SEAM: Scalable and Efficient ATM Multipoint-to-Multipoint
Multicasting [Extended Abstract]

M. Grossglauser

INRIA

BP 93
06902 Sophia Antipolis Cedex, France
Matthias.Grossglauser@Qinria.fr

Abstract

Human collaboration applications and distributed
systems are expected to benefit from a group multicast
service, both in terms of performance and design sim-
plicity. We argue that such a service must be scalable
both in the number of potential senders and receivers.
The success of ATM will in part depend on the avail-
ability of an efficient group multicast service.

We provide a brief description of the requirements
for a gemeral multicast service, and then present
SEAM, a proposal for scalable and efficient multicast
in ATM. SEAM relies on an additional switching fea-
ture we call cut-through forwarding, which enables the
mapping of several incoming Virtual Channels into
one or several outgoing Virtual Channels. SEAM re-
lies on a shared tree spanning all senders and receivers
of the group. It allows for centrally initiated group
setup as well as dynamic group membership changes.
An additional feature, “short-cutting”, allows for the
transmission of a packet to follow the shortest path
along this shared tree.

We believe that SEAM is both an important and
necessary step in the evolution of ATM. It will enable
a class of applications relying on group multicast to
benefit directly from ATM’s quality of service support
and scalable bandwidth and the resulting performance
advantages.

1 Introduction

Networking applications can benefit in terms of
scalability, performance and design simplicity from a
group multicast service, i.e., a service enabling mul-
tiple senders to communicate to multiple receivers.
Examples of multicasting on a broader scale include
human collaboration such as videoconferencing and

K. K. Ramakrishnan

AT&T Research
600 Mountain Ave.
Murray Hill, NJ 07974-0636, USA
kkrama@research.att.com

shared workspaces. Many applications in Local Area
Networks (LANs) have often taken multicasting for
granted (e.g., for address resolution, resource discov-
ery, etc.). We believe that the need for multicasting
will become even more pressing with the wide-scale
deployment of distributed systems (e.g., maintaining
replicated databases). An important need for multi-
casting is to be efficient and have the ability to scale
up, both in the number of senders and receivers.

The development of Asynchronous Transfer Mode
(ATM) networks is fuelled by the need for efficient uti-
lization of wide-area network resources, scalable band-
width and support for quality of service. The underly-
ing mechanism is the use of Virtual Connections (VC),
where state for conversations in progress is maintained
in the network’s switches. The natural way VCs are
set up is to associate state for a sender-receiver pair.
While this is suitable for unicast communication, it
becomes state-intensive to use the same method for
multicast. Work in the ATM Forum to overcome this
using point-to-multipoint VCs has been ongoing. How-
ever, further work is needed to be able to accomodate
a large number of senders and receivers participating
in a group. The use of multipoint-to-multipoint com-
munication is highly desirable.

Cell switching, i.e., having forwarding units smaller
than packets, has been introduced to simplify switch-
ing. Having small, fixed sized cells considerably simpli-
fies the switch’s hardware architecture, and provides
for higher performance. However, breaking up pack-
ets into smaller units has its drawbacks, such as the
much-cited cell versus packet loss probability problem.
Another complication occurs in multicast: the fact
that we manipulate sub-packet units means that we
need to be careful when forwarding from more than
one incoming VC into one (or several) outgoing VCs.

In this paper, we show that the cell-switched nature
of ATM does not impede such group-style communica-
tion. We propose a flexible multicast architecture for
ATM that is both scalable and efficient.

This extended abstract is structured as follows: In
the next section, we briefly describe the needs of a
general multicast service. We then outline the SEAM
scheme in Section 3 and present its details in Section
4. Section 5 concludes the paper.

2 Requirements of a General Multicast
Service

In this section, we derive the requirements of a desir-
able multicast service, based on the motivations that
has encouraged the use of multicast in communication
networks.

Let us briefly summarize some advantages of us-
ing a multicast service over using a collection of
point-to-point (unicast) links. The most obvious rea-
son is that of bandwidth usage: a packet sent to a
number of receivers will traverse each link only once
if multicast is used, because the packet is replicated
only when the paths to the receivers diverge. However,
in the unicast case, multiple copies of the same packet
can traverse the same link multiple times. Another mo-
tivation to use multicast is the group abstraction that
such a service can provide. Senders and receivers need
not be aware of the group membership situation. For
them, the group exists as a single object that they can
address as a single entity. The availability of such a
service often simplifies the design and implementation
of distributed systems, as membership information is
decoupled from the application. For example, the ap-
plication does not need to be informed about dynamic
membership changes. A multicast service provides an
essential glue to assemble distributed systems.

