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Abstract

There is mounting experimental evidence that network traf-
fic processes exhibit ubiquitous properties of self-similarity and
long range dependence (LRD), i.e. of correlations over a wide
range of time scales. However, there is still considerable debate
about how to model such processes and about their impact on
network and application performance. In this paper, we argue
that much recent modeling work has failed to consider the im-
pact of two important parameters, namely the finite range of
time scales of interest in performance evaluation and prediction
problems, and the first-order statistics such as the marginal dis-
tribution of the process.

We introduce and evaluate a model in which these parameters
can be easily controlled. Specifically, our model is a modu-
lated fluid traffic model in which the correlation function of
the fluid rate is asymptotically second-order self-similar with
given Hurst parameter, then drops to zero at a cutoff time
lag. We develop a very efficient numerical procedure to eval-
uate the performance of the single server queue fed with the
above fluid input process. We use this procedure to examine
the fluid loss rate for a wide range of marginal distributions,
Hurst parameters, cutoff lags, and buffer sizes.

Our main results are as follows. First, we find that the amount
of correlation that needs to be taken into account for perfor-
mance evaluation depends not only on the correlation structure
of the source traffic, but also on time scales specific to the sys-
tem under study. For example, the time scale associated to
a queueing system is a function of the maximum buffer size.
Thus for finite buffer queues, we find that the impact on loss of
the correlation in the arrival process becomes nil beyond a time
scale we refer to as the correlation horizon. Second, we find
that loss depends in a crucial way on the marginal distribution
of the fluid rate process. Third, our results suggest that reduc-
ing loss by buffering is hard. We advocate the use of source
traffic control and statistical multiplexing instead.
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1 Introduction

Experimental data obtained from the observation of systems
is typically considered for modeling purposes as a realiza-
tion, or sample path, of an underlying stochastic process.
In practice, statistical analysis of the data proceeds with
the additional hypotheses that the process is stationary and
ergodic. Such analysis has shown that many systems of in-
terest in the physical world exhibit a property of correlation
over many different time scales, often referred to as long
range dependence (LRD) or long memory. Some of the bet-
ter known examples of such systems are found in hydrology
[16]. However, the phenomenon of LRD occurs in many
other systems including chemical, astronomical, and biolog-
ical systems (see [3] for references).

In spite of much statistical evidence, the existence of LRD
has often been met with resistance or at least puzzlement.
This was caused in large part by the absence of physical ex-
planations for the observed phenomenon. Hydrologists for
example wondered “By what sort of physical mechanism can
the influence of, say, the mean temperature of this year at a
particular geographic location be transmitted over decades
and centuries?” [19]. Two approaches then are possible.
One approach is to argue that the LRD observed in the
measurement data is a consequence of inadequate hypothe-
ses, in particular the stationarity hypothesis, made about
the underlying process that (it is assumed) did generate
the data. For example, the superposition of a process with
short range dependence (SRD) and an appropriately chosen
on/off trend [19] or a hyperbolically decreasing trend [5] is
difficult to distinguish from a stationary process with LRD.
Another approach is to not worry about a physical explana-
tion and to develop and use models that do exhibit LRD, on
the grounds that a model is good not because it explains a
phenomenon correctly, but rather because it provides good
prediction ability and it is numerically and/or analytically
tractable.

Unfortunately, it is not possible to tell with certainty whether
or not a realization is stationary. Therefore, the jury is still
out on which of the above two approaches is “the right one”.
Clearly, it is better for a model to match more properties of
the data. However, a model is a tool for decision making.
Thus, its quality depends on the quality of the decisions it
leads to rather than on its closeness to physical reality.

The situation in the area of communication systems in gen-
eral, and computer networks in particular, is no exception
to that described above. Careful statistical analysis of data



collected over a wide variety of networks has provided am-
ple evidence that network traffic processes exhibit properties
of self-similarity and LRD |23, 21, 9, 20, 27, 4]. However,
there is still considerable debate about how to model such
processes. Different approaches have been taken that par-
allel those taken in other areas and described earlier. One
approach has been to argue that the observed LRD may be
due to non-stationarity in the data caused by the superpo-
sition of level shifts [8] or Dirac pulses [13] with short range
dependent (SRD) stationary processes. Another approach
has been to use stochastic models (such as fractional Brown-
ian motion [24], zero-rate renewal processes [30] and various
other point processes [28]) or deterministic models (such as
chaotic maps [12]) that exhibit the LRD observed in the
experimental data. However, these models are analytically
difficult to handle. Furthermore, they do not provide much
insight into why they are meaningful on physical grounds.
This explains in part that much modeling work still relies on
more traditional multi-state Markovian models (e.g. [22, 2]).

