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ABSTRACT
In many graph–mining problems, two networks from differ-
ent domains have to be matched. In the absence of reliable
node attributes, graph matching has to rely on only the link
structures of the two networks, which amounts to a gener-
alization of the classic graph isomorphism problem. Graph
matching has applications in social–network reconciliation
and de-anonymization, protein–network alignment in biol-
ogy, and computer vision.

The most scalable graph–matching approaches use ideas
from percolation theory, where a matched node pair “in-
fects” neighbouring pairs as additional potential matches.
This class of matching algorithm requires an initial seed set
of known matches to start the percolation. The size and
correctness of the matching is very sensitive to the size of
the seed set.

In this paper, we give a new graph–matching algorithm
that can operate with a much smaller seed set than pre-
vious approaches, with only a small increase in matching
errors. We characterize a phase transition in matching per-
formance as a function of the seed set size, using a random
bigraph model and ideas from bootstrap percolation theory.
We also show the excellent performance in matching sev-
eral real large-scale social networks, using only a handful of
seeds.

1. INTRODUCTION
Graph matching refers to the problem of identifying a bi-

jection between the (full or partial) vertex sets of two graphs.
Finding such a matching is particularly important and chal-
lenging when only the structures of the two graphs are avail-
able, i.e., the two graphs can be considered unlabelled. Ob-
viously, the availability of node or edge attributes can only
make the problem easier.

Formally speaking, the graph matching problem can be
stated as follows: We are given two graphs G1(V1, E1) and
G2(V2, E2), where some pairs of vertices [i, j] ∈ V1 × V2

correspond to some unique underlying entity (e.g., a person).
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In general, not all vertices in V1,2 have a counterpart in the
other graph.

The purpose of graph matching is to find the correspond-
ing vertex pairs in V1×V2, based on the topologies of the two
networks. As an example, consider G1 to be the network of
users in Twitter, and G2 the network formed by the contact
relationships of Flicker users. The sets V1 and V2 are only
partially overlapping in general, because some users have an
account on one but not the other service. The goal is to
find the bijection between those users who have accounts on
both Twitter and Flicker (users in V0 = V1 ∩ V2), based on
the structural similarities of the two networks [19].

One line of work in this area begins with the assumption
that there is side information in the form of a seed set of
“pre–matched” node pairs, i.e., it assumes a (small) subset
of nodes across the two graphs are identified a priori. The
matching is generated incrementally, starting from the seed
pairs and percolating to other node pairs; for this reason,
we refer to this class of algorithms as Percolation Graph
Matching (PGM) methods.

The pioneering work by Narayanan and Shmatikov [19]
was based on a seed-based heuristic PGM algorithm, which
succeeded in de-anonymizing social networks with millions
of nodes. They empirically observed a strong sensitivity of
their algorithm to the seed set size: if the seed set was too
small, the percolation did not take off; when the seed set size
was increased, there was an abrupt change to a supercritical
regime, where the algorithm succeeded in de-anonymizing
a large fraction of the network. In [30], the existence of
such a phase transition in the seed set size was proven for a
random–bigraph network model. A similar model was ana-
lyzed in [14] and extended to power–law graphs, under the
assumption that seeds are dense (i.e., a constant fraction of
nodes are seeds).

These PGM approaches have a basic feature in common:
they build the matching incrementally between nodes of the
two graphs. In every step, the set of node pairs matched so
far are used as evidence to match an additional node pair, if
possible. The evidence for deciding which pair to match can
take different forms, but it is obtained locally within the two
graphs. For example, in [30], the rule is extremely simple:
(i) every seed pair is considered matched; (ii) a node pair
is matched if it has at least r already matched neighbours1

and i, j are not part of another matched pair already. The
recursive application of rule (ii) can, under some conditions,
match all the nodes.

1Two pairs [i, j] and [i′, j′] are called neighbours if there is
an edge (i, i′) in E1, and an edge (j, j′) in E2.



In this paper, we give a new PGM algorithm. The dis-
tinguishing feature of this algorithm is that it requires a
dramatically smaller number of seeds. Of course, there is
a price to pay for this: whereas [30] proves that with high
probability, the algorithm matchesevery node pair (i.e., zero
errors) this performance criterion has to be slightly relaxed.
Specifically, we will be content with a vanishing fraction of
errors (w.h.p.). In summary, we manage to trade off a very
significant reduction in the seed set size with a fairly benign
increase in the error rate.

The reason why this works is quite subtle: For a PGM
algorithm to succeed, two conditions have to be satisfied.
First, the algorithm has to percolate: if at some point, there
is not enough evidence to match a new pair, the algorithm
stops. If this happens before a significant portion of the
nodes have been matched, the algorithm has failed. Second,
if the algorithm does percolate, it has to percolate correctly.
If at some point, there is stronger evidence to match an in-
correct pair than any correct pair, then the algorithm makes
an error. Furthermore, this incorrect match may percolate
to other incorrect pairs in future steps, thus potentially lead-
ing to a cascade of errors.

Clearly, there is a tradeoff between these two conditions.
This tradeoff can be controlled by the strength of the ev-
idence required before we decide to match a pair. For ex-
ample, consider the parameter r above: if r is chosen quite
high (r = 5, say), then percolation might easily stop early;
however, a high r makes errors less likely; for r = 2, the
algorithm percolates easily, but might often match wrong
pairs.

In this paper, we control this tradeoff in a different way,
by decoupling the decision to match a pair from its ability
to infect other pairs. We refer to a tentative pair that is not
yet matched as a candidate pair. Essentially, a candidate
pair does provide evidence for other pairs, thereby fueling
the percolation process, but this pair is not yet matched. It
is not a priori obvious that this decoupling is a good idea;
showing this is the key theoretical contribution of this paper.
The reason is not obvious, and has to do with the way the
evidence for correct and wrong pairs percolates. Basically,
correct pairs tend to infect a small number of neighbouring
correct pairs, each with relatively high probability; wrong
pairs tend to infect only other wrong pairs, but crucially this
effect is uniform over all wrong pairs and gets “diluted”.

This observation leads to an algorithm that is highly robust
to wrong candidate pairs. We prove that under a wide range
of network parameters, with high probability this algorithm
will percolate, generating a large number of wrong candidate
pairs along the way. However, the majority of matched pairs
are correct.

Our Contributions: In summary, our contributions are
as follows:
• We develop a new graph–matching algorithm called
ExpandWhenStuck. The distinguishing feature of this algo-
rithm is that it requires a dramatically smaller number of
seeds in comparison to state of the art algorithms [14, 30].
It is able to match real social networks with over a million
nodes as well as various types of random graphs (for exam-
ple, Barabási–Albert [4], Chung–Lu [6] and Erdös–Rényi
[8] graphs) using only a handful of seeds (see Section 6).
• We analyze the performance of a simplified version of
ExpandWhenStuck over an Erdös-Rényi random bigraph
model with partial–overlapping vertex sets. The simpli-

fication needed to make the analysis tractable concerns
the generation of candidate pairs: while ExpandWhenStuck
dynamically percolates from unmatched candidate pairs
whenever necessary, we can rigorously analyze only a slightly
more restrictive setting, where this occurs only once at
the outset. Specifically, the algorithm ExpandOnce ex-
pands the seed set into a larger set that includes many
wrong pairs; a second algorithm NoisySeeds then per-
colates from this latter set in a manner similar to [30].
In Section 4, (i) we demonstrate a phase transition in
the number of required seeds, as a function of the net-
work size, overlap between the two graphs, and structural
similarity, and (ii) we prove that the algorithm is robust
to partial node–overlap. More precisely, we prove that it
naturally filters out the nodes without counterparts in the
other graph, and correctly matches the rest;
The remainder of the paper is organized as follows. In

Section 2, we review the related work. In Section 3, we ex-
plain our proposed PGM algorithm. In Section 4, we prove
a performance guarantee for the algorithm of Section 3. In
Section 5, using the ideas from previous sections, we present
a heuristic algorithm whose performance is better in prac-
tice. In Section 6, we report the simulation results of our
algorithms over real and random graphs. We compare our
proposed algorithms with two state–of–the-art graph match-
ing algorithms [14, 30] over several real graphs. In Section 7,
we conclude the paper.