We believe that to have a good chance of success
even for future applications, we believe that a mul-
ticast service has to offer the following: (1) Group
management symmetry for senders and receivers; (2)
Scalability as a function of the total network size, the
group size, and the frequency of membership changes;
(3) Distributed management, for example joins and
leaves initiated by members (senders or receivers or
both) that are invisible to other members.

3 Overview of the SEAM Scheme

We first give a broad overview of our proposal for
multipoint-to-multipoint multicast in ATM in this sec-
tion.

The defining property of SEAM is a shared tree
between all senders and receivers of a group. We use
the concept of a “core” (as in [1]) as the root of the tree
to be set up. Having a single shared tree per group
has a number of important advantages. First, a group
will allocate only one VC per link. Also, no per-sender
state has to be maintained in switches.

SEAM manages group members who are only
senders, only receivers, or both, in the same way. All
of these three types of members share one tree, rooted
at the core. The tree’s links are bidirectional channels.
The core may be an ATM switch, not necessarily an
end-system. Segmentation-reassembly is not required
at the core and only occurs in the end-systems that
are senders and receivers.

This approach has several advantages. First, we
achieve the desired symmetry between senders and re-
ceivers. In SEAM, a large sender population is no
more of a scalability concern than a large receiver pop-
ulation. Second, with a small additional switching fea-
ture (called "cut-through"), we are able to use a single
virtual channel (VC) for the entire tree, thus conserv-
ing this potentially scarce resource. Third, a simple
signalling mechanism (termed "short-cutting"), allows
us to make a modification to the way cells are for-
warded in the switches: instead of packets first being
sent to the core and then multicast back to the re-
ceivers, as in MARS [2], we can take short-cuts at each
switch on the tree. In other words, each packet spans
the shared tree from its sender to all the receivers,
keeping delays low.

Signalling is based on a group handle. A handle
is a unique SEAM conversation identifier. The handle
consists of the core address plus an identifier. The core
address is necessary because it allows members and
intermediate switches to know the core through the
group handle. Note that to make the handle globally
unique, it is sufficient to make the additional identifier
locally (at the core) unique.

We believe that a crucial ingredient in a proposal
for an extension of an existing architecture is a strat-
egy for migration, i.e., defining a way elements of the
existing and the new architecture can interoperate.
We have worked through a proposal for gradual mi-
gration, but have not provided the details here due to
space limitations.

4 The SEAM Proposal

This section discusses the proposed architecture in
more detail. Where possible, we relate the mecha-

nisms to the existing ATM standards or drafts.

4.1 TUse of a Single Shared Tree

The fundamental goal of SEAM is to have a sin-
gle shared tree between all senders and receivers of
a group. This results in allocating a single VC per
link for the entire group. This results in "traffic con-
centration" [3], which may actually turn out to be an
advantage in terms of manageability. For example,
it would be considerably easier to enforce fairness be-
tween senders within the group (i.e., fairly share band-
width allocated to the group between senders sending
to this group) or to limit the bandwidth used by an
entire group (per-group fairness instead of per-sender
fairness) if all the traffic uses the same tree. Also, con-
sistency is achieved more easily: if all senders send on
a common tree, then a receiver joining this tree is sure
to receive from all the senders. If the group exists as
a collection of sender-based trees, then it is not easy
for the receiver to ensure that it has joined all of these
trees.

Second, using a single tree means that several group
members can be added in one step, initiated by the
core. In a scheme using per-sender trees, this is not
possible: either each sender has to set up a tree to all
the receivers, which means that the set of receivers has
to be communicated to the senders, or the receivers
join the sender tree of all the senders, which means
that, in turn, the receivers need to know the set of
senders. This can be an important performance con-
sideration for applications that depend on rapid setup
of centrally controlled groups.

