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Abstract

Measurement-based Admission Control (MBAC) is an attrac-
tive mechanism to concurrently offer Quality of Service (QoS)
to users, without requiring a-priori traffic specification and on-
line policing. However, several aspects of such a system need to
be clearly understood in order to devise robust MBAC schemes.
Through a sequence of increasingly sophisticated stochastic mod-
els, we study the impact of parameter estimation errors, of flow
arrival and departure dynamics, and of estimation memory on
the performance of an MBAC system.

We show that a certainty equivalence assumption, i.e., as-
suming that the measured parameters are the real ones, can
grossly compromise the target performance of the system. We
quantify the improvement in performance as a function of the
memory size of the estimator and a more conservative choice of
the certainty-equivalent parameters. Our results yield valuable
new insight into the performance of MBAC schemes, and repre-
sent quantitative guidelines for the design of robust schemes.

1 Introduction

Integrated-services networks are expected to carry a class
of traffic that requires Quality of Service (QoS) guarantees.
One of the main challenges consists in providing QoS to users
while efficiently sharing network resources through statistical
multiplexing. The role of Admission Control (AC) is to limit
the number of flows admitted into the network such that each
individual flow obtains the desired QoS.

Traditional approaches to admission control require an a
priori traffic specification in terms of the parameters of a de-
terministic or stochastic model. The admission decision is
then based on the specifications of the existing and the new
flow. This approach suffers from several drawbacks. First,
it is usually difficult for the user to tightly characterize his
traffic in advance [11]. This is true even for stored media
such as video-on-demand, as the user is expected to be able
to exercise interactive control (such as pause, fast-forward
etc.) As a result, traffic specifications can be expected to
be quite loose. Second, there exists a modeling tradeoff be-
tween the ability to police and the statistical multiplexing
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gain. Deterministic models such as leaky buckets are easy
to police, as they specify the worst-case behavior of traffic
on a single time-scale, but they fail to provide a sufficient
characterization to extract a large fraction of the potential
statistical multiplexing gain. While a sequence of leaky buck-
ets can approach such a multiple time-scale characterization,
the number of model parameters grows accordingly [10].

Stochastic models such as those based on effective band-
width [8] are better suited to achieve good statistical multi-
plexing gain. However, they suffer from two problems. First,
it is difficult for the user to come up with the model para-
meters a priori. If he overestimates his requirements, then
resources will be wasted in the network. This reduces the
network utilization. If he underestimates his requirements,
then insufficient resources will be allocated to his flow. The
user has to abort the flow or try to adapt to this situation, for
example by increasing the degree of compression of a video
flow, thereby lowering its perceived quality. Second, it is
hard to police traffic according to a statistical model [8]. It
is not clear how to ensure that a traffic flow correspond to
the specified parameters, without which admission control
can easily be “fooled”.

Measurement-based Admission Control (MBAC) avoids
this problem by shifting the task of traffic specification from
the user to the network. Instead of the user explicitly spec-
ifying his traffic, the network attempts to “learn” the statis-
tics of existing flows by making on-line measurements. This
approach has several important advantages. First, the user-
specified traffic descriptor can be trivially simple (e.g. peak
rate). Second, an overly conservative specification does not
result in an overallocation of resources for the entire dura-
tion of the session. Third, when traffic from different flows
are multiplexed, the QoS experienced depends often on their
aggregate behavior, the statistics of which are easier to esti-
mate than those of an individual flow. This is a consequence
of the law of the large numbers. It is thus easier to predict
aggregate behavior rather than the behavior of an individual

ow.