2. RELATED WORK
Graph matching is a generalization of the classic graph

isomorphism problem where the vertex sets and edge sets of
the two graphs are not exactly the same. Even though the
graph isomorphism problem is considered very hard in gen-
eral [9], for some instances of this problem there are efficient
polynomial-time algorithms [2].

Graph matching is an important function in several sci-
entific disciplines: In social networking, graph matching can
break anonymization schemes if an adversary has a (noisy
and incomplete) version of the network available as side in-
formation [3, 18, 19, 22, 29]; it also allows for the recon-
ciliation of networks from different domains [14, 30]. In
biology, the alignment of protein interaction networks can
reveal functional equivalences of proteins in different species
[13, 25]. In computer vision, an image–segment graph can
serve as a fingerprint of a scene; graph matching can be used
to find similar images in a database [7, 26, 28].

A class of graph–matching algorithms uses semantic in-
formation (e.g., name, location and image of users) for de-
anonymization of social networks [16, 20]. The authors in
[17], introduce a similarity–flooding algorithm that matches
nodes based on the spread of similarities in the network.
Several machine–learning models are developed to match
graphs based on the collected features about the nodes [1,
7, 20]. It has been shown that structural similarity is the
most important feature in the graph–matching process [10]
and structure–based algorithms are more accurate and scal-
able [3, 14, 30].

The analysis of iterative matching algorithms on large
graphs using tools from percolation theory and random graphs
has, of course, a rich history in the literature. For exam-
ple, there is an important body of work on the design and
analysis of gossip algorithms, whose purpose is to deliver a



message to the whole network as efficiently as possible [12,
24, 27].

In PGM algorithms, initial seeds play an important role.
The seed pairs can be obtained in several ways, depending
on the scenario: For example, some users of two different
social networks might elect to make their identities public,
which provides a set of known matches. Alternatively, meth-
ods have been proposed in the literature to identify plausible
seed pairs based on structural graph features [3, 21] or man-
ually through visual inspection [19].

3. ALGORITHMS
In this section, we define and explain the ExpandOnce

matching algorithm, which performs one round of expan-
sion of the initial seed set. This helps the percolation pro-
cess overcome the bottleneck due to a small seed set size.
This algorithm is kept deliberately simple for mathemati-
cal tractability. A more practical but heuristic algorithm
based on the key ideas developed here will be presented in
Section 5.

We also introduce a model to generate correlated graphs
with partially overlapping vertex sets. Based on this model,
we provide an intuitive justification for the performance of
our approach. A rigorous analysis of our algorithm is then
provided in Section 4.

3.1 Notation
Let us introduce the necessary notation. For the graphs

G1(V1, E1) and G2(V2, E2) let V0 = V1 ∩ V2. We assume
n1 = |V1|, n2 = |V2| and n0 = |V0|. Also, d1,i and d2,j denote
degrees of nodes i and j in graphs G1 and G2, respectively.
Let (i, i′) ∈ E1,2 represent an edge between two nodes i, i′ in
graph G1,2; and [i, j] represent a pair of nodes where i ∈ V1

and j ∈ V2. A pair [i′, j′] ∈ V1×V2 is a neighbour of another
pair [i, j] if (i, i′) ∈ E1 and (j, j′) ∈ E2. In the description of
the matching algorithms, we refer to a pair [i, j] spreading
out marks as adding one mark to each neighbouring pair of
[i, j]. The score of a pair is defined as the number of marks
it received from other pairs so far.

For convenience of notation, we assume without loss of
generality (w.l.o.g.) that the hidden correct mapping be-
tween the nodes in V0 is the identity mapping. Therefore,
a pair is correct iff it is of the form [i, i]. Let Λ(S) de-
note the number of correct pairs in a set S of pairs, and
let Ψ(S) represent the number of wrong pairs. Also, V1(S)
is the set of nodes from graph G1 in a set of pairs S, i.e.,
V1(S) = {i|∃j s.t. [i, j] ∈ S}. Similarly, we define V2(S) =
{j|∃i s.t. [i, j] ∈ S}.

3.2 NoisySeeds Algorithm
In this section, we give a new PGM algorithm called

NoisySeeds. Before that, for the sake of better illustration,
we first explain the algorithm from [30], which in this paper
we refer to as PercolateMatched.
PercolateMatched starts from an initial seed set (a pre-

defined matching) and iteratively matches pairs having at
least r matched neighbours. More specifically: (i) Initially
we are given as inputs a set of a0 predefined (and correct)
matched pairs called seed set A = A0 (|A0| = a0), and a
fixed threshold r; (ii) at each time step τ , the algorithm
picks an unused pair from set A and spread marks to all
of its neighbouring pairs; (iii) as soon as a pair obtains at
least r marks, i.e., it is a neighbour of at least r used pairs

in the set A, it will be added to the set A; and (iv) the
algorithm stops when there exist no further unused pairs
in the set A. The User-Matching algorithm [14] is sim-
ilar to PercolateMatched with a slight difference: nodes
are matched in several rounds based on a simple degree–
bucketing method that matches high–degree nodes first.

The success of the PercolateMatched algorithm heavily
relies on the condition that all the matched pairs (including
the initial seeded pairs) are indeed correct pairs. In order for
PercolateMatched to succeed, this condition then results in
some constraints on r, namely r ≥ 4. Our main contribution
is to show that (i) the matching process can be made robust
to a large number of wrong pairs in the seed set, provided
there are enough correct pairs in the seed set as well; and (ii)
r = 2 is sufficient to match almost all the nodes correctly.

The NoisySeeds algorithm (see Algorithm 1) starts with
an initial noisy seed set A0, i.e., a set with possibly many
wrong pairs. First, the marks coming from all the pairs in
A0 are computed at the beginning (lines 1–4) and all these
pairs are added to the set of used pairs Z (line 5). The
algorithm proceeds as follows. We consider a set of matched
pairs, denoted by M, which is initially empty. If there is
any pair with score at least r, then we add this pair to the
matched set M. Each time a pair [i, j] ∈ M \ Z is chosen
randomly, it spreads marks to its neighbouring pairs and is
added to Z. As the pair [i, j] is in the matching M, any
other pair in the form of [i, j′] or [i′, j] is not a candidate
for matching any longer and is permanently removed from
consideration.

The algorithm stops if there is no remaining unused pair
with score at least r. Note that since not all the pairs in the
noisy set A0 are necessarily correct, they are not added to
the matched set initially, i.e., the matched set is decoupled
from the seed set. These pairs are used only for the sake of
creating an initial set of marks for different pairs associated
with the two graphs.

Example 1. The execution of NoisySeeds after four it-
erations (for r = 2) is illustrated in Figure 1. NoisySeeds

begins by spreading marks from the initial noisy seed set
(dark green and red nodes in Figure 1). Afterwards, all the
newly matched pairs (light green and red nodes in Figure 1)
are added to the seed set, and the matching process continues
by spreading out their marks.