However, recent work has shown that the superposition of
many on/off sources with heavy-tailed on- and off-periods
results in aggregate traffic with LRD [31, 6]. Furthermore,
there is widespread evidence that human as well as computer
sources of traffic do tend to behave as heavy tailed on/off
sources [7, 20, 31]. Thus, LRD in network traffic can be ex-
plained simply in terms of the nature of the traffic generated
by individual sources.

This intuitively appealing explanation suggests that LRD
will remain a salient feature of network traffic even as net-
work characteristics such as bandwidth and topology evolve
over time. Thus, the fundamental question for both current
and future networks is that of the practical impact of LRD
on network and application performance. Not surprisingly,
much effort has focused on trying to answer this question.
The main result is that the performance of queueing systems
with LRD in the input or service processes can be radically
different from the performance of usual Markovian systems
[11, 6].

However, we believe that not enough work has considered
the impact of parameters other than the correlation struc-
ture of the traffic. Consider for example the asymptotic
behavior of an infinite queue fed with three different ar-
rival processes that all exhibit the LRD property. First,
if the arrival process is a fractional Brownian motion, then
the queue length distribution is Weibullian. Second, if the
arrival process is a single on/off source with heavy-tailed
on and off periods, then the queue length distribution is
hyperbolic. Third, if the arrival process is a single on/off
source in which the off periods only are heavy-tailed, then
the queue length distribution decays exponentially [6, 26].
Thus, processes with the same correlation structure can gen-
erate vastly different queueing behavior. Therefore, it is im-
portant to consider parameters other than the correlation of
the input process for accurate performance prediction.

Two such parameters stand out, namely the marginal dis-
tribution of the arrival process, and the finite range of time
scales of interest in performance evaluation and prediction
problems. The main goal of this paper is to evaluate the im-
pact of these parameters, as well as the correlation structure
of traffic sources, on network and application performance.

To achieve this goal, we develop a model in which all three
parameters can be easily controlled. Specifically, our model
is a modulated fluid traffic model in which the correlation

function of the fluid rate is asymptotically second-order self-
similar with given Hurst parameter, then drops to zero at
a cutoff time lag. We then consider the behavior of a fi-
nite-buffer queue fed with the above fluid input process. We
cannot describe this behavior with closed-form analytic ex-
pressions. However, we develop a very efficient numerical
procedure to evaluate various performance measures. In this
paper, the measure of interest is the fluid loss rate, i.e. the
amount of work lost because of buffer overflow to the amount
of work arriving at the queue.

Our main results are as follows. First, we find that the
amount of correlation that needs to be taken into account
for performance evaluation depends not only on the correla-
tion structure of the source traffic, but also on time scales
specific to the system under study. For example, the time
scale associated to a queueing system is a function of the
maximum buffer size. Thus for finite buffer queues, we find
that the impact on performance of the correlation in the ar-
rival process becomes nil beyond a time scale we refer to as
the correlation horizon.

Second, we find that the loss rate depends in a crucial way
on the buffer size, but more importantly on the marginal
distribution. An obvious consequence is that the marginal
distribution must be taken into account for accurate loss
prediction. Another consequence is that controlling the loss
rate by increasing the buffer size is inefficient. Instead, sta-
tistical multiplexing and source traffic control are two much
more efficient ways to achieve high utilization while keeping
loss low. The rest of the paper is organized as follows. In
Section 2, we describe the model and the numerical solution
procedure. In Section 3, we describe the behavior of the loss
rate as as function of system parameters. In Section 4, we
discuss the implications of our results. Section 5 concludes
the paper.

2 Model Description

In this section, we describe our modulated fluid traffic model
and the numerical procedure we developed to evaluate the
behavior of a finite buffer queue fed with this input traffic.

Recall that the goal of the model is to examine the impact
on the performance measure of interest of parameters such
as time scales and the marginal distribution of the traffic
process. Thus, we need a traffic model in which these pa-
rameters can be controlled easily.

Specifically, the source traffic model is described by a ran-
dom process {X;} which represents the fluid rate at time
t. We assume that X; takes on a finite set of possible
rates {A1,...,Anm}. Furthermore, we assume that the fluid
rate process is piecewise constant. Thus, the rate remains
constant over intervals the lengths of which are determined
by arrivals of a stationary point process {7.}. We denote
X: = Xn) for 7, < ¢t < Tpy1. The interarrival times
Tn = Tnt1 — Tn are ii.d. with survival function Pr{T, >
t} = Fr(t). Furthermore, the constant fluid rate A(n) is
ii.d. with distribution Pr{A(n) = A\;} = m;. For i.i.d. ran-
dom variables, we drop the subscript if this does not lead to
confusion. Note that this model can be specialized into the
familiar on/off source model with identically distributed on
and off periods.