Relying on measured quantities for admission control raises
a number of issues that have to be understood in order to
develop robust schemes.

e Estimation error. There is the possibility of making
errors associated with any estimation procedure. In
the context of MBAC, the estimation errors can trans-
late into erroneous flow admission decisions. The ef-
fect of these decision errors has to be carefully studied,
because they add another level of uncertainty to the
system, the first level being the stochastic nature of
the traffic itself. Assuming certainty equivalence up-
front, i.e. assuming that the estimated parameters are
the real parameters, is dangerous, as we simply ignore
its impact on the quality of service. Actually, as we



will show, estimation error tends to compromise the
QoS delivered to users, as there exists a fundamental
asymmetry associated with the uncertainty of the flow
parameters: the negative effect on QoS of an underes-
timation of flow parameters - and therefore of an over-
estimation of the number of permissible flows - far ex-
ceeds the positive effect on QoS of an overestimation of
flow parameters. Thus, on average, measurement un-
certainty works against us, and we shall quantify how
they can be compensated for in the MBAC.

¢ Dynamics and separation of time-scale. A MBAC
is a dynamical system, with flow arrivals and depar-
tures, and parameter estimates that vary with time.
It is tempting to make an assumption of burst and
flow time-scale separation to conceptually decouple es-
timation, which measures the in-flow burst statistics,
and flow dynamics, which occur on the flow time-scale.
However, as we will show, this time-scale separation not
only depends on the absolute burst and flow time-scale,
but also on the size of the system as well as the flow
arrival rate. Thus, the question to the impact of flow
arrivals and departures on QoS arises. Intuitively, each
flow arrival carries the potential of making a wrong de-
cision. We therefore expect a high flow arrival rate to
have a negative effect on performance. On the other
hand, the impact of a wrong flow admission decision
on performance also depends on how long it takes until
this error can be corrected - that is, on flow departure
dynamics.

e Memory. The quality of the estimators can be im-
proved by using more past information about the flows
present in the system. However, memory in the estima-
tion process adds another component to the dynamics
of a MBAC. For example, it introduces more correlation
between successive flow admission decisions. Moreover,
using too much memory will reduce the adaptability of
MBAC to non-stationarities in the statistics. A key is-
sue is therefore to determine an appropriate amount of
memory to use. For this, a clear understanding of the
impact of memory on both estimation errors and flow
dynamics is necessary.

The goal of this work is to study the above issues - the
impact of estimation error, of flow arrival and departure dy-
namics, and of measurement memory - in a unified frame-
work. We wish to gain an understanding about how these
aspects of a MBAC system interact. To do so, we consider a
sequence of increasingly sophisticated models, adding one of
the above issues at a time. This sequence culminates in the
continuous load model, which allows us to derive analytical
approximations, as well as an intuitive understanding, about
how the above issues fit together. The ultimate goal is to
shed insights on the design of robust MBAC schemes which
can provide the appropriate QoS to the user even in the pres-
ence of the additional uncertainty due to measurements.

It should be stressed that the goal of this paper is not
to propose a complete admission control scheme. Rather,
we focus only on the above issues, by keeping the models as
simple as possible. This has led us to make several assump-
tions that are clearly not realistic, but not of relevance to
the issues we are interested in. These assumptions include
stochastic homogeneity across flows, stationarity, and the ab-
sence of long-range dependence (LRD) in the flows. Relaxing
these assumptions opens up promising directions for future
research.

The rest of the paper is organized as follows. In Section
2, we describe the models that will be studied. The analysis
of these models is explained in Section 3 and 4. In Sections
5 and 6, we summarize the insights obtained, report some
initial simulation results, and discuss how our results relate

to previous work in measurement-based admission control.
‘We conclude the paper in Section 7.

2 Models

‘We begin by briefly describing the basic model. The network
resource considered is a bufferless single link with capacity c.
Flows arrive over time and, if admitted, stay for a random
time. The bandwidth requirements of a flow fluctuate over
time while in the system. We assume that the statistics of
the bandwidth fluctuations of each flow are identical, station-
ary and independent of each other, with a mean bandwidth
requirement of y and variance o>, An important system pa-
rameter is the normalized capacity n := <, which measures

the system size in terms of the mean bandwidth of the flows.
Resource overload occurs when the instantaneous aggregate
bandwidth demand exceeds the link capacity, and the quality
of service is measured by the steady-state overflow probabil-
ity pg.