3.3 The Random Graph Model
A convenient way to evaluate graph–matching algorithms

is to analyze their performance over the G(n, p; t, s) model
which is a parsimonious model to generate two correlated
graphs with partially overlapping vertex sets. This model
is a generalization of the model in [22], which generates two
correlated graphs with exactly the same vertex sets. The
G(n, p; t, s) bigraph model generates two graphs G1(V1, E1)
and G2(V2, E2) as follows: (i) A graph G(V,E) is sampled
from an Erdös-Rényi G(n, p) graph [8]. In a G(n, p) graph
with n nodes, each of the

(
n
2

)
possible edges occurs indepen-

dently with probability 0 < p < 1; (ii) vertex sets V1,2 are
sampled independently with probability t from V ; (iii) edges
of graph G1(V1, E1) are sampled from those edges of graph
G whose both endpoints are sampled in V1 by independent
edge sampling processes with probability s. The edges of
graph G2(V2, E2) are generated similarly. The objective of
graph–matching is to identify the hidden mapping between
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Figure 1: NoisySeeds Algorithm: Dark green and
dark red nodes correspond to the initial correct
and wrong seed pairs, respectively. After the first
four iterations (for r = 2), light green nodes form
correctly matched pairs, and light red nodes form
wrongly matched pair (see Example 1).

those nodes which are in the intersection of the vertex sets
of the two graphs.

In Section 4, we prove the robustness of NoisySeeds un-
der the G(n, p; t, s) model. An intuitive explanation for this
robustness is as follows: (i) A correct pair obtains a mark
from any other correct pair with probability ps2. Also, a
wrong pair obtains a mark from any other wrong or correct
pair with probability p2s2 � ps2. Thus, the effect of spread-
ing marks from a wrong pair compared to a correct pair is
negligible; (ii) Consider a pair which contains a node with-
out any counterpart in the other graph (this is necessarily a
wrong pair). This pair obtains r ≥ 2 marks from any other
r pairs with probability at most O(p4s4). Therefore, only a
small fraction of wrong pairs (in expectation O(n2

1n
2
2p

4s4))
obtains more than one mark.

3.4 ExpandOnce Algorithm
In this section, we introduce the ExpandOnce algorithm,

which trades–off a small decrease in precision relative to
PercolateMatched with a dramatic reduction in the seed
set size. This algorithm accepts as input a seed set A0 of
correct pairs. It expands the seed set A0 to a larger set
of candidate pairs A′0 of size a′. Then, it runs NoisySeeds

over the expanded seed set. In other words, in its first step,
ExpandOnce creates from a small set of correct pairs (A0) a
larger set of candidate pairs A′0, many of which are wrong in
general. In Section 4, we will prove that these wrong pairs
in A′0 have only a negligible effect on the performance of the
matching process in ExpandOnce. Also, the new correct pairs
in A′0 (rather than the ones from A0) enable the percolation
process to kick-off. As a result, by calling NoisySeeds on
the expanded seed set A′0 we obtain a successful matching
of the two graphs. In summary, the process of expanding
correct pairs to a noisy seed set allows us to successfully
match graphs with much fewer initial seeds.2 Algorithm 2

2Experiments over different types of graphs show that ex-
panding an initial correct seed set A0 to the noisy seed set
A′0 whose size is of order of min(n1, n2) results in an excel-
lent matching performance.

Algorithm 1: NoisySeeds

Input: G1(V1, E1), G2(V2, E2), noisy seed set A0 and
threshold r

Output: The set of matched pairs M
1 for all pairs [i, j] ∈ A0 do
2 add one mark to all the neighbouring pairs of [i, j];
3 if score of a pair [i′, j′] ≥ r and i′ /∈ V1(M) and

j′ /∈ V2(M) then
4 add [i′, j′] to the set M;

5 Z ← A0;
6 while M\Z 6= ∅ do
7 randomly choose a pair [i, j] ∈M \ Z and add [i, j]

to the set Z;
8 add one mark to all the neighbouring pairs of [i, j];
9 if score of a pair [i′, j′] ≥ r and i′ /∈ V1(M) and

j′ /∈ V2(M) then
10 add [i′, j′] to the set M;

11 return M;

explains ExpandOnce in detail.

Algorithm 2: ExpandOnce

Input: G1(V1, E1), G2(V2, E2), seed set A0 of correct pairs,
integer value a′ ≥ 1 and threshold r

Output: The set of matched pairs M
1 A′0 ← A0 and A ← A0;
2 while |A′0| < a′ do
3 Z ← ∅ and U ← A′0;
4 for all pairs [i, j] ∈ A do
5 for all neighbouring pairs [i′, j′] of pair [i, j] do
6 if |A′0| < a′ and i′ /∈ V1(U) and j′ /∈ V2(U)

then
7 add [i′, j′] to A′0 and Z;

8 A ← Z;

9 return M← NoisySeeds(G1, G2,A′0, r);

4. PERFORMANCE OF MATCHING WITH
NOISY SEEDS

In this section, (i) we identify a phase transition in the
seed set size of NoisySeeds (explained in Algorithm 1); we
prove (ii) NoisySeeds correctly matches almost all the nodes
which are in the intersection of the two graphs and filters–
out the nodes without counterparts in the other graph; and
(iii) the addition of many wrong pairs to the initial correct
seed set A0 of NoisySeeds would have a negligible effect on
the performance of this algorithm.

The robustness guarantee for NoisySeeds with respect to
noisy seed set justifies why ExpandOnce (Algorithm 2) re-
quires a small set of initial seeds. Indeed, lines 2 to 8 of
ExpandOnce turns a small set of clean seeds into a large
noisy seed set that contains both correct and wrong pairs.
This new set is then fed into NoisySeeds as an input and,
as this algorithm is robust to wrong pairs, it succeeds with
high probability.



Here, for the sake of analysis, we assume that A0 is a
random set in the following sense: each correct pair [i, i] ∈
V 2

0 is placed in A0 independently, with probability c
n

. Also,
each wrong pair [i, j], i 6= j ∈ V1 × V2, is placed in A0

independently with probability at most w
n

. Hence, we expect
c correct pairs and at most wn wrong pairs as the initial
noisy seed set for NoisySeeds algorithm.3 Throughout this
section we assume that the number of nodes n and average
degree np tend to infinity. We also assume that the nodes
and edge sampling probabilities 0 < t, s ≤ 1 are arbitrary
constants. Let Zτ and Mτ be respectively the set of used
and matched pairs at time step τ of NoisySeeds. Also, let
M∗ denote the final set of matched pairs from NoisySeeds.
We now state our main theorem.

We first define two parameters bt,s,r and at,s,r [11, 30]:

bt,s,r =

[
(r − 1)!

nt2(ps2)r

] 1
r−1

and at,s,r = (1− 1

r
)bt,s,r. (1)

Theorem 1 (Robustness of NoisySeeds). For an ar-
bitrarily small but fixed 1

6
> ε > 0, assume that n−1 �

p ≤ n−
5
6
−ε. If all the pairs in the noisy seed set A0 are

chosen uniformly at random, E[Λ(A0)] > (1 + ε)at,s,r and
E[Ψ(A0)] ≤ wn for a constant w, then with high probabil-
ity the NoisySeeds algorithm percolates and the size of its
final matching is nt2 ± o(n) with Λ(M∗) = nt2 ± o(n) and
Ψ(M∗) = o(n).

The authors in [30] proved that in order to match almost
all the nodes correctly under the limited assumptions: (i)
the vertex sets of the two graphs G1,2 are exactly the same,
i.e., t = 1, and (ii) no wrong pair in the initial seed set,
i.e., Ψ(A0) = 0, the size of seed set should be at least a1,s,4

(r = 4). For this special case, Theorem 1 guarantees that a
seed set of size a1,s,2 (r = 2) is enough for matching almost
all the nodes correctly with a vanishing fraction of errors.
Note further that the ratio a1,s,4/a1,s,2 goes to infinity.