The rest of this section proceeds in three steps. In the first
step, we derive the covariance function of the fluid process



{X:} in terms of the interarrival time distribution Fr(t),
the rate matrix A = diag(A1, ..., Am), and the marginal dis-
tribution of the fluid rate IT = (m1,..., 7). In the second
step, we derive the occupancy distribution at time 7, of a
queue fed with {X:}. In the third step, we use this distri-
bution to derive the performance measure of interest here,
namely the stationary fluid loss rate.

The covariance function of X (¢) is defined by
(1) = E[XoX:] — (E[Xo])” (1)

where

M M
E[XoX:] = ) ) ANPr{Xo=X,Xi =)}

i=1 j=1

M
= Z A?PI{XO =X, Xe = N} (2)
i=1

M-1

+2 ) Z i) Pr{Xo = A\i, Xi = A}

i=1 j=i+1

The first term on the right-hand side of (2) corresponds to
the case when the source rates at time 0 and at time ¢ are
identical. To compute this term, we have to account for the
case when 0 and ¢ lie in different intervals and the case when
they lie in the same interval. Let p(t) denote the probability
that 0 and ¢ lie in the same interval, or equivalently, that
there is no arrival in [0,¢]. Then,

M
D OAPr{Xo = \i, Xi = \i} =

i=1
M M
=[1—p®] Y mX +p() Y midl.
i=1 i=1

The second term of (2) corresponds to the case when the
source rates at time 0 and at time ¢ are different. Thus,
there must have been a rate change (i.e. an arrival) in this
interval, which implies that X; and X, are independent.
Therefore, Pr{Xo = \i, X; = \;} = mm;. Also,

E[Xo] Zm i Zﬂ' )\Z—l—QZ Z T AN

i=1 j=i+1
3)
Combining the above results yields

M M M
p() D mAT L= p0] Y wIN =) wIN
i=1 i=1 =1

p(O)TIA*1T + [1 — p()JTIA’ T — HA2ET
p(H)IA*(1 — )7, (4)

Furthermore, it follows from renewal theory that the prob-
ability p(t) is equal to the probability that the residual life
Tres Of the interarrival time 77, exceeds t, which is given by
[18, p. 172]

(1)

Pr{rye >t} = /m ZT[;i])dm (5)

‘We now consider the special case when the interarrival time
distribution Fr(¢) is a truncated Pareto distribution defined

by
t4+0) > .
(?) { 0 otherwise (©6)

where 1 < o < 2. We refer to this distribution as truncated
Pareto because Fr(t) is a Pareto distribution with parame-
ters § and « for 0 < t < T.. We refer to the parameter 7.
as the cutoff lag.

Since the length T, of an interval cannot exceed T., and
since the rates in consecutive intervals are independent, it
follows that there is no correlation in the fluid rate process
beyond lag T-..

‘We now compute the covariance function ¢(¢) for the above
distribution. We have

(t+6) ">t (T o)~ >+1 .
Pr{r,.. >t} =4 o-F-maa-er - H1<Te g
0 otherwise
Therefore
(t+6)" 2l _(T.40)" >+ .
8(t) = IA’(1-11)Tx{ —e-oFi—(rrqy-ov1~ L1 <Te
0 otherwise
(8)

We observe that ¢(t) behaves asymptotically as ¢! when
T. — oo. This implies that {X:} is asymptotically sec-
ond-order self-similar with Hurst parameter H such that
—a+1=—(2-2H),ie. H = 2352 [21]. When T, is
finite, the model behaves like an asymptotic second-order
self-similar model for ¢t < T., but the correlation drops to
zero at lag T..

In summary, our source model allows us to control the marginal
fluid distribution II, the time-scale T. over which the corre-
lation structure matches that of an asymptotic second-order
self-similar model, and the Hurst parameter H.

‘We next examine the performance of a queue with constant
service rate ¢ and a finite buffer B fed with the above source
model. This queueing model does not appear to be analyti-
cally tractable. However, we have developed a very efficient
numerical procedure to determine the queue occupancy at
the arrival instants 7,. Although this queue occupancy is
not equal to the queue occupancy at a random point in
time, it is sufficient to derive our chosen performance metric,
namely the long-term loss rate.

Let @~ be the continuous random variable describing the
queue occupancy at arrival instant 7,, and let W,, = T, X
(A(n) — ¢). W, represents the difference between arriving
and departing work in interarrival interval n. Note that the
{W,} are i.i.d. because T, and A(n) are i.i.d. and jointly
independent. The queue occupancy is recursively given by

Qn+1 = max(0, min(B, Q. + W5,)). (9)

(Xn,Qn) is a two-dimensional Markov process because X,
and X,_1 are independent. Assuming ergodicity, (X,, @n)
converges t0 (Xoo, Qo) as n — co. QOur goal is to derive up-
per and lower bounds of the stationary density fo(z) of the
queue occupancy. For convenience of notation, we assume
that M < o < ... <AL <c < Ap41 < Ap2 < ... < Apm.
We exclude the trivial case when one of the fluid rates is
equal to ¢, in which case the queue occupancy does not
change.



