in TP Networks (FALCON) is a project underway at AT&T Labs research,
aiming to automate much of the fault management process through deployment of advanced warehousing,
mining and visualization techniques. In this paper we describe FALCON’s architecture, and we elaborate
on various architectural components. This paper is organized as follows: Section 2 introduces the problem
of fault management and the challenge of developing robust alarm correlation rules. Section 3 describes
FALCON’s system architecture and elaborates on ALVIS, FALCON’s visualization client and KALHAS,
FALCON’s data mining module currently under development. Section 4 concludes the paper and outlines

our current research and development efforts.

2 Complexities of the Fault Management Problem

In a large, heterogeneous communication network whose topology and configuration is subject to frequent
changes, the occurrence of physical and logical faults is unavoidable. The goal of fault management is to
avoid faults or limit their effect. Managing a fault involves three steps: detection, diagnosis (i.e., finding the
root cause), and recovery.

Detecting and diagnosing a fault is challenging in general because (a) a single fault can give rise to a
multitude of symptoms, as mentioned above, and (b) each symptom viewed in isolation may be explained
by a wide range of faults. It is difficult for a human operator to extract the correct root cause from all
outstanding alarms in real time. This results in operator inefficiency and slow recovery from failures.

Alarm correlation [JW93, YKM*96] raises the semantic level of alarm information presented to human
network operators and eliminates redundancy in the alarm stream as far as possible. An ideal alarm corre-
lation system would uniquely identify any fault (or set of faults) in the network unambiguously and in real

time. This ideal has remained elusive, for several reasons:

e The number of possible faults is extremely large.

e The system model that describes how a fault results in a set of symptoms is difficult to describe accu-
rately and exhaustively. This system model depends on the physical properties of network elements,
the software running in different components of the network, interdependencies among subsystems,

etc.

e The management system itself can introduce noise and delay into the alarm stream. For example, an
alarm storm caused by a severe fault can overload the management system, leading to dropped and
delayed alarms. Also, the fact that in IP networks, management information is usually carried in-band
(i.e., by the managed network itself) is problematic, because some faults (such as a network partition)

may actually result in the suppression of some alarms.

Current alarm correlation systems therefore limit themselves to removing some basic redundancy from
the alarm stream. This is typically achieved through a rule-based system. The rule base encodes known,
straightforward dependencies in the system (e.g., if a router fails, ignore all failed polls to links terminating
at this router). This kind of rule can be developed directly from expert knowledge about the system.

To reap additional benefits from alarm correlation, rules have to be developed that detect more intricate
fault scenarios and eliminate more redundant symptoms. The development of such complex rules that are
robust despite the noise and uncertainty in the alarm stream requires a more systematic rule development
process. In particular, given that it is difficult to know and accurately characterize a system model (even

for individual components, such as routers, links, firewalls etc.), we cannot rely on expert knowledge alone.

raw INMS
alarm logs

Database

Figure 1: FALCON architecture

Rather, historical alarm data should be exploited to develop an accurate system model (e.g., by finding addi-
tional symptoms related to a failure) and to simulate and test candidate rules. In the FALCON project, we
develop such an alarm warehousing environment where we combine visualization and data mining technology

to assist in the rule development process.

3 System Architecture

Figure 1 presents the overall system architecture. We periodically collect alarm log files generated by the HP
OpenView management platform. The alarm logs are in a human-readable text format; this format depends
on the alarm type. In its raw form, the alarm logs are not amenable to efficient processing and querying,
and they are very space-inefficient. Consequently, raw alarm files are parsed, generating relational tables
suitable for subsequent processing using object relational technology.

The parser is a crucial component since it determines the granularity of the information transfered into
the database. Enough information is extracted so that an informative temporal view of the data is recorded
in the database. The form of the temporal information extracted varies depending on the type of alarm
and network element. In its simplest form, for each network element present in the raw alarm log file, a
state time series is constructed, recording the reported state of the network element at each time step, for
the time interval corresponding to the raw alarm log processed. In a degenerate case the time series can be
binary (the network element is reported active or inactive at each time step). In their general form, state
time series can have multiple states.

All the information collected by the parser is loaded into an alarm warehouse. Information is appended
into tables, either inserting information about new network elements or inserting network element state
information about the current time interval. Since each entity in the database is tagged with a time-stamp,
temporal management is natural. One, for example, can choose to always maintain in the warehouse data
corresponding to a time window of interest (say 1 year worth of alarm information). The warehouse has
been organized in a star schema for each type of alarm. Natural hierarchies exist in the data and can be
utilized at the time of design. Various inclusion relationships exist between network elements; for example
several interfaces in a router belong in the same interface card. Several interface cards belong to the same
router etc. Such relationships are also of interest as their existence provides various schema design choices.

Querying the warehouse is performed through FALCON’s ALarm VISualization (ALVIS) client, which

we describe next.