Next, we prove Theorem 1 for the case r = 2 which needs
the least number of seeds, i,e., at,s,2 is the least when r = 2.
Generalization for values r > 2 is straightforward. For ease
of notation, we define ac = at,s,2 = 1

2nt2p2s4
. We first pro-

vide a brief sketch for the proof of Theorem 1. The detailed
proof is given afterwards.

4.1 Sketch of the Proof
In the beginning of NoisySeeds algorithm, all the pairs in

the seed setA0 spread out marks to their neighbouring pairs.
At each time step τ ≥ 1, one pair from Mτ \ Zτ is picked
and spreads out marks to its neighbouring pairs. It is easy
to see that the matching process stops at a time step T ∗,
where |M∗| = |MT∗ | = T ∗ (i.e., T ∗ is the first time when all
the pairs inside MT∗ have already been picked). Note that
T ∗ is at most min(n1, n2), as each node can be matched at
most once. In order to prove Theorem 1, we show that with
high probability (w.h.p.) T ∗ = nt2 ± o(n), and the number
of wrong matched pairs is at most o(ac). More precisely, the
proof can be summarized in the following two steps:

(a) We provide an upper-bound on the number of wrong
matched pairs at each step of the algorithm through

3Note that in general the algorithm is robust to a number of
additional wrong pairs (in the seed set) which scales with n
and p. Here, we have chosen this number to be wn in order
to simplify our statements.

computing its expected value. Using this upper bound
we prove that the effect of wrong pairs is negligible in
the final result of NoisySeeds (see Lemmas 1-3).

(b) By using step (a) and the results from bootstrap perco-
lation process [30, 11] we prove that w.h.p. the correct
pairs percolate as their initial number Λ(A0) is more
than the percolation threshold ac. Therefore, as a re-
sult of percolation of the correct pairs, at time T ∗ the
number of correct matched pairs is nt2 ± o(n).

4.2 Proof of Theorem 1
Let us first introduce the notations used in this subsection.

For an integer ` let P`,τ denote the set of pairs with score `
at time step τ ; also let P≥`,τ be the set of pairs with score at
least ` at time τ . We let Zτ andMτ be the set of used and
matched pairs at time step τ , respectively. Assume the time
τcip corresponds to the completion of the initial phase (cip)
of the algorithm, i.e., at the time τcip all the initial seeds are
used for spreading out marks. All the other notations are
explained in Section 3.1.

In the beginning of NoisySeeds (lines 1 to 4), all the pairs
in the seed set A0 spread out marks to their neighbouring
pairs. Afterwards, at each time step τ ≥ 1 (lines 6–10 in
NoisySeeds), one pair from Mτ \ Zτ is picked and spreads
marks to its neighbouring pairs. The matching process stops
at a time step T ∗, where |M∗| = |MT∗ | = T ∗. Note that
T ∗ is at most min(n1, n2), as each node can be matched
at most once. In order to prove Theorem 1, we will show
that w.h.p. T ∗ = n0 − o(n). Using the Chernoff bound,
with high probability n0 = nt2 ± o(n). Therefore, we have
T ∗ = nt2 ± o(n), and the number of wrong matched pairs
is at most o(ac). More precisely, we bound the number of
wrong matched pairs at each step through computing their
expected value. Using this upper bound we prove that the
effect of wrong pairs is negligible. Also, we prove that the
correct pairs percolate as their initial number Λ(A0) is more
than the percolation threshold ac.

We proceed by computing the expected number of wrong
matched pairs at time τcip.

Lemma 1. E
[
Ψ(Mτcip)

]
= O(w2n4p4s4t2) = o(ac).

Proof. We first recall that the time τcip corresponds to
the completion of the initial phase (cip) of NoisySeeds al-
gorithm. We define the random variables Xi,j , i 6= j as

Xi,j =

{
1 if [i, j] ∈ P≥2,τcip

0 o.w.

and X =
∑
∀[i,j],i 6=j Xi,j . Note that as each node can be

matched at most once, X is an upper bound for the total
number of wrong matched pairs at time τcip, i.e., Ψ(Mτcip).
Therefore, we have

E
[
Ψ(Mτcip)

]
≤ E [X] =

∑
∀[i,j],i 6=j

E [Xi,j ]

≤ n1n2P
[
[i, j] ∈ P≥2,τcip

]
. (2)

We will prove that

P
[
[i, j] ∈ P2,τcip

]
= O(n2w2p4s4), (3)

and for all 3 ≤ r ≤ n

P
[
[i, j] ∈ Pr,τcip

]
= O(nrwrp2rs2r). (4)

Based on the assumption on the value of p in the statement
of Theorem 1 and (4), we can show that for r > 3, P

[
[i, j] ∈



Pr,τcip
]

= O(nw2p4s4). Therefore, by using a union bound,
the probability that a pair [i, j], i 6= j obtains at least two
marks is bounded from above by

P
[
[i, j] ∈ P≥2,τcip

]
≤

n∑
r=2

P
[
[i, j] ∈ Pr,τcip

]
= O(n2w2p4s4),

and consequently

E
[
Ψ(Mτcip)

]
≤ n1n2P

[
[i, j] ∈ P≥2,τcip

]
= O(w2n4p4s4t2).

This proves Lemma 1.
We next prove Equation (3); Equation (4) is proven in

a similar way. Consider a pair [i, j], i 6= j. The score of
this pair is two if there exist two other pairs [u1, v1] and
[u2, v2] in the seed set A0 such that (i, u1), (i, u2) ∈ E1 and
(j, v1), (j, v2) ∈ E2. Note that as a pair [i, j] is added to the
matching M, any other pair in the form of [i, j′] or [i′, j]
can not also be in the matching M and will be discarded
to ensure that each node is matched at most once. Hence,
for the sake of analysis, we assume all the marks that were
previously created from all the pairs that have the form of
[i, j′] or [i′, j] are subtracted.4

Let us first assume that i /∈ {v1, v2} and j /∈ {u1, u2}.
We consider three cases: (i) All the four nodes u1, u2, v1

and v2 are different: in this case the edges (i, u1), (i, u2) ∈
E1 and (j, v1), (j, v2) ∈ E2 exist independently. Thus the
probability that [i, j] obtains two marks from these two
pairs is p4s4. The number of such pairs [u1, v1], [u2, v2]
is at most (n1n2)2, and each such pair is in the seed set
with probability wn

n1n2
. Thus the probability that [i, j] ob-

tains two marks from such pairs is bounded from above
by (n1n2)2( wn

n1n2
)2p4s4 = O(w2n2p4s4). (ii) u1 6= v1 and

u2 6= v2, or (iii) Either u1 = v1, u2 = v2 or both: Along
the same lines as above, it is easy to see the probability that
[i, j] obtains two marks is upper bounded by O(w2np3s3).

Now, assume i ∈ {v1, v2} or j ∈ {u1, u2}, similarly as
above we upper bound the probability that a pair [i, j] ob-
tains two marks from the pairs [u1, v1] and [u2, v2]. To sum-
marize, by considering all the cases mentioned above, the
probability that a pair [i, j] obtains two marks at time τcip

is bounded from above by O((n1n2)2p4s4( wn
n1n2

)2[1+
1

np
]) =

O(n2w2p4s4). This proves (3).