The major disadvantage of shared trees are delays
that are potentially higher than in the case of short-
est-path sender-based trees [4]. However, it should be
kept in mind that most networks exhibit a certain de-
gree of hierarchy. Even in a local area network, where
the network may be physically connected in an arbi-
trary mesh, the routing layer typically organizes the
network in a hierarchical fashion. For example, rout-
ing protocols such as OSPF or IS-IS use hierarchy to
control the amount of routing information that is be-
ing distributed all over the network. Given this hierar-
chy, it can be expected that sender-based trees will not
offer significantly different delays than shared trees,
because the hierarchical structure reduces the number
of alternative paths from a sender to a receiver. For
example, a campus network is usually connected to
the Internet over a single leased line. This may be the
most likely bottleneck in a wide-area multicast session.
Both shared trees and sender-based trees would have

to choose this link to reach all members on the cam-
pus. We recognize the need to substantiate this claim
further through simulations, which is the subject of
our future work.

4.2 Multicast Group Creation

When senders or receivers want to join a multicast
group, they need to send a join message towards the
core. In other words, the choice of a core needs to be
made prior to setting up any part of the multicast tree.
The question then is: who is responsible for setting up
the core?

We propose to have an "initiator", who may or may
not be a future member of the group, responsible for
defining the core and disseminating the existence of
the core to the potential members. This can happen,
for example, through a name service, as proposed in
[1], or through directly contacting the members, de-
pending on the semantics of the group.

Note that it does not need to be the initiator’s re-
sponsibility to choose what switch in the network is
elected as core. In our view, the network would offer
core selection as a service. The initiator could convey
some information about the expected group member-
ship (e.g., geographical information) in order for the
network to optimize the choice of a core. The network
answers a core selection request with a handle that the
initiator may use to advertise the group.

4.3 Signalling for Member Initiated Joins

It is obvious from the discussions in [1, 3] that
member-initiated joins are a necessity for a scalable
multicast service. The advantages of a member initi-
ated join approach over a root initiated approach are
twofold. First, the root of a multicast tree (in our case
the core) does not need to know about or keep track
of the membership of the group. This means saving
processing resources and state space. Second, a join
to a group that already has a tree set up can be termi-
nated at the point where a new branch will be added to
the existing tree. This means saving bandwidth (due
to signalling messages travelling smaller distances, or
hops), processing resources in the switches and re-
duced latency.

New members who wish to join the multicast group
either as senders or receivers issue a join request. This
join request travels towards the core on the shortest
path, until it hits a switch that is already on the re-
quested group’s tree. A new branch is then created
from that switch to the joining member. Basically,
the procedure is similar to that of receivers joining a

point-to-multipoint VC in UNI 4.0 [5], but we gener-
alize it to both sending and receiving members. The
same options as was proposed for UNI 4.0 (without
sender participation, with sender notification, with
sender permission) may be used.

4.3.1 Use of a Receivers Downstream (RD)
Bit

. . M
joiny
request1

|

receiver

senders senders

@) (b)

Figure 1: Updating of the RD bit upon receiver join.

The use of a single shared tree among all receivers
and senders requires us to introduce a small amount
of per-link state to avoid wasting resources, such as
transmitting to sender-only end-systems. In order to
avoid forwarding packets to members who are only
senders, we associate a flag with the group at each
“on-tree” switch. The flag, called the “Receivers Down-
stream” bit, indicates if there are any receivers down-
stream from this port. Consider situation (a) in Fig.
1: RD=0 at switches S1-S3 means that the respective
ports only have senders downstream, and therefore no
packets need to be forwarded on these ports.

If a new receiver connects to the existing tree at a
port that has the RD bit cleared, then the forwarding
table in some upstream switches have to be updated,
so that packets will be forwarded down to the new
receiver. The join request therefore has to travel to-
wards the core on the tree and update the forwarding
table in each switch. The join request stops when it
hits the core or a switch with the RD bit set on at
least one other port, which means that packets sent to
the group already reach this switch. At each switch
traversed on the tree, forwarding tables have to be up-
dated such that packets will be forwarded towards the
new receiver.

The core acts as any other SEAM switch. The only

exception is that all data gets forwarded to the core,
even if it does not have receivers on its other ports.
This is because the RD bit is not helpful since receiver
joins only go as far as the core. There is no clean way
to have the signalling progress beyond the core to the
set of switches downstream, until the point where we
reach switches that all have their RD bit set. There-
fore, by requiring the data to be forwarded to the core,
irrespective of the RD bit, switches in the tree are led
to believe that there are always receivers downstream
of the core.