The probability density of W, is given by

fw(w) = iwidFT ( - ) (10)

i —C

From (9), we can compute the density of Q.41 given the
densities of @, and W. Let U, = Q» + W,. Then

fo.(2) = fq. (z) * fw (x) (11)

where * denotes convolution. Then

o (@) + [ fu.(y)dyls(z)+

fonii (@) =S +[[7 fu.(y)dyls(z — B) if z € [0, B]
0

otherwise

(12)

where §(.) is a Dirac impulse.

We know that fqg,,,(z) = fq, () in steady state. Further-
more, Q» converges to this distribution as n — oco. Our
numerical solution relies on computing an approximation of
the stationary queue occupancy distribution by discretizing
(12).

We define two discrete random variables Q;,» and Qg,, in
the following way. Let d = B/N be the quantization interval
size, where B is the buffer size and N a positive integer. Let

Ql,n = d LQ"/dJ
Qhn d[Qn/d] (13)

such that Pr{Q:,. > z} < Pr{Q. > z} < Pr{Qn,» > z}.
We denote their densities by

qi,n (Z) PI‘{Ql,n = Zd},’L = 0, ey N
ahn()) = Pr{Qun=1id},i=0,...,N.  (14)

The random variable U, is quantized in the same way. Fur-
thermore, we define the following vector

w(i) = Pr{W € [id, (i + 1)d)} (15)

Then (11) can be written as a discrete convolution for both
the upper and the lower bound

Il

U, (2)

> an(G)wli - j)
j=0

unn(i) = Y qualiwli—j—1). (16)

Deriving the discrete version of (12) is then straightforward.

A simple sample path argument shows that the queue oc-
cupancy at 7, for an initially full queue is larger than or
equal to the queue occupancy at 7, for an initially empty
queue. Therefore, initializing ¢;,0 and gx,0 to an empty and
full queue, respectively, and iterating (16) will always yield
a lower and an upper bound on the limiting queue occu-
pancy. We have found that in this approach, the upper and
lower bounds converge rapidly to the limiting occupancy (a
graphical illustration of this is shown below in Figure 1).
Nevertheless, it is possible to improve the efficiency of the
procedure by using a fast Fourier transform (FFT) with ap-
propriate zero-padding [25].

We can now derive a numerical procedure to compute the
long-term stationary loss rate, defined as the ratio of work
lost to work arriving, from the stationary queue occupancy
at arrival instants. This is done as follows. The random
variable W; = (W — (B — Q))" represents the amount of
work lost in an interarrival interval. The loss rate [ is then

= EW]
AE[T]

(17)
with

B[] = / Jo@E(W — (B- Q)@ =xldz  (18)
and

EWi|Q = z] = / Fw,g==(y)dy =
0

- / 3 i Py (w) dy
0 X )\,, —C
{i:Tc(X;—c)—B+z>0}
0
=a_1 E ’Iri(Ai—c)X

{i:Te(X;—c)—B+z>0}
-
B-—-=z Te I-e
T 4 — (L 41
Xl(e(xi—c)J“) (9+) ]

We can compute an upper and lower bound on [ using the
upper and lower bounds on the queue occupancy derived
above. We obtain

EloaEWiQ=id XL, a@EWIQ = id]
AE[T) - AE[T)

(19)

We have found that the above iterative procedure is quite
efficient in terms of computational complexity and that it
yields tight lower and upper bounds with a reasonable num-
ber of iterations. This is illustrated in Figure 1 which shows
the upper and lower bounds for the queue occupancy after
5, 10, and 30 iterations in a typical case when the queue has
been discretized using 100 bins (i.e., d = B/100).

The efficiency can be explained in part by the fact that in
each iteration of (16), we “jump” from one arrival epoch to
the next one without having to consider the details of the
queueing behavior during the entire interval.

3 Numerical Results

In this section, we present results of numerical experiments
we have conducted using the model and the analysis tech-
nique described above. The goal of these experiments is to
evaluate the impact on performance of various parameters
of the model.

The performance metric we consider is the loss rate, i.e. the
ratio of work lost due to buffer overflow to total work ar-
riving at the server. Other performance metrics would be
of interest as well. However, the loss rate is a very natural
metric for finite buffer queues. Furthermore, it relates to the
tail distribution of the queue occupancy, which is the met-
ric considered in most of the analyses pertaining to infinite
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Figure 1: The upper and lower bounds on the arrival instant
queue occupancy after 5, 10, and 30 iterations.

buffer queues’. We also note that the loss rate has tremen-
dous impact on both application performance (e.g. on the
quality of the audio or video delivered from a source to a
destination) and network performance (e.g. on the number
of retransmissions required to achieve reliable communica-
tion).