The next step is to prove that the number of wrong matched
pairs at each time step 1 ≤ τ ≤ T ∗ of the matching process
is at most O(w2n4p4s4) = o(ac). At each time step τ ≥ 1,
NoisySeeds picks a random pair [i, j] ∈ Mτ \ Zτ and adds
one mark to its neighbouring pairs. It is easy to see that
Λ(Mτ ) and Ψ(Mτ ) are increasing by τ . In Lemma 3 stated
below, with using Markov’s inequality and the results of
Lemmas 1 and 2, we will prove that Ψ(M∗) = Ψ(MT∗) =
o(ac). Consequently, from monotonicity of Ψ(Mτ ) with re-
spect to τ , we conclude that Ψ(Mτ ) = o(ac) holds for all
1 ≤ τ ≤ T ∗.

Lemma 2. E [Ψ(MT∗)] = O(w2n4p4s4t2) = o(ac).

Proof. We define the random variables Xi,j , i 6= j, as

Xi,j =

{
1 if [i, j] ∈ P≥2,T∗

0 o.w.

4We observe that in practice, this step only has a small effect
on the performance, but is computationally costly.

and let X =
∑
∀[i,j],i 6=j Xi,j . In words, the random variable

Xi,j indicates whether an individual pair [i, j] can collect at
least two marks during the steps of NoisySeeds. Of course
as each node can be matched at most once, not all pairs in
P≥2,T∗ will end up in the final match set. Hence we have

E [Ψ(MT∗)] ≤
∑
i6=j

E [Xi,j ] ≤ n1n2P
[
[i, j] ∈ P≥2,T∗

]
. (5)

We thus proceed by finding an upper bound for P
[
[i, j] ∈

P≥2,T∗
]
. Let Pq,M∗ and P≥q,M∗ respectively, represent the

set of pairs that obtain exactly q and at least q marks from
all the T ∗ matched pairs M∗ =MT∗ . Assuming i 6= j, the
pair [i, j] is in the set P≥2,T∗ if one of the three following
cases holds (we thus can use the union bound for P

[
[i, j] ∈

P≥2,T∗
]
):

Case 1. [i, j] ∈ P≥2,τcip , i.e., [i, j] obtains at least two marks
from pairs in A0. This means that the pair [i, j] is added to
the set of matched pairs already at time step τcip. Indeed,
for the result of Lemma 1, we have

P
[
[i, j] ∈ P≥2,τcip

]
= O(w2n2p4s4)

Case 2. [i, j] ∈ P≥2,M∗ , i.e., [i, j] obtains at least two marks
from all the matched pairs in MT∗ from time step τ = 1
to τ = T ∗ ≤ min(n1, n2) = O(nt). To upper bound this
probability, we consider two cases: [i, j] ∈ P2,M∗ , and [i, j] ∈
Pr,M∗ for 2 < r ≤ n. Let us first find an upper bound for
the former. Assume pair [i, j] obtains two marks from the
pairs [u1, v1] and [u2, v2]. As each node could be matched
at most once, then i, u1, and u2 are mutually different. The
same is true for j, v1 and v2. In this regard, there are three
cases:

(i) Either [u1, v1] = [j, i] or [u2, v2] = [j, i]. It is obvious
that both cases cannot hold simultaneously. We assume
w.l.o.g. that [u1, v1] = [j, i], and thus u2 6= j and v2 6= i. In
this case each one of the edges (i, j), (i, u2), (j, v2) is sampled
in the underlying graph G independently with probability
p. If an edge exists in the hidden underlying graph G, then
it appears with probability s in each one of the sampled
graphs G1 or G2. Therefore, pair [i, j] obtains two marks
with probability p3s4. As the pair [u1, v1] = [j, i] is fixed,
for pair [u2, v2] we have at most T ∗ − 1 = O(nt) choices.

It remains two other cases: (ii) Either i = v1 and j = u2,
or i = v2 and j = u1(but not both), and (iii) i /∈ {u1, u2},
and j /∈ {v1, v2}. For the sake of space we omit the detailed
explanation of these two cases. By using union bound the
probability that a pair [i, j] obtains two marks is bounded
from above by P [[i, j] ∈ P≥2,M∗ ] = O(n2p4s4t2).

Case 3. [i, j] obtains one mark from the pairs in A0 and
one mark from the matched pairsMT∗ , i.e., [i, j] ∈ P1,τcip ∩
P1,M∗ . By same lines of reasoning as the two other cases
we have

P
[
[i, j] ∈ P1,M∗ , [i, j] ∈ P1,τcip

]
= O(wn2p4s4).

To wrap up, we proved P
[
[i, j] ∈ P≥2,T∗

]
= O(wn2p4s4).

Finally, as a consequence of (5) we have E
[
Ψ(MT∗)

]
=

O(w2n4p4s4t2). This proves Lemma 2.

Lemma 3. With high probability we have

Ψ(Mτ ) = o(ac) and Ψ(Mτcip) = o(ac).



Proof. For any δ > 0, by using Markov’s inequality and
Lemma 2, we have with high probability

P
[

Ψ(Mτ )

ac
≥ δ
]
≤ δ−1E

[
Ψ(Mτ )

ac

]
= O(n−ε) = o(1).

Similarly, by using Lemma 1, we obtain that with high prob-
ability Ψ(Mτcip) = o(ac).

In the next step, we use Lemma 3 to prove Theorem 1.
We first give a brief overview of bootstrap percolation [11].
Bootstrap percolation is the process of node activation on
a G(n, p) random graph [11]. In this process, initially we
are given a set A(0) (|A(0)| = a0) of active nodes and a
threshold r ≥ 2. A node is activated at time step τ if at least
r of its neighbours were activated and used in the previous τ
time steps. Let A(τ) and Z(τ) denote the set of active and
used nodes at time step τ . We assume Z(0) = ∅. At each
time step τ ≥ 1, we choose a node uτ from A(τ−1)\Z(τ−1)
and give each one of its neighbours a mark. We call uτ
a used node and update Z(τ) = Z(τ − 1) ∪ uτ . Assume
∆A(τ) is the set of activated nodes at time step τ and we
let A(τ) = A(τ − 1) ∪ ∆A(τ). At each step τ (before the
process stops) one node is added to the set of used nodes, i.e.,
|Z(τ)| = τ . We define An,a(τ) = |A(τ)|. Also, T ∗n,a denote
the time step when An,a(T ∗n,a) = |Z(T ∗n,a)| = T ∗n,a. The
bootstrap percolation process stops when A(τ) \ Z(τ) = ∅
or equivalently An,a(τ) ≤ τ . The phase transition threshold
for bootstrap percolation is stated in the following theorem.

Theorem 2 (Theorem 3.1 and Lemma 8.2 of [11]).

Assume bc,r = n (pn)r−1

(r−1)!
e−pn, τc,r =

[
(r−1)!

n(ps2)r

] 1
r−1

and ac,r =

(1 − 1
r
)τc,r, and let b∗ = bc,rw(n), where ω(n) → ∞ slowly

but is otherwise arbitrary. Suppose that r ≥ 2 and n−1 �
p� n−1/r. Then, for any a > ac,r, w.h.p. An,a(τ) > τ for
all τ ∈ [0, n− b∗].