The remaining specific details of a leaf initiated join
are very similar to the concepts specified in the UNI
4.0 draft on this topic.

4.4 Signalling for Core Initiated Joins

Member initiated joins are clearly necessary. How-
ever, we think that core initiated joins should be avail-
able as well. For example, if the initiator knows who
the group members are going to be (e.g., because the
application requires a well-defined set of members),
then it would be much easier and more efficient for
the initiator to be able to tell the core, upon setup,
what hosts to connect to the group, instead of setting
up the core, and then contact each member individu-
ally and invite the member to join.

4.5 Switch Support for Cut-Through

For our multicast scheme to work, we need to be
able to map multiple incoming VCs into one or several
outgoing VCs at switches. If this is done simply on
a cell-by-cell basis, then cells belonging to different
packets will interfere with each other (they will be
interleaved, resulting in corruption of packets).

One way to circumvent this problem is by re-
assembling the packets, perform packet-level schedul-
ing, and re-segment one packet after the other into
the out-bound point-to-multipoint VC (or mesh of
point-to-point VCs). A multicast server is typically
used to do this function of reassembly and forwarding.
This approach, suggested in [2], makes for an obvious
performance bottleneck and means that switches (if
implementing [2]) have to process packets. We show
in this section that it is possible to achieve the same
without reassembly and segmentation, by taking ad-
vantage of the fact that the AAL5 end-of-packet iden-
tifier is part of the ATM cell header.

A handle H for the group is used at the time of sig-
nalling to set up the SEAM VC. There is a one-to-one
correspondence between the handle H and the VC on
each individual link. Although the VC id may be dif-

ferent on each link, we will use the same term “H” for
the SEAM VC, whenever this does not lead to confu-
sion.

When multiple senders transmit to the same mul-
ticast group, identified by the handle, these arrive
on the same VC. The constraint imposed by ATM
is that the data on a particular VC is ordered, and
therefore, there is no need to identify cells as be-
longing to a particular packet. With AALS5, when a
end-of-packet cell is received, all the previous cells re-
ceived on that VC belong to that packet. When mul-
tiple senders send packets on the same VC, these need
to be unambiguously ordered and forwarded so that
there is no corruption of the data transmissions. We
do this by having switches perform a function we call
cut-through. Switches performing cut-through forward
complete packets at a time, while buffering incoming
packets from other input ports until an End-of-Packet
(EOP) cell has been forwarded.

EOP

[(ax] [2x] [x| |2y] |2y
in-port 1 out-port 1
EOP switch
12 S |2y | Y]
F——
in-port 2 out-port 2

Figure 2: Cut through for VC H: Packet Y gets for-
warded, while Packet X is buffered until cell 5Y with
EOP for packet Y goes through switch.

Consider the case where two senders, A and B, are
transmitting data packets X and Y to a set of receivers,
as shown in Figure 2. These arrive at switch S, in the
form of cells. If we just had packet-based networks,
where packets were not being segmented into cells,
the action of cut-through forwarding is simple: packet
X would be transmitted and subsequently packet Y
would be transmitted, both being identified by the
handle H, which is the group handle. Whichever
packet arrived first gets transmitted first. When we
have ATM networks, senders A and B transmit pack-
ets X and Y, with the same VC, which for our purposes
here can be considered to be H. The cells from packets
X and Y, arriving at switch S, may be interleaved be-
cause the cell is the unit of transmission rather than
a packet. Forwarding cells in the order received is un-
desirable. Rather, we mimic the behavior of packet
networks. This way, the receivers do not have to dis-
tinguish cells of different packets arriving on the same
VC (an impossible task). We do this by having the

following actions at switch S: the first cell of a packet
arriving from any input port on VC H determines that
this packet arriving on that input port gets uncondi-
tional priority to be forwarded on the outgoing VC
H. Let this packet be Y from source B. Then, all of
the cells of packet Y are forwarded first. Any other
packet arriving on any other input port is queued at
switch S for forwarding subsequent to the transmission
of packet Y. For example, since all the cells of packet X
are received after the first cell of packet Y is sent, these
are queued. When the last cell of packet Y (signified
by the end-of-packet cell) is transmitted, then the cells
queued for packet X are transmitted from switch S on
the spanning tree. From that point onwards, packet X
gets priority for being transmitted on VC H. The cells
of packet Y are shown making progress on the output
links of switch S in Fig. 2, because of this cut-through
function.