3.1 Alarm Visualization

ALVIS is an interactive front end to the alarm warehouse; it is written in Java using the Swing API and
interfaces to the object relational data store using JDBC. Using ALVIS one can take full advantage of
the natural hierarchies existing in the data; ALVIS allows OLAP style of querying and data exploration,
traversing hierarchies and interactively examining state information at every node. Queries are formed
dynamically as the hierarchy is traversed. Moreover the user can dynamically choose to set ways to associate
(essentially form join predicates) inter or intra hierarchy levels. Moreover, the visualization client places no
restriction between the association of various database entities, thus the user can make use of knowledge
about data semantics and associate elements in meaningful ways.

One of our design goals was to disassociate the visualization client from the semantics of the underlying
data. We choose to do so for extensibility, i.e., so that new alarm types can be introduced without modifi-
cation to the ALVIS code base. To visualize alarms, we model the alarm data as a set of abstract objects,
which may represent network elements, such as routers, links etc., or logical objects, such as BGP sessions.
Each object has a single state time-series associated with it. Then, modeling the alarm data involves three
steps: (a) identifying what alarm types are of interest; (b) identification of objects within an alarm type
(e.g., a unique link object might be identified by the name of its router and its local name on that router;
a BGP session might be identified by the TP addresses of both participating routers); (c) definition of the
states the object can be in (e.g., up-down for a link object, discretized utilization for a link load object, the
states of the finite-state machine for a BGP session object, etc.).

Addition of new alarm types can take place without interfering with ALVIS code. Only the parser has
to be extended, and some meta-data describing the new alarm has to be added to the alarm warehouse.
ALVIS relies on this meta-data to render the new alarm type as desired. The meta-data are populated the
first time a new alarm type 1s introduced and are recorded by the parser on suitable meta-data tables.

Query results are presented in a graphics area displaying state information for each network element in
the query result, for the temporal window selected. Query results can be reordered dynamically to aid visu-
alization and visual exploration of the network element’s state. Figure 2 presents a typical interaction with
the visualization client. The user chooses to associate information about two network elements (interfaces
and links). The domain of possible values (extracted from the database) is dynamically presented and the
suitable network entities can be selected and folded into query expressions which are dynamically gener-
ated. Figure 3 presents a typical view of query results offered by ALVIS. The associated network elements
are displayed, along with other attributes of interest and the corresponding state time series. Correlations
between the state of various network entities can be visually revealed; consider for example Figure 3. A
set of interfaces is reported as inactive approximately the same time and some of them stay inactive for

approximately the same period of time.

3.2 KALHAS: FALCON’s Data Mining Agent

The ultimate goal for effective fault management is to ease the network operator’s task. Ideally, the network
operator should be presented with the most likely faults causing the observed symptoms, along with suggested
corrective actions. Traditionally, rule based alarm correlation was used to raise the semantic level of the
information presented to operators and to eliminate redundancy. Such an approach has two main drawbacks.
First, it 1s difficult to come up with the right set of rules, and second, it is hard to assess the impact of a
new rule when it is added to a large existing rule based system.

The incremental nature of data collection presents the opportunity to identify and isolate the real network

2+ [FALCON — ALVIS Tool: Hierarchical workspase =l01x]
File Edit View Help

R IR IO ICIICIE]

+ 3021 md5

“u Define hierarchy |
- Type Attributes Actions
‘ Insert level
[Link ~ || Interface name | | pelete tever |
[Link ID |
T [Link ID ~ | [Router name = | e
| iessongimy | Link ID ~ | [Router name ~ | [Usanies) |

Sel

Router name walues for attribute: Router name

|
Interface name ‘

IF - ‘ I Delete level
|

sficadbek els-an.attnet
si2ea3ic3.els-an.at.net
skmwa31c3.els-an attnet
sl9mo31c3.els-an.attnet
sl8mo31ckels-an.att net
sl89mo32c3 els-an.att net
=l89mo33c3 els-an att net
=l9mo34c3 els-an.attnet

Link ID
‘ IP address

‘ Insert level |

| Time window selection

Show objects || Clear hierarchy || Cancel |

sl9mo35c3.els-an.attnet

s19mo3Bc3.els-an.attnet

| Ok H Clear || Cancel

Figure 2: Forming Queries

problem online as the data arrive. Our vision is to assess alarm correlation online and examine the extent
to which one can dispense the use of rules for this problem. This poses interesting incremental mining
questions which in turn lead to challenging data stream computation issues. Consider the following scenario:
A network operator instructs KALHAS to monitor a specific interface; KALHAS automatically initializes
structures and employs algorithms to incrementally correlate multiple pieces of information available for
this interface; when KALHAS deduces that the interface is no longer active it notifies the operator. When
higher level entities (e.g., network cards) are monitored, the state of lower level entities is automatically and
incrementally maintained to assess the state of the higher level entity.