Hence the Theorem 2 is valid for any choice of ω(n)→∞; it
is equivalent to the statement that for all τ ∈ [0, n−O(bc,r)]
w.h.p. An,a(τ) > τ [11]. It is easy to see that O(bc,r) =
o(n) [11]. By analogy between graph matching problem over
G(n, p; t, s) graphs and the bootstrap percolation process on
G(n0, ps

2) [30], for time steps τ ≥ 1 we have

P
[
Λ(Mτ ) > τ

]
(a)

≥ P
[
An0−2Ψ(MT∗ ),a0

(
τ − 3Ψ(MT∗) + a0

)
> τ + a0

]
(b)

≥ P
[
An0−3Ψ(MT∗ ),a0

(
τ − 3Ψ(MT∗) + a0

)
> τ + a0

]
(c)

≥ P
[
An0−6Ψ(MT∗ ),a0−3Ψ(MT∗ )

(
τ − 3Ψ(MT∗) + a0

)
> τ − 3Ψ(MT∗) + a0

]
(6)

The three inequalities follow from the following reasons:
(a) We have a0 initial correct pairs. For any time step τ

we have Ψ(Mτ ) ≤ Ψ(MT∗) = o(ac) wrong matched pairs.
Each wrong pair [i, j], i 6= j, can potentially remove marks
produced by the two correct pairs [i, i] and [j, j] from the set
of used pairs Zτ . We know that among the matched pairs,
there are at most o(ac) wrong pairs. Therefore, we conclude
that there are at least n0−2Ψ(MT∗) potential correct pairs
that obtain marks from at least τ − 3Ψ(MT∗) + a0 correct
pairs at time step τ .

(b) As we assume p and the number of initial active nodes
are fixed, decreasing the total number of nodes by Ψ(MT∗)
would increase the probability of the process stopping.

(c) If we assume at the first 3Ψ(MT∗) steps of the boot-
strap percolation the chosen nodes from A(τ − 1) \Z(τ − 1)
do not spread out marks, then the probability of the process
stopping would increase.

Note that Λ(A0) = Binomial(n0,
c
n0

) and c > ac → ∞,
therefore, using the Chernoff bound we can conclude that for
an arbitrarily small but fixed ε′ > 0 w.h.p. a0 = Λ(A0) >
(1− ε′)E[Λ(A0)] = (1 − ε′)c. Finally, if a0 = Λ(A0) > ac −
3Ψ(MT∗), then from (6) and Theorem 2 we conclude that
w.h.p. T ∗n0−6Ψ(MT∗ ),a0

= n0 − o(n). Also, (6) implies that

w.h.p. T ∗ ≥ T ∗n0−6Ψ(MT∗ ),a0
. From Lemma 3 we know that

at the time T ∗ ≤ min(n1, n2) the number of wrong matched
pairs is upper bounded by Ψ(AT∗) = o(ac), and Ψ(AT∗) +
Λ(AT∗) = T ∗. Thus, w.h.p. Λ(MT∗) = n0 − o(n) and
Ψ(AT∗) = o(ac). Note that by using the Chernoff bound
w.h.p. we obtain n0 = nt2 ± o(n). This proves Theorem 1.

5. ExpandWhenStuck HEURISTIC
In this section, we introduce a new robust algorithm,

called ExpandWhenStuck, which is designed based on the
robustness ideas developed in the previous sections. This
algorithm is able to match real social–networks with over
a million nodes using a small number of seeds (e.g., see
Figure 8 and Table 1 in Section 6). In comparison with
ExpandOnce, this algorithm has better performance for both
real and random graphs, and its computational complexity
is lower. However, we cannot formally characterize its per-
formance. To better illustrate, let us briefly go back to the
PercolateMatched algorithm described in the beginning of
Section 3. In the sub-critical regime of PercolateMatched,
the number of final matched pairs is at most twice the num-
ber of initial seeds [11]. The robustness arguments of Sec-
tion 4 allow PGM algorithms to be much more aggressive in
spreading out marks.

A main feature of ExpandWhenStuck is to expand the seed
set by many noisy candidate pairs whenever there are no
other unused matched pairs. More precisely, whenever there
are no further pairs with score at least two, we add all the un-
used5 and unmatched6 neighbouring pairs of all the matched
pairs to the candidate pairs (line 11 in Algorithm 3) and
consequently new marks would be spread out. Among these
candidate pairs, where a small fraction is correct and most
of them are wrong, (i) correct pairs help us to continue the
percolation process and match remaining unmatched pairs,
and (ii) wrong pairs would have a negligible effect (see The-
orem 1).

Example 2. When the percolation graph–matching pro-
cess is stopped, there is still useful information that can help
us match the remaining nodes. Assume, as in Figure 1, there
are no unmatched pairs with score at least r = 2. Node u is
one of the (correctly) matched nodes. Among all the 16 pos-
sible pairs between unmatched neighbours of node u (see Fig-
ure 2), three of them are correct (light green arrows) and the
rest are wrong (light red arrows). Note that all these pairs
have one mark. Therefore, ExpandWhenStuck adds them to
the set of candidate pairs. As our algorithm is robust to the

5A pair [i, j] is unused if [i, j] /∈ Z.
6A pair [i, j] is unmatched if i /∈ V1(M) and j /∈ V2(M).
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Figure 2: ExpandWhenStuck (Algorithm 3): Nodes
u1, u2, u3, u4 and u5 are unmatched neighbours of
node u in the underlying graph G (see Example 2
and Figure 1).

wrong candidate pairs, correct candidate pairs can help us in
the matching process.

In addition, to enhance the performance of our algorithm
(especially for real graphs), we further make the following
modification. At each time step, instead of adding all the
candidate pairs with score at least two to the matched set,
we choose the one with the highest score among such pairs
and add it to the matched set; also, each node is matched at
most once. We then proceed with spreading out the marks
from this matched pair.

Most of the times (especially in the beginning) there are
several pairs with the maximum score. Among all such can-
didate pairs [i, j], we choose the pair that minimizes the
difference in the degrees of nodes |d1,i − d2,j |. This can be
intuitively justified as d1,i is often closer to d2,j when [i, j]
is a correct pair, i.e., i = j, than when i 6= j. This de-
gree tie–break increases the performance, especially in real
graphs, because their degree distributions are often heav-
ily skewed and less concentrated compared to the G(n, p)
model. Algorithm 3 explains ExpandWhenStuck in detail.

Algorithm 3: ExpandWhenStuck

Input: G1(V1, E1), G2(V2, E2), seed set A0 of correct pairs
Output: The set of matched pairs M
1 A ← A0 is the initial set of seed pairs, M←A0;
2 Z ← ∅ is the set of used pairs;
3 while |A| > 0 do
4 for all pairs [i, j] ∈ A do
5 add the pair [i, j] to Z and add one mark to all

of its neighbouring pairs;

6 while there exists an unmatched pair with score at
least 2 do

7 among the pairs with the highest score select
the unmatched pair [i, j] with the minimum
|d1,i − d2,j |;

8 add [i, j] to the set M;
9 if [i, j] /∈ Z then

10 add one mark to all of its neighbouring pairs
and add the pair [i, j] to Z;

11 A ← all neighbouring pairs [i, j] of matched pairs
M s.t. [i, j] /∈ Z, i /∈ V1(M) and j /∈ V2(M);

12 return M;

6. SIMULATION RESULTS
In this section, we first demonstrate numerically the phase

transitions of NoisySeeds given by Theorem 1. We next
evaluate through experiments the performance of ExpandOnce
and ExpandWhenStuck over the G(n, p; t, s) model. We show

that these two algorithms are able to match graphs with only
a handful of seeds. To compare the performance of our algo-
rithm with the other methods in the literature, simulation
results for ExpandWhenStuck over power–law and preferen-
tial attachment random graphs, and real graphs are pro-
vided. Finally, we explain the MapReduce implementation
of a variant of ExpandWhenStuck.

We use precision and recall to evaluate the performance
of algorithms: (i) Precision refers to the fraction of errors
in the set of matched nodes, and (ii) Recall is the frac-
tion of nodes in the intersection of the two graphs G1,2

which are matched correctly. Formally, they are defined

as: precision = Λ(M∗)
Λ(M∗)+Ψ(M∗)

and recall = Λ(M∗)
nident

where

nident is the number of nodes that are present in both graphs
G1,2 with degrees at least two (for other notations see Sec-
tion 3.1).