The parameters of interest here are the buffer size B (or
rather the normalized buffer size, which is equal to the ac-
tual buffer size divided by the service rate c), the cutoff lag
T., and the marginal fluid rate distribution II. We let these
parameters vary within ranges consistent with practical net-
working situations. We use normalized buffer sizes of up to
a few seconds. These values are typical of currently available
switches. For example, the Fore ATM 200BX/1000 switch
has a per-port buffer of 13312 cells. Since the slowest avail-
able link on this switch is a 1.5 Mb/s T1 link, the maximum
delay in the buffer is equal to 3.3 s. Higher link speeds would
yield correspondingly smaller delays.

We use marginal distributions of fluid rates obtained from
traces of various traffic sources. In this paper, we con-
sider two traces. The first trace has been generated by
JPEG-encoding an NTSC TV channel (MTV) for one hour.
The trace has been recorded on June 11, 1995, 14:59 EST.
It includes 107892 frames, with a mean rate of 9.5222 Mb/s.
The second trace is based on the August 1989 “purple-cable”
Ethernet trace collected at Bellcore [21]. Each trace element
is a rate averaged over a 10 ms interval.

Both traces have been found to exhibit long-range depen-
dence (refer to [21] for a detailed analysis of the Bellcore
trace). This is visible in Figure 2, which shows the vari-
ance-time plot of the MTYV trace. Estimations of the Hurst
parameter from the variance-time plot (which has been shown
to be a relatively poor estimator [1]) yield Hyry = 0.83.
The Hurst parameter for the Bellcore trace is 0.9, compati-
ble with the findings in [21].

There still remains to match the marginal rate distribution

1The overflow probability for a infinite buffer queue is an upper
bound to the loss rate of the corresponding finite buffer queue.

o Variance-time plot for the MTV trace
10 T T T

variance

107 L L L
10 10 10° 10 10
frames

Figure 2: The variance-time plot of the MTV trace.

of the traces to the fluid rate vector II. Figure 3 shows
the marginal fluid rate distributions for both traces. Recall

- MTV trace: marginal density
10 T T T

density
=
o
T
.

10 I I I I I
1 2 3 4 5 6 7

bits/frames S
Bellcore trace: marginal density
10 T T T

. . . . . .
0 2000 4000 6000 8000 10000 12000 14000
bytes/10ms

Figure 3: The marginal distributions of the MTV and the
Bellcore traces.

that the traces represent the amount of work arriving within
constant-length time intervals (33ms for the MTV trace,
10ms for the Bellcore trace). Thus, the marginal distribu-
tion vectors IT and the rate matrices A are simply obtained
from a constant bin-size histogram of the traces. We set the
number of bins to 50 in all experiments. We determine 6
in (6) as follows. We first compute the average number of
consecutive samples in the trace that fall within the same
histogram bin. We then set § such that the mean interval
duration is equal to this value. We find from the trace data
that the mean epoch durations are quite short, specifically
about 80ms for the MTV trace and 15ms for the Bellcore
traces.

‘We have now completed the description of the setup for our



numerical experiments. We next describe the experiments
proper.

We have carried out three sets of experiments. In each set,
we examine our chosen performance metric (i.e. the loss
rate) as a function of two of the four parameters B, II, H,
and 7.. In the first set, we consider the impact of the buffer
size and the cutoff lag on the loss rate. In the second set, we
consider the impact of the Hurst parameter and the marginal
distribution on the loss rate. In the third set, we consider
the impact of the buffer size and the marginal distribution
on the loss rate.

In the first set of experiments, we examine the impact of
buffer size (or rather normalized buffer size) and cutoff lag
on the loss rate. Figure 4 shows the loss rate for the MTV
trace with a utilization equal to 0.8. Figure 5 shows the
loss rate for the Bellcore trace with a utilization equal to
0.4. For clarity of presentation, the figures only show the
upper bound for loss computed from (19). However, the
discretization interval has been chosen small enough that
the upper and lower bounds are essentially indistinguishable
except for loss rates smaller than 10~ 1°.

Loss rate as a function of normalized buffer size and cutoff time (MTV, util=0.8)

log10(loss rate)

50
20

10

norm. buffer size [s] cutoff [s]

Figure 4: The loss rate predicted by the model for the MTV
trace as a function of normalized buffer size and cutoff time,
at utilization 0.8.