Thus, our requirement on switch S performing
cut-through is to identify the first cell of an incom-
ing packet on a given multicast VC H, and to transmit
cells received on that input port only, until the last cell
of that packet has been transmitted. The cells from
other input ports that arrive in the meanwhile on VC
H are queued for forwarding subsequent to sending
the last cell of the packet currently being forwarded.
We call this process cut-through, and every switch (at
least every branching point for multicast communica-
tion, as defined in [6]) on the tree is expected to be
able to perform this function.

There are several reasons we believe it is reason-
able to expect ATM switches to be able to implement
the cut-through feature that we propose here. First,
switches that are capable to multicasting will likely fol-
low a slightly different processing path for multicast
packets in contrast to unicast packets. These points
in the topology where replication has to be performed
are the “branching points”, defined in [6]. For example,
for a cross-bar switch with input port buffering, there
is inevitably a need for the input port to retain a cell
until it can be replicated and transmitted across the
cross-bar interconnection fabric to all the candidate
output ports. In a switch using a batcher-banyan type
interconnection network (Jon Turner’s switch [7]), a
concept of recirculation of a multicast cell is intro-
duced so that the cell makes it to all the output ports
when there is contention. In any case, the normal path
may not be followed, and there is typically a need to
store the cell until it makes its way to all the output
ports.

The second requirement we impose on switches is

the need to recognize the end-of-packet (for an AALS
packet) to enable cut-through, so that a subsequent
sender’s packet may then be forwarded. AALS5 sup-
port of this nature is becoming more and more preva-
lent in ATM switches. This is because the notion of
packet-discard is becoming a necessary aid to manage
congestion. The nature of ATM is such that, espe-
cially for AAL5 packets, if one cell is dropped, the
rest of the packet is corrupted and the receiver is un-
able to reassemble the packet properly. As a result,
ATM switches are encouraged to drop the rest of the
AALS5 packet for a given VC, once it has dropped a cell
from that VC. It is precisely this feature we exploit to
achieve the ability to cut-through, in addition to the
storage of cells of a packet, while a previous packet is
being forwarded for that VC.

When there is a slow input port on a switch
with heterogenous ports (of different speeds), a pure
cut-through design may lead to unecessary delay for
cells of this SEAM VC arriving on the higher speed
input ports. To overcome this, one may configure
the switch to disable cut-through on these slow in-
put ports for the SEAM VC, and instead perform
store-and-forward on a packet basis. When a packet
has been received in its entirety on the SEAM VC on
the slow input port, then the input port would con-
tend for forwarding the cells of the packet just as a
port performing cut-through.

Another observation we make is that LAN Emula-
tion and IP Multicast over ATM (wherein a frame-
work of point-to-multipoint VCs is used in conjunc-
tion with a multicast server to achieve the mul-
tipoint-to-multipoint service) use multicast servers.
These servers may be workstations, which involves ad-
ditional cost. It is expected that switch vendors will
begin to incorporate the server in the switch itself,
so as to make ATM more attractive for deployment
in traditional LAN environments. These switches will
therefore buffer packets, and forward in precisely the
manner we describe, except that instead of a sin-
gle switch-based server, we take advantage of every
switch’s ability to perform cut-through.

The fundamental advantage of SEAM achieved with
cut-through is that we do not have to look at the pay-
load of the cell to do efficient multipoint-to-multipoint
communication.

4.6 Short-cutting

This is the second building block of SEAM, wherein
we avoid having all the transmissions go to the core
(which may be an end-system, or in fact may be a

multicast
server

short-cutting

sender receiver sender receiver

MARS SEAM

Figure 3: Multicast servers versus short-cutting in
SEAM.

switch with the capability to perform cut-through as
described above) before being forwarded to the re-
ceivers. Anytime a cell is received at a switch S on
a VC H, and if the context for VC H has been estab-
lished (i.e., the switch knows it is in the spanning tree
for conversation H), then the switch forwards the ar-
riving cell on all the links of the spanning tree other
than the one it was received on. This is the concept of
Reverse Path Forwarding (RPF) that protocols such
as DVMRP etc. exploit as well. The only constraint is
that the forwarding is only on the links where the "Re-
ceivers Downstream" (RD) bit is set (to accomodate
the presence of asymmetry, where there are senders
who are not receivers). We leave the issue of how the
spanning tree is built to the routing protocol.