6.1 Experimental Results with Random Graphs
The experiments in this part are performed over two dif-

ferent types of random graphs: (i) Erdös-Rényi graphs, and
(ii) scale–free networks. Although the performance of our
algorithm is guaranteed for the G(n, p; t, s) model (see The-
orem 1 in Section 4), simulation results show the excellent
performance of our algorithm versus state-of-the-are graph
matching algorithms for all types of studied graphs.

6.1.1 Erdös-Rényi Random Graphs
We first demonstrate numerically the phase transitions es-

tablished in Theorem 1 for NoisySeeds. As shown in The-
orem 1, for the G(n, p; t, s) model such a transition takes
place when the number of correct pairs in the initial seed
set passes a certain threshold at,s,r while there is possibly
many wrong pairs in the seed set. In Figure 3, we plot the
total number of correct matched pairs versus the normalized
number of seeds (i.e., the number of correct seeds divided
by at,s,r) for the set of parameters n = 106, p = 20/n and
different ranges of node and edge sampling probabilities. As
can be seen, (i) the phase transitions take place close to
the critical values of at,s,r and (ii) the total number of cor-
rectly matched nodes is very close to the expected number
of nodes in the intersection of the two vertex sets, i.e., nt2.
Note that in all the cases considered in Figure 3 the fraction
of wrongly matched pairs is very small, i.e., the precision is
close to one.

We now proceed with simulation results of ExpandOnce

and ExpandWhenStuck to compare their performance over
G(n, p; t, s) model (we also compare with PercolateMatched

[30]). Figures 4 confirms that the ExpandOnce algorithm
performs surprisingly well and with only a handful of seeds
(only 13, 67 and 235 seeds for s2 = 0.81, 0.64 and 0.49, re-
spectively) it can correctly match almost all the nodes in a
graph with n = 106 nodes and average degree 20. Figure 5
shows that when the matching process percolates, the preci-
sion is close to one. As a comparison, if we set the minimum
threshold r = 2, then the PercolateMatched algorithm [30]
would need at least 1906, 3052 and 5207 seeds for matching
G(n, p; s) (equivalent to t = 1 in our model) graphs with
edge overlap probabilities s2 = 0.81, 0.64 and 0.49, respec-
tively. Also, we observe that ExpandWhenStuck needs fewer
seeds with respect to the ExpandOnce in order to match al-
most all the nodes correctly. ExpandWhenStuck for parame-
ters t2 = 1.0 and s2 = 0.81 with only 8 seeds (i.e., a fraction
8 · 10−6 of the total number of nodes), matches almost all
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Figure 3: NoisySeeds Algorithm: Total number of
correct matched pairs vs. number of seeds normal-
ized by at,s,r for r = 2. Simulations are done over
G(n,20/n; t, s) with n = 106.

the nodes correctly, whereas for the PercolateMatched this
number is at least 1906 (the threshold for r = 2). In other
words, in this example, ExpandWhenStuck needs 238 times
fewer seeds than PercolateMatched.
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Figure 4: Total number of matched pairs vs. number
of seeds. Simulations are done over G(n,20/n; t, s)
with t = 1 and n = 106.

6.1.2 Scale–Free Random Graphs
We evaluate ExpandWhenStuck over scale–free random graphs

as better representative of real–world (e.g., social and bio-
logical) networks. Note that as Erdös-Rényi graphs contain
less structural information (for example, degree distribution
is concentrated around the mean and a low clustering coef-
ficient) it is harder to match them. Also, simulation results
confirm that matching scale–free networks is an easier task.

First, we apply ExpandWhenStuck algorithm to the Chung–
Lu graphs [6] (a variant of power–law random graphs). In
these graphs, the degree distribution of nodes follows a power–
law distribution, i.e., the proportion of nodes of degree d
scales like d−β . In this model, the probability of having an
edge between two nodes i and j with degrees di and dj ,
which is independent of all the other edges in the graph, is
proportional to didj . We generate two graphs G1,2 through
node–sampling with probability t and edge–sampling with
probability s over a Chung–Lu graph. In Figure 6, for ex-
ample, we observe that with only 20 seeds ExpandWhenStuck
matches almost all the nodes for fairly small node and edge
overlap probabilities being equal to 0.75. In all our experi-
ments, we observe that precision is always better than recall.
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Figure 5: Precision vs. number of seeds. Simula-
tions are done over G(n,20/n; t, s) with t = 1 and
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Figure 6: Recall vs. node and edge overlap prob-
abilities (i.e., t2 and s2). Number of seeds is 20.
Simulations are done over power–law (Chung–Lu)
random graphs with n = 105, β = 2.5 and average
degree 20.

Next, we apply ExpandWhenStuck to the preferential at-
tachment random graphs. The Barabási–Albert model [4]
is one of the most referred models for social networks. This
model generates random scale–free networks in a preferen-
tial attachment setting. A Barabási–Albert (BA) random
graph is generated as follows [5]: (i) It starts with a a single
node with m self–loops; and (ii) each new node is connected
to m existing nodes with probabilities proportional to their
current degrees. Figure 7 shows the simulation result of
ExpandWhenStuck over BA random graphs. In these experi-
ments, the underlying graph G is sampled from BA model.
The two graphs G1 and G2 are generated by independent
node and edge sampling processes from graph G.

Our experiments show that choosing seeds among high–
degree nodes, instead of picking them randomly, results in
better matchings. For example, given only the highest–
degree node as seed is enough to match almost all the nodes
correctly in Chung–Lu and BA graphs with n = 106, av-
erage degree 20, and sampling probabilities t2 = 0.81 and
s2 = 0.81.

6.2 Experimental Results with Real Graphs
In this section, we illustrate the experimental results of

ExpandWhenStuck algorithm over five different real social
networks. The baseline for our comparisons are state–of–
the–art graph–matching algorithms: (i) PercolateMatched

[30] (here, by PercolateMatched we mean a deferred version
of it which has been reported to have better performance
compared to its basic version), and (ii) User-Matching [14].
In all our experiments, PercolateMatched [30] outperforms
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Figure 7: ExpandWhenStuck algorithm: Recall vs. edge
overlap probabilities (i.e., s2) and number of seeds.
Simulations are done over Barabási–Albert random
graphs with edge overlap probability t2 = 0.81, n =
105 and average degree 20.

User-Matching [14]. Therefore, due to space limitation we
only plot the results corresponding to PercolateMatched al-
gorithm in some figures.

In statistical analysis and machine learning, F1–score com-
bines both the precision and the recall in one metric to pro-
vide an average of them [23]. This measure is defined as

F1–score = 2
precision× recall

precision + recall
. (7)

The value of F1–score is between 0 and 1. When F1–score
is close to 1, we can conclude that (i) precision is close to
1, i.e., the fraction of errors in the set of matched pairs
is small, and (ii) recall is close to 1, i.e., a large fraction of
nodes which are present in the both graphs G1,2 are matched
correctly. We use this measure to compare the performance
of algorithms.

For the first experiment, we choose a very large real graph.
We run ExpandWhenStuck over Youtube graph with 1134890
nodes and average degree 5.26 [15]. In this graph links corre-
spond to friendships among users. The edge–sampling with
probability s generates two graphs G1,2. To make a compari-
son with User-Matching [14] and PercolateMatched [30] al-
gorithms we choose the node–sampling probability t = 1.0.
Figure 8 compares our algorithm with the two baseline al-
gorithms. The F1–scores for ExpandWhenStuck is non–zero
from the very beginning and with few seeds reach large
values. We observe the F1–scores of User-Matching and
PercolateMatched (for the sampling probabilities that we
have considered here) are always around zero.
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Figure 8: F1–score (see Equation (7)) vs. number
of seeds. Simulations are done over over Youtube
graph with 1134890 node.