The figures bring out two important results. First, we ob-
serve that there exists a correlation horizon (CH) for each
buffer size, such that the loss rate is not affected if the cutoff
lag increases beyond CH. An important consequence of this
is that it is sufficient for a model to take into account cor-
relation up to this correlation horizon to accurately predict
loss.

Second, we observe that the rate at which the loss rate de-
creases as the buffer size increases depends on the value of
the cutoff lag. For small cutoff lags, the decrease is approx-
imately exponential. However, as the cutoff lag increases,
the rate of decrease actually decreases. This is an illustra-
tion of the “buffer ineffectiveness” phenomenon also reported
elsewhere (e.g. [17]), whereby increasing buffer sizes beyond
a certain value only slightly decreases loss rates. Note that
this phenomenon is not unexpected, since an input process
with non negligible correlation over long lags generates oc-
casional bursts of traffic that cannot be absorbed even by

Loss rate as a function of normalized buffer size and cutoff time (BC, util=0.4)

log10(loss rate)

cutoff [s]

norm. buffer size [s]

Figure 5: The loss rate predicted by the model for the Bell-
core trace as a function of normalized buffer size and cutoff
time, at utilization 0.4.

very large buffers. In such a case, decreasing the loss rate
should be done by lowering the utilization or by statistically
multiplexing several streams [14].

Recall that the cutoff lag T, eliminates correlation in the in-
put fluid process beyond a lag equal to T.. Thus, its impact
is similar to that of the “external shuffling” procedure de-
scribed in [11]. In this procedure, a time series representing
a realization of a process is divided up into blocks and the
blocks are shuffled. However, the structure of the time series
inside a block remains unchanged. Thus, external shuffling
removes correlation from the series beyond a lag equal to
the length of a block.

It is natural to compare the numerical results to those ob-
tained by external shuffling of the input traces. We have
carried out this comparison for both the MTV and the Bell-
core traces. Figures 6 and 7 show the loss rate as a function
of buffer size for different values of the shuffle block size
(which is referred to as “cutoff” in the figures). We observe
that the loss predicted by the model is very close to that ob-
tained with shuffling and simulation for the MTV trace. The
agreement is not so good with the Bellcore trace. The dis-
crepancy is probably due to the fact that the residence time
distribution for the fluid rates is not matched well enough in
our model for this trace. The main results, however, namely
the existence of a correlation horizon and the buffer ineffec-
tiveness phenomenon for large values of the cutoff lag, still
hold in both figures.

In the second set of experiments, we examine the impact of
the marginal distribution and the Hurst parameter on the
loss rate. To do this, we examine two transformations of the
marginal distribution, namely a scaling and a convolution
transformation. The first transformation scales the density
of the marginal distribution by a constant factor «, while
keeping the mean \ = mA1” constant. Thus, we simply
replace \; with A} = X + a(A; — X). Figure 8 shows the loss
rate for H in the range (0.5,1.0) and « in the range (0.5, 1.5).
The normalized buffer size is set to 1 s. The cutoff lag is set
to 100 s. Referring to Figure 4, we note that this cutoff lag



Shuffle loss rate as a function of normalized buffer size and cutoff time (MTV, util=0.8)

log10(loss rate)

20

norm. buffer size [s] cutoff [s]

Figure 6: The loss rate obtained with shuffling for the MTV
trace as a function of normalized buffer size and cutoff lag,
at utilization 0.8.

Shuffle loss rate as a function of normalized buffer size and cutoff time (BC, util=0.4)

-2
-4

-6

log10(loss rate)

15 4

norm. buffer size [s] cutoff [s]

Figure 7: The loss rate obtained with shuffling for the Bell-
core trace as a function of normalized buffer size and cutoff
lag, at utilization 0.4.

is considerably larger than the CH.

The second transformation convolves the original distribu-
tion n times and renormalizes it to the original mean. Note
that this transformation amounts to considering the super-
position of n of the original streams, where the buffer size
and the service rate per stream are kept constant. Figure 9
shows the loss rate for H in the range [0.55,0.95] and n in
the range 1,...,5.

The figures bring out a very interesting result, namely that
the impact of the transformations on the loss rate is much
greater than that of the Hurst parameter. For example, we
observe in Figures 8 and 9 that changing « from 1.0 to 0.5
or superposing 3 streams decreases the loss rate by about 3
orders of magnitude. In contrast, changing the value of H

Loss rate as a function of Hurst parameter and marginal scaling (MTV, util=0.8)
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Figure 8: The loss rate predicted by the model for the MTV

trace as a function of the Hurst parameter and the marginal
distribution scaling, at utilization 0.8.

Loss rate as a function of Hurst parameter and number of superposed streams
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Figure 9: The loss rate predicted by the model for the
MTYV trace as a function of the Hurst parameter and the
marginal distribution obtained by n convolutions of the orig-
inal marginal distribution, at utilization 0.8.

has much less of an impact on the loss rate.