To study the various issues outlined in the introduction,
we will analyze three variations of this basic model of in-
creasing complexity. In the first variation, an infinite burst
of flows arrives at time 0 and admission control decisions are
made then, based on the initial bandwidths of the flows. Af-
ter time 0, no more flows will be accepted and moreover the
flows already admitted will stay in the system forever. We
call this the impulsive load model with infinite flow holding
time. This model permits us to study the impact of the mea-
surement errors on the number of admitted flows and on the
overflow probability, without the need to worry about flow
dynamics.

In the second variation, we consider a similar model with
flows admitted only at time 0, but now the admitted flows
have holding times exponentially distributed with mean T%.
Thus, they will gradually depart from the system. We call
this the impulsive load model with finite flow holding time.
This model allows us to study the impact of flow departures
on the overflow probability.

The last variation is the continuous load model, where
the full flow arrival and departure dynamics are considered.
In this model, flows arrive continuously over time with effec-
tively infinite arrival rate, i.e. there are always flows wait-
ing to be admitted into the network. Once they are admit-
ted, they stay for an exponentially distributed holding time
with mean T},. The motivation for this model is that a well-
designed robust MBAC should work well even for very high
flow arrival rates, to cater for times when there is a surge in
user demand of the service. Thus, the continuous-load model
provides the most stringent test for MBACs.

Several comments about the model are in order. First, we
observe that the traffic model is a stationary one. In prac-
tice, one of the main reasons for using a measurement-based
scheme is to adapt to non-stationarities in the statistics of
the traffic, either due to the change in the nature of the flows
or change in the statistics within a flow itself. The approach
taken in this paper is to use a stationary model to evaluate
the performance of schemes with limited memory. Thus, the
results are valid if the traffic statistics are stationary within
the memory time-scale. We view this as a first step towards
a full understanding of adaptivity issues.

Second, we consider a resource model without buffers.
There are several motivations for this. First, the dynamics
leading to the overflow event in a bufferless system is much
simpler than that of overflowing in a buffered system, as
the event occurs whenever the instantaneous aggregate traf-
fic load exceeds the link capacity. This simplification allows
us to focus on the measurement problem that is of central
interest in this paper. Second, our recent work on multiple
time-scale traffic [6] such as compressed VBR video has in-
dicated that a significant bulk of the statistical multiplexing
gain can be obtained by a Renegotiated Constant Bit Rate



(RCBR) service. In this service model, buffering only occurs
at the network edge, while sources renegotiate CBR rates
from the network over the duration of a flow. Thus, the rates
of the users fluctuate over time. Bandwidth renegotiations
fail when the current aggregate bandwidth demand exceeds
the link capacity, and the renegotiation failure probability is
the QoS measure of this service. Thus, our bufferless model
is directly applicable to this problem. In any case, the per-
formance of schemes for the bufferless model is a conservative
upper bound to the case when there are buffers.

Before we begin the analysis of these models, a few words
about the notations in this paper. We use capital letters to
denote random variables. The Gaussian distribution will play
a central role in our analysis; the probability density func-
tion of a zero mean, unit variance Gaussian random variable
(N(0,1)) is denoted by

1
—— exp(—
Var ( 2
and the complementary cumulative distribution function de-
noted by

¢(z) = ) (1)

aw) = [ " bwdu. @)

3 Impulsive Load Models
3.1 Infinite Flow Holding Time

In this subsection, we study the impulsive load model with
infinite flow holding time, when flows are admitted at time
0 and stay in the system forever. The goal here is twofold.
First, we wish to illustrate the importance of the additional
uncertainty due to measurement or estimation error, by com-
paring schemes with perfect knowledge and measurement-
based schemes. Second, we wish to lay the groundwork for
the more sophisticated models discussed in subsequent sec-
tions.