The second graph matching is done over friendship links
on the Slashdot social network [15]. This network has 74118
nodes and average degree 12.13. The two graphs G1,2 are
generated though node and edge–sampling processes over
the Slashdot network. In Figure 9, we observe the F1–score
(see (7)) for different node and edge sampling probabilities
when 20 seeds are provided.
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Figure 9: F1–score vs. node and edge overlap prob-
abilities (i.e., t2 and s2). Simulations are done over
Slashdot network when the number of seeds is 20.

For the third experiment, we use the most popular online
social network in Slovakia called Pokec with 1632803 nodes
and average degree 37.50 [15]. Again, the two graphs G1,2

are generated though node and edge–sampling processes.
The excellent performance of ExpandWhenStuck over Pokec
social–network is shown in Table 1.

Algorithm
s2

0.81 0.64 0.49

ExpandWhenStuck 0.99 0.98 0.97
User-Matching [14] 0.04 0.02 ≈ 0
PercolateMatched [30] 0.05 0.02 ≈ 0

Table 1: F1–score (see Equation (7)): Simulations
are done over Pokec social network with n = 1632803
and t2 = 1.0, when 5 seeds are provided.

In the fourth experiment, we use different snapshots of the
e-mail network on EPFL campus [22]. Each snapshot of the
network is created by aggregating all the exchanged e-mails
in a given time period. Each node corresponds to an ac-
count, and undirected edges represent exchanged e-mails be-
tween entities. In this experiment, we match two real graphs
without any modelling assumptions, i.e., we do not assume
any node or edge sampling process. As shown in Figure 10,
with only one seed we can match most of the nodes in the
EPFL e-mail network. In all snapshots of the EPFL e-mail
network, the nodes with the highest degrees are the same.
This is because the node degree distributions of real graphs
are often heavy–tailed. For this network, the performance
of PercolateMatched [30] is superior to User-Matching [14],
and thus for our comparison we have only provided the re-
sults corresponding to PercolateMatched.

The fifth experiment is done over the Gowalla social net-
work [15]. This dataset contains friendship relations and
timestamped check-ins of users to different locations. Using
this information, two snapshots of Gowalla network are gen-
erated [14]; in the first snapshot, two nodes are connected
if they are friends and they check-in to exactly the same
location in an even month. The second snapshot is gener-
ated similarly by looking at the friendships and check-ins in
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Figure 10: F1–score (see Equation (7)) vs. number
of seeds. Simulations are done over EPFL e-mail
network with. Each snapshot of the e-mail network
is created by aggregating all the exchanged e-mails
in a given time period.

odd months. In this experiment the number of identifiable
nodes, which is defined as the total number of nodes that are
present in both graphs G1 and G2 with degrees greater than
five, is 6634. Figure 11 shows the superior performance of
ExpandWhenStuck versus algorithms from [14, 30]. Note that
(i) these two Gowalla graphs are not generated through an
edge sampling process, i.e., we match two real graphs with-
out any modelling assumptions and, (ii) as the authors in
[14] use check-ins to approximately the same locations in-
stead of exactly the same locations to generate two Gowalla
social graphs our simulation results differ a little bit from
their reported results.
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Figure 11: F1–score (see Equation (7)) vs. number
of seeds. Simulations are done over Gowalla social
network. The number of identifiable nodes, nident =
6634, is defined as the total number of nodes that
are present in both snapshots with degrees greater
than five.

Our experiments show that ExpandWhenStuck is indeed
robust against low node overlaps between the graphs. For
example, in Gowalla (see Figure 11) the overlap between the
two graphs is 0.72. Note that, in the intersection of Gowalla
graphs, there are many nodes which are present in one of
the graphs with degree 1. If we consider only the nodes
with degrees more than 1 in both graphs, then the overlap
reduces to 0.42. As another example, the overlaps for EPFL
e-mail networks (see Figure 10) are between 0.27 to 0.31.
Also, for random graphs with low overlaps, increasing the
number of seeds (e.g., only 100 seeds for Chung–Lu graphs
with n = 106, β = 2.5, t2 = 0.49 and s2 = 0.49) results in
good (close to 1) recalls and precisions.

6.3 MapReduce implementation
One of the key features of PGM algorithms is their compu-

tational simplicity. Nevertheless, for extremely large graphs
(100s of millions of nodes or more, say), the computational
and storage overhead for a single machine may still be pro-
hibitive. For this reason, we explored the implementation of
a parallelized variant of ExpandWhenStuck within the MapRe-
duce framework for scalability; we briefly report the main
ideas and results here.

The ExpandWhenStuck algorithm cannot be readily par-
allelized, given the explicitly sequential back–and–forth be-
tween spreading marks (lines 9–10 in Algorithm 3) and match-
ing new pairs (lines 7–8 in Algorithm 3). However, it turns
out that without fundamentally affecting the performance of
the algorithm, it is possible to reorder these two operations.
We can spread marks from all the eligible pairs first, then
perform the matching of new pairs afterwards. More con-
cretely, this approximation of the original ExpandWhenStuck
algorithm works as follows: (i) We spread marks from the
pairs in the seed set A; (ii) we add all the pairs with at
least r marks to the matched set M; (iii) we spread marks
from all the new matched pairs. The steps (ii) and (iii) are
repeated iteratively up to the point that there is no new
pair with score at least r; (iv) at the point the percolation
process stops a new set of candidate pairs A is generated
from the neighbouring pairs of matched pairs and the graph
matching process continues by going to step (i).

In this setting, the process of spreading marks can be
done independently for all the pairs. This enables a parallel
implementation of the algorithm through four consecutive
MapReduce jobs per iteration. Next we sketch the func-
tion of each of these MapReduce jobs, without providing a
detailed pseudo–code in the interest of space:
• The Mapper in the first job spreads out marks from the

pairs in the candidate set A. The output of Reducer in
this job is the set of all the pairs with score at least r.
• It is possible for a node to be in several pairs with score

above the threshold. The second MapReduce job filters
out the nodes that appear in more than one pair with
score at least r.
• The output of the second MapReduce job is the newly

matched pairs. These pairs are fed to the third MapRe-
duce job to spread their marks and match new pairs. Per-
colation graph–matching process continues by running the
second and third MapReduce jobs iteratively.
• When there is no newly matched pairs, i.e., the percola-

tion process is stuck, the forth MapReduce job is called.
This job generates a new set of candidate pairs A. Pro-
vided there are enough seeds, a few iteration of these four
MapReduce jobs will match almost all the nodes correctly.
Our MapReduce implementation is able to easily match

graphs with millions of nodes. For example, by using a
Hadoop cluster with 15 nodes, it took less than twenty min-
utes to match random graphs with 10 million nodes (starting
with 18 seeds); in under half an hour, the algorithm matches
graphs sampled from LiveJournal and Orkut online social
networks [15] with 4,847,571 and 3,072,441 nodes, respec-
tively.

7. CONCLUSION
In this paper, we study the problem of graph matching

between two unlabelled graphs when only the structures of
the two graphs are available. We characterize the graph–



matching problem for graphs with partial–overlapping ver-
tex sets. We give a new percolation graph matching al-
gorithm. We prove that our algorithm correctly matches
the nodes which are in the intersection of the two graphs
and filters–out the nodes without counterparts in the other
graph. A phase transition in the seed set size of percolation
graph matching is formally established. Also, we prove that
under a wide range of network parameters, our algorithm is
robust against a noisy seed set. As our algorithmic contribu-
tion, we achieve a dramatic reduction in the size of the seed
set. We also show the excellent performance in matching
several large real social networks.
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