This result is confirmed in our third set of experiments, in
which we examine the impact of the marginal distribution
and the normalized buffer size on the loss rate. Figures
10 and 11 show that small changes in the marginal scaling
factor again yield dramatic changes in the loss rate, more
so than changes in the buffer size would do. For example,
reducing the width of the marginal distribution by a factor
of two (from o =1 to @ = 0.5) decreases the loss rate more
than increasing the buffer size even up to 5 s (which is an
extremely large value in practice).

The consequences of this are threefold.



Loss rate as a function of normalized buffer size and marginal scaling (MTV, util=0.8)
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Figure 10: The loss rate for the MTV trace as a function

of normalized buffer size and marginal scaling factor for a
utilization of 0.8.

Loss rate as a function of normalized buffer size and marginal scaling (Bellcore, util=0.4)
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Figure 11: The loss rate for the Bellcore trace as a function
of normalized buffer size and marginal scaling factor for a
utilization of 0.4.

The first consequence relates to modeling. Clearly, the marginal
distribution is a crucial parameter and it must be taken into
account for accurate loss prediction. This is in agreement
with results obtained by others using analytic approaches re-
garding the impact of the marginal distribution on the tail

of the queue occupancy in infinite buffers (e.g [26]).

The second consequence relates to multiplexing. Our result
above, namely that superposing even a moderate number
of streams sharply decreases the loss rate, indicates that
statistical multiplexing is an efficient mechanism (more so
than buffering) to achieve high utilization while keeping loss
low.

The third consequence relates to traffic control. Indeed,
source traffic control mechanisms can be thought of as mod-
ifying the scaling of the marginal distribution. Our result

then indicates that such control mechanisms (which we ex-
pect would typically be feedback-based) are effective for loss
control with LRD sources.

4 Discussion

We start this section by summarizing the key findings from
Section 3. These are

- There exists a correlation horizon (CH) such that the
loss rate is not affected if the cutoff lag increases be-
yond CH. Thus, CH separates relevant and irrelevant
correlation with respect to the loss rate.

- Large buffers are helpful to significantly reduce the
loss rate only for short-range dependent traffic; for
long-range dependent traffic, increasing the buffer size
has little impact.

- The marginal scaling factor has considerable impact on
the loss rate, even more so than the Hurst parameter
or the buffer size.

- Adjusting the marginal scaling factor by statistical
multiplexing several streams or by using source traffic
control mechanisms is a very efficient way of reducing
loss while keeping utilization high.

Two seemingly contradictory conclusions have usually been
drawn in the literature from experiments with long-range
dependent traffic. On the one hand, mathematical analysis
of queueing systems with LRD input shows that the queue
occupancy exhibits an asymptotic behavior very much dif-
ferent from that observed with Markov sources [24, 8]. This
behavior has also been confirmed through simulation [11].
On the other hand, the literature on Markov modeling re-
ports good performance prediction for finite buffer systems
even when input traffic streams are correlated over many
time-scales [10, 15, 29]. However, the contradiction is only
apparent. Indeed, the existence of a finite buffer queue sets
a limit on the memory of the system. This is because the
buffer “forgets” about the past as soon as it is either empty
or full ( this is referred to as the resetting effect in [15]).
We refer to the length of the time interval having an im-
pact on the current system state as the implicit time scale
of the system. Note that the implicit time scale of an in-
finite buffer is infinite, because the buffer can accumulate
an arbitrary amount of information about the past. It be-
comes clear that analyzing finite or infinite queues in the
presence of long-memory input processes leads to the seem-
ingly contradictory results mentioned above. While in the
infinite queue, correlation on all time-scales has an impact
on performance, only the correlation up to the implicit sys-
tem time scale has an effect in the finite buffer queue. This
fits exactly our observation in Section 3 of the existence of
the correlation horizon CH.

We next describe a simple way to estimate CH in terms of
the various system parameters. The estimation procedure is
based on the resetting argument mentioned earlier, i.e. we
assume that when the buffer becomes empty or full, infor-
mation about the past is lost. Then, we take the correlation
horizon estimate Tcm to be the time interval for which the
probability that the buffer empties or overflows at least once
is close to one.



We make the assumption that the correlation horizon is
much longer than the average interarrival time p. If the
converse were true, then the buffer would either empty or
overflow with very high probability within a single interar-
rival interval. This would mean that the utilization is close
to zero, or that the loss rate is extremely high.