To address such issues, we are designing an incremental data mining module. The mining layer lies be-
tween the database and ALVIS and interacts with both components. The operator interacts with KALHAS
through ALVIS, selectively setting network components for subsequent monitoring. For each selected network
element, KALHAS maintains state information incrementally, using its own address space and data struc-
tures, as new data arrive and updates its structures to reflect and identify changes in the data that lead to
potential problems in the monitored entity. If the state information for each monitored element was accurate,
identifying problems would be an easy task. However, state information is erroneous, thus multiple sources
of state information (polled and pushed) should be correlated in an online manner to collectively reach a
consensus about the current state of the network element. Designing such online techniques to assess corre-
lation is an interesting problem. Commonly, network elements encompass sets of of other network elements
(a set of interfaces in a network card, a set of cards on a router etc) which are also candidates for monitoring;
effective techniques are required to asses the state of the higher level entity (e.g., a network card) by the
assessed state of lower level entities (its network interfaces), in an online manner. Monitoring utilization of
various network elements can also provide valuable information about network faults. Such monitoring can
be effectively performed and visualized using incremental clustering techniques [GMMO00, GKS01].

Since we envision applications that involve network operators that take actions when problems occur, the
quality of mining performed to infer the state of network elements on demand can be directly correlated with

the actual state when the problem is resolved. This provides a unique opportunity to acquire online feedback

BlrALcon - ALVT

File Edit View Help

R - IEEIRICE]Y

Type Router name Interface ..|Link ID| IP address |we spn: 174 42 D1 2000 U 128 Emte. U + (hitmite.
Lirk _|zBmo3led.elz-an.attnet |Hzsi10D/ | 1071
1

]
F elzanamner |HsimD/d (1004 |12.127.126.29
@ Lk |5 - HssiBAD |50/
5 12.127.112.201
@ Lk |sEmolic3els-anamner |Seraliel:2z
SI9mo3 163 els-an_att net [Se1/m/:2 12.127.112.117
@ Lk _|slamoliedels-an.awnet |Serallsim: 1
=l9mo31c3 els-an at net [Seifn:1 12.427.112.181
@ Lk _|slmo31c3 els-an att net 3
=l9mo31cd els-an.am et [Selfiin:d 12.127.112.185
@ Link - Seriall A6
17105 12.127.112.13
@ Link elz-an att.
slomo3le3 els-anat net [SellD0:5 (11 12.427.112.120
@ Lk _|slmo31c3 els-an att net 1
sl9mollcd els-an.amner [Se2Ml 3N (1212711341
@ Uk |slmoXe3 els-an amnet |Seralz/:11 1
=I9mo3 163 els-an_att net [Se2/A:11 12.127.113.101
@ Lk _|slamolicdels-an.awnet |Serial2mi:g 13
Se2MAD 2010 12127113173
@ Link Jatt.net 0 1.,
=l9mo31cd els-anat et [Se2A:30 3012127113977
@ Lk _[slimoi o3 els-an att net
sl9mo3 163 els-an.att net [Se2M:E3 23 [12.127.112.90
@ Link lz-an a net 200 26 (2040 26
SeTMAI6 [20A36 12.127.113.213
@ Link els-an attnet |Seralzi0I7 7
Se2MMAT [IMAIT 1202711297
@ Link et e
? et |3e20:28 28 [12.127.112.137
@ Link ¥ net |Seralzin:a (203
Se2/0A01:3 12.127.113.45
@ Lk _[sBmo3led.els-an attnet |Seralz0i 6 B
=l9mo31cd els-anat net [Se3ii:e B [12.127.112.165
@ Link a
12.127.112.164)
@ Link
att et |Se3/0/0:10 12.127.112.37
@ Lk _|slamo31e3 els-an att.net
sl9mollcd els-an atner (Se3MAAT 3013 [12.127.112.45
@ Lk _[slmo31c3 els-an att net
=l9mo31c3 els-an.att net [Se3MA:E 12.127.112.113
@ Lk |slmoTic3els-an anet |Serial3/mi: 16
SI9mo3 163 els-an_att net |Se3//:18 12.127.113.105
@ Lk _|slamoledels-anamnet |Seral30m:z
sl9mo31c3 els-an at net (Se30 3 12.427.113.9
@ Lk _[sHmo3tcs

IF [slamo31e3 12.137.112.149)

Figure 3: Viewing Query Results

about mining quality that could potentially be useful to subsequent mining operations. This calls for the
design of incremental algorithms capable of incorporating such feedback in an online fashion. Moreover,
actions taken by operators to resolve problems identified, can indeed be mined to derive suggestions about

possible course of action when a related problem arises.

4 Conclusions

Effective fault management has the potential to improve network reliability and operational efficiency. We
have outlined our current and future work in the context of FALCON, a project underway at AT&T Labs-
Research to address fault management issues. We believe that this problem provides an excellent opportunity
for interdisciplinary research, utilizing state of the art techniques from networks, databases and data mining

technologies.

References

[GKS01] S. Guha, N. Koudas, and K. Shim. Data Streams and Histograms. Symposium on the Theory
of Computing (STOC), July 2001.

[GMMOO00] S. Guha, N. Mishra, R. Motwani, and L. O’callahan. Clustering Data Streams. Foundations of
Computer Science (FOCS), September 2000.

[JW93] Gabriel Jakobson and Mark D. Weissman. Alarm Correlation. IEEFE Network Magazine, Nov
1993.

YKM196] Shaula A. Yemini, Shmuel Kliger, Eyal Mozes, Yechiam Yemini, and David Ohsie. High Speed
g g
and Robust Event Correlation. IEEE Communications Magazine, May 1996.