Suppose the stationary bandwidth distribution of each
flow i has mean p and variance o2. The number of admissible
flows m™ is the largest integer m such that

Pr iXi(t)>c < pg- (3)

where X;(¢) is the bandwidth of the sth flow at time ¢. (Recall
that ¢ := np is the total capacity of the link.) For large
system size n, the number of admissible calls will be large,
and by the Central Limit Theorem,

% ZXi(t)—m,u ~ N(0,1)

Thus, if the parameters px and o? are known a priori, then
the number of flows m* to accept should satisfy:

s (@

where Q(-) is the ccdf of a N(0,1) Gaussian random vari-

able as defined in eqn. (2). ' Because the AC has perfect
knowledge of the statistics, the actual steady state overflow
probability

py:=Pr ZXi(t) >c
i=1

!Note that here, as in the sequel, we are ignoring the fact that
m™ is an integer and therefore eqn. (4) cannot be satisfied exactly in
general. In the regime of large capacities, however, the approximation
is good and the discrepancy can be ignored.

satisfies the QoS requirement. For reasonably large capaci-
ties, it follows from solving (4) that m™ is well approximated
by:
m*~n— &\/ﬁ (5)
m

where oy := Q7 '(py). Note that n is the number of flows
that can be carried on the link if each has constant bandwidth
p. Thus, the term =7¢\/n in the above expression can be

interpreted as the safety margin left to cater for the (known)
burstiness of the traffic.

Now, consider the situation when a MBAC does not know
p and o a priori, but relies on an estimation of these para-
meters from the initial bandwidth of the flows and use the
estimates in a certainty equivalent fashion. More specifically,
we assume there are an infinite number of flows waiting for
admission at time 0 due to a burst of arrivals. Invoking again
the central limit approximation for large systems, the num-
ber of flows My the MBAC admits should satisfy:

Q| ikt ©
where
Ll [ & N :
NZE;Xi(O) and = n_lg(xi(m—uf

The criterion (6) is the same as (4), but with the true mean p
and standard deviation o replaced by the estimated mean [
and standard deviation & respectively.? Note that the num-
ber of flows My admitted under the MBAC is now random,
depending on the random bandwidths of the flows at time
0. This is a consequence of the fact that the admission con-
trol decisions are made based on measurements rather than
known parameters. Also, the scheme considered here is an
example of a memoryless MBAC, since the admission control
decisions are made based on the current bandwidths only.

We now want to approximate the average overflow prob-
ability

Mo
ps:=Pr ZXi(t) >c
=1

in steady state (i.e. for ¢ large) and compare it to the tar-
get pg. To do this, we first find an approximation for the
distribution of My, the number of flows admitted.

For large capacities, by the law of large numbers, the es-
timated mean 4 will be close to the true mean g, and the
estimated variance 62 will be close to the true variance o2.
A more precise approximation of the deviation of these esti-
mated quantities from the true values is given by the Central
Limit Theorem:

X 1 o 1 1 |
po= ;gxim):wﬁ NG ;Xi(())—?w

u+0—\/}:—f (7)

for large n. Here, Yo ~ N(0,1), and can be interpreted as
the scaled aggregate bandwidth fluctuation at time 0 around
the mean. Similarly, the estimated standard deviation can
be written as:

Q

o+ — (8)

Jn

20bserve here that the estimation is based on n flows. In a more
precise model, the estimation should be based on My flows, the number
to be admitted. However, in a large system, Mg will be close to n and
the discrepancy in replacing Mo by n in the estimators are small.




where Zp is Gaussian. These two approximations imply that
the deviation of the estimates from the respective true quan-
tities is of order ﬁ Now, as mentioned earlier, if the esti-
mates were ezactly equal to their true values, then the num-
ber of flows admitted My will be precisely m*. This sug-
gests that we can approximate the distribution of My by a
linearization of the relationship (6) around a nominal oper-
ating point (m™, u, o) (i.e. the operating point under perfect

knowledge):

np— (m* + Ay )(p+ 52)

=«
(0 +22)Vm*+ Ay !