Let Iy =) | W, denote the sum of the excess work in n
consecutive intervals, and © = Z?:l T, denote the sum of
the lengths of the n intervals. Now assume we are looking
at the queue at an arrival instant 7., and that the queue
occupancy at that moment is equal to . Note that the
probability of either emptying or overflowing the buffer at
some point during the next n intervals is bounded below by
Pr{Q + T, <0} +Pr{Q + T > B}. We wish to find n such
that the probability p = 1—Pr{Q+T', < 0}—Pr{Q+I > B}
of no reset occurring during n intervals is very small.

Given our assumption that Tcxg > p, we look for n large.
Then, the central limit theorem says that for large values of
n, @+ I', is approximately normally distributed with mean
Q + npu(X — ¢) and variance no%a}, where p is the average
interval length, X is the average rate, o% is the variance of
the interarrival time, and o2 is the variance of the marginal
distribution. Furthermore, © is approximately normally dis-
tributed as well, with mean ny and variance no2.

As we do not explicitly know the distribution of @, we find
an upper bound on p by setting the mean of the normal
distribution to B/2, which corresponds to selecting the value
of @ that is least likely to result in a reset during the next
n intervals. With this assumption, the upper bound on p
becomes p < erf(m), where erf(.) denotes the error

function. Let us now choose Tcn such that the probability
that n intervals fit into T¢g is high, i.e. Tom = n(p+ Bor),
where (8 is a small constant (e.g. 3 = 2 results in this
probability being =~ 0.9.) Then we may write Tcw as

Ten (p+ Bor) (20)

B
- 2/ 200 erf ! (p)

The above estimate provides valuable insight into the impact
on CH of the various parameters of the model. For example,
we note that Tcm scales linearly with the buffer size, and
that it is proportional to the inverse of the standard devi-
ation of the marginal distribution. This is intuitively not
surprising. Indeed, increasing the buffer size by a factor «
implies that (the input rate being constant) it takes « times
longer to overflow or empty the buffer, and thus to reach
a resetting point. On the other hand, scaling the marginal
distribution by a factor o has exactly the opposite impact
(refer to Figure 8 and the discussion there). Finally, we
observe that, as or increases, Tcmg converges to a limiting
value that depends only on the buffer size and on the width
of the marginal distribution. This is in agreement with the
“flattening out” of the loss rate with increasing cutoff lag
observed in Figures 4 to 7. This behavior of T¢ g illustrates
the above-mentioned implicit time-scale of the system.

5 Conclusion

We have focussed in this paper on a particular instance of
performance prediction relying on traffic modeling, where
the performance metric has been defined as the long-term
loss rate. We have then shown that the relevant correlation

is limited to a time-scale smaller than the correlation hori-
zon. This might seem to support the claim that only models
with limited memory (up to CH) make sense, and hence that
self-similar models have no place in cases like these. This
means instead that for this type of performance problem,
we may choose any model among all the available models as
long as it captures the correlation structure up to CH. The
choice can be based on analytic tractability, on ease of pa-
rameter identification from traces, etc. Markov models are
one possible choice since they can capture correlations up to
some given value CH. And indeed, as we mentioned earlier,
several studies have used Markov models for performance
prediction with finite buffers and found them to work well.

However, we would like to stress that the amount of cor-
relation that must be taken into account in a model also
depends on the performance metric of interest in the model.
We next illustrate this with a simple example. Assume that
we would like to compare the performance of closed-loop
(ARQ) and open-loop (FEC) error control schemes for re-
liable point-to-point communications. Let us try to guess
the relevant time-scales of this problem. ARQ schemes per-
form well when losses are bursty because they can accumu-
late information about the loss of the whole burst and re-
quest retransmission of the whole block in one go. FEC
schemes perform well when losses are spread out over time
because they can correct errors of the type “among n pack-
ets, k < kmax < n have been lost”. The probability that k
exceeds kmax is smaller for independent losses than for cor-
related losses. This suggests that extending the time-scale
of the correlation structure of the packet arrival process in a
model of error control schemes amounts to increasing the ad-
vantage of ARQ over FEC. Therefore, it seems necessary for
this problem to make an effort to correctly model the arrival
and loss processes over a wide range of time-scales. Thus,
a parsimonious self-similar model would be appropriate in
this case.

Parsimonious models of self-similar processes capture the be-
havior of these processes over all time-scales using a small
number of parameters. They appear to be particularly well
suited in a number of different cases. First, in cases such
as that described above for the ARQ/FEC evaluation when
the system under study does not have a clearly bounded
time-scale. Second, in cases when we wish to generate traces
that match LRD behavior observed in actual networks. Since
we do not want to restrict the use of these traces to a spe-
cific modeling task, we cannot make any assumptions about
the relevance of the model parameters. Thus, traces should
be derived from a self-similar traffic model. Of course, our
results in Section 3 show that trace generation based on
self-similar model (or any other model for that matter) should
also take into account statistics such as the marginal distri-
bution if we want to achieve accurate performance predic-
tion.
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