Short-cutting is enabled by modifications in the sig-
nalling path of the switch implementation, and does
not require any changes in the data path. Figure 4
illustrates how forwarding tables have to be set to
achieve short-cutting.

5 Conclusion

We proposed in this paper an efficient scheme called
SEAM for multipoint-to-multipoint communication in
ATM networks. The scheme allows for scaling up to a
large number of potential senders and receivers. There
is a single shared spanning tree for all senders and re-
ceivers. We proposed the use of a unique handle (trans-
lates to a single VC on a link) to identify any packets
associated with a given multicast group. The handle is
a tuple (core address, unique-id at core) that is unique
across the network. Each multicast group has an as-
sociated “core”, which is used as the focal point for
routing signalling messages for the group. We allow
for leaf-initiated joins to the single core-based tree by
senders and receivers as well as core-initiated joins.
We exploit the proposed capabilities of leaf-initiated
joins in ATM networks specified in UNI 4.0.

We introduced two new features in SEAM:

1, VvCY 1, vci] C1q

2, VCgvco 2,vcud

\e3] \Werg

1,VC§

2,VCT

vCé

3,VvCid

1, VC1 vc2 vC3 VC6

2,VCZ vca|ves

3, VCY ve2

Figure 4: Forwarding tables for short-cutting. The
paths followed by a packet from S1 and from S6 are
shown.

“cut-through” forwarding and “short-cutting” to
achieve efficient multicasting with low-latencies
for communication between senders and receivers.
Cut-through forwarding in a switch enables the map-
ping of several incoming VCs into one or more outgo-
ing VCs at a switch. A switch capable of cut-through
forwards a multicast packet from one input port at
a time, taking advantage of the AAL5 end-of-packet
cell to identify when to “switch” to forwarding a new
packet. Incoming packets from other input ports are
buffered until it is their turn, thus ensuring packets
are transmitted on an outgoing VC “atomically”. A
second feature, “short-cutting” is entirely in the sig-
nalling path in switches, and allows a packet to fol-
low the shortest path along the shared tree spanning
all senders and receivers of the group. We avoid the
packet having to go all the way to the core and then
be forwarded to the receivers, and therefore avoid it
traversing many links twice.

We believe no scheme is complete without ad-
dressing issues of migration. We have worked out
the details of a SEAM-based environment working
quite efficiently along with islands of non-SEAMable
switches. The interoperability is such that only
“boundary” SEAM switches need to be concerned with
non-SEAMable islands and within those islands, we
fully exploit the point-to-multipoint capabilities of cur-
rent ATM signalling.

Thus, we believe we have proposed a truly scalable
and efficient ATM multicasting architecture.

References

[1] T.Ballardie, P. Francis, and J. Crowcroft, “Core Based
Trees (CBT),” in Proc. ACM SIGCOMM ’93, (San
Francisco, Calif.), September 1993.

[2] G. J. Armitage, “Multicast and Multiprotocol support
for ATM based Internets,” ACM Sigcomm Computer
Communication Review, vol. 25, April 1995.

[3] S. Deering et al., “An Architecture for Wide-Area Mul-
ticast Routing,” in Proc. ACM SIGCOMM ’94, (Lon-
don), August 1994.

[4] L. Wei and D. Estrin, “The Trade-Offs of Multicast
Trees and Algorithms,” in Proc. Int’l Conference on
Computer Communications and Networks, (San Fran-
cisco), September 1994.

[5] P. Samudra, “UNI Signalling 4.0 (draft), ATM Fo-
rum/95-1434R9,” Dec 1995.

[6] S.S. Sathaye, “ATM Forum Traffic Management Spec-
ification (Draft Specification of the ATM Forum),
AF-TM 95-0013R8,” Oct 1995.

[7] J. S. Turner, “An Optical Nonblocking Multicast Vir-
tual Circuit Switch,” in Proc. IEEE INFOCOM ’94,
pp. 298-305, June 1994.