Expanding the left hand side, using eqn. (4) and neglecting
terms o(1) 3, we get*

—+EY0%0
M

n

and hence for large n,

Mo ~m* — %Yo\/ﬁ. (9)
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Figure 1: Uncertainty due to fluctuation in the number of
flows (top) and in the aggregate bandwidth (bottom), for an
admission controller with perfect knowledge (left) and for an
MBAC (right).

Thus, we see that the effect of estimation error is an order
/n Gaussian fluctuation around m™, the number of sources
admitted under perfect knowledge (cf. top part of Fig 1).
Note also that the randomness in the number of flows admit-
ted is due mainly to the error in estimating the mean (Yp)
rather than the error in estimating the standard deviation
(Zo).

Substituting eqn. (5) into (9), we get My in terms of the
system size n:

Mo ~n— %(Yo+aq)\/ﬁ (10)

3The notation o(1) means terms going to zero as n goes to infinity
4Here and in the sequel, the notation “a” refers to an approxima-
tion with an error o(/n).

Although we have derived the result somewhat heuristically,
it can be made precise by the following result, which is proved
in the appendix.

Proposition 3.1 For each system size n, let Mé") be the
random number of flows admitted under the MBAC when
the capacity is nu. Then the sequence of random wvariables
(n)_,,
%’\/;—} converges in distribution to the random wvariable
— % (YO + aq).

We now proceed with an explicit approximation of the
overflow probability. The randomness in the aggregate traf-
fic load at some future time is due both to the randomness
in the number of flows admitted as well as the randomness
in the bandwidth demands of those flows. This can be ap-
proximated with the help of the following lemma, which is
an extension of the Central Limit Theorem for a sum of a
random number of random variables:

Lemma 3.2 [1, p. 369, problem 27.14] Let X1, Xo, ... be in-
dependent, identically distributed random variables with mean

w and variance o, and for each positive n, let V,, be a ran-
dom variable assuming positive integers as values; it need not

be independent of the Xm ’s. Let W, = 221 Xi. Suppose as
% converges to 1 almost surely. Then as n — oo,

Wn —Vap
cr\/ﬁ

converges in distribution to a N(0,1) random variable.

n — 00,

Applying this lemma, the aggregate load at time ¢ can ap-
proximated by:

Mo
Sy 1= ZXi(t)NMo,u—I-GYt\/E (11)
i=1

Here Y; ~ N(0,1) and can be interpreted as an approxima-
tion for the scaled aggregate bandwidth fluctuation at time
t:

ﬁ > Xi(t) —np| &Y (12)

Intuitively, eqn. (11) means that the fluctuation of the ag-
gregate load is approximately the linear superposition of two
effects: the random number of flows together with the ran-
dom bandwidth fluctuation around the mean. Substituting
eqn. (9), we get

Sy mnu+o(Ye — Yo — ag)v/n
Thus, for large n, the overflow probability at time ¢ is:
Pr{S: > nu} = Pr{Y¥; — Yo > a4}

This expression gives us an interpretation of how overflow
occurs in a MBAC system: it is a combination of an aggre-
gate bandwidth estimation error at admission time (Yp) and
a fluctuation of the aggregate bandwidth (Y;) at time ¢ after
the flows have been accepted. Contrast this with the case
with perfect knowledge, where the overflow probability at
time ¢ is simply Pr{Y; > a4}, due to bandwidth fluctuation
at time t¢.

To get the overflow probability in steady state, we set
t = 00, in which case Y is independent of Yy. Therefore, the
difference Yoo — Yp is a Gaussian random variable with mean
0 and variance 20>. The overflow probability is therefore

prQ (5) . (13)

We summarize this result more formally in the following
proposition:



Proposition 3.3 Suppose the target overflow probability QoS
is pq. Let pgc") be the actual average steady state overflow

probability using the certainty equivalent MBAC for capacity
nu. Then as the system size grows:

Tim 5 = Q (Q‘\/(;:;))

Note that for the AC with perfect knowledge, the overflow
probability is exactly py. This is because the aggregate band-
width fluctuation stems only from the fluctuation of the in-
dividual flows’ bandwidths (cf. lower left part of Fig. 1). On
the other hand, in the measurement-based case, the variance
of the aggregate bandwidth is doubled because the number
of flows also fluctuates due to measurement error (cf. lower

right part of Fig. 1). The v/2 factor is therefore the effect of
measurement error, and has quite a tremendous impact on
the overflow probability ps. For example, if p; = 1.0e — 5,
then the actual performance in the MBAC system would be
pr = 1.3e — 3, a difference of two orders of magnitude. In
other words, if we want to achieve py = pq using a MBAC in
this impulsive load model, then we have to adjust the target
overflow probability under certainty equivalence.

Pee = Q (ﬁaq) or Qe 1= Q_l(pw) = \/§O‘Q' (14)
#(z)

x

Using the approximation Q(z) &
that

for small Q(z), we see

~ e 2

pce ~ Qﬁpq
Thus, we see that to achieve a target p, in this setting, we
need to set pce roughly to be the square of the target proba-
bility. This conservatism leads to a loss in system wutilization
compared to the scheme with perfect knowledge of the statis-
tics. The average utilization (in terms of bandwidth) for the
certainty equivalent scheme using parameter p.. instead of pq
is given by E(Mp)u, or ¢ — cace/n, as implied by eqn. (9).
The average utilization for the perfect knowledge scheme, on
the other hand, is given by m*pu, or ¢ — ocagy/n, as inferred

from (5). Thus, if we pick cce to be v/2ay, this translates to

a loss of utilization of (v/2 — 1)oag+/n.

Proposition 3.3 has several surprising aspects. First, it is
a universal result in the sense that the performance of the cer-
tainty equivalent scheme does not depend on the stationary
distribution of the flow nor its mean and variance. Second,
although the estimators are unbiased, the net impact on the
performance of the system is negative. Thus there is an in-
herent asymmetry between the effects of over-estimation and
under-estimation. Third, the impact of the estimation error
does not vanish as the system size becomes large, even though
the estimates become more and more accurate. Fourth, for a
large system, the degradation in performance of the certainty
equivalent scheme is due mainly to the estimation error in the
mean p of the bandwidth distribution and not to that in the
standard deviation o.

To get more insights into the last two phenomena, let
us perform the following deterministic sensitivity analysis.
Define the following function:

._ c—muy
pf(lu’ao',m) =Q [ 0\/7_n :|
which is the overflow probability when there are m flows in
the system each with mean rate p and variance 2. Sup-
pose first that we measure only p, but that o is known ex-
actly. The number of flows admitted m(z) depends on the
measured value 7 and is given by the certainty-equivalent
admission criterion (compare with (6)):

ps (1, 0,m () = pa- (15)

Note that the actual overflow probability p; for a given m(g)
is pf(p, 0,m(n)). The sensitivity of the overflow probability
with respect to the measured y is the deviation of ps from
its target value p, if 1z deviates slightly from its target value
. For small deviations, we can simply use the derivative of
ps with respect to p.

o ~
Sp = @pf(u, a,m(u))|

p=p
Using (15), this derivative can be computed as:
5 = _ p(ag)p S
a
Similarly, the sensitivity with respect to measured &, assum-
ing p known, is given by:

agP(ag)

g

So =

Now observe that the sensitivity of the system perfor-
mance on the knowledge of the standard deviation, s,, does
not depend on the system size. Therefore, increasing the
system size, and therefore improving the quality of the esti-
mator &, results in a diminishing net impact on the overflow
probability. On the other hand, the sensitivity s, increases
with the system size, approximately as \/n, while the vari-
ance of the estimator 1 decreases approximately as 1/y/n.
This suggests that the net impact of the uncertainty in the
mean bandwidth estimate does not diminish as the system
size grows, and also explains why the deviation from ps from
the target overflow probability pq is asymptotically indepen-
dent of n: both effects, less estimation error but increased
sensitivity to estimation error, cancel out. The increased
sensitivity to the mean estimate arises because when there
are more flows in the system, and therefore more statistical
regularity in the aggregate bandwidth, the system is driven
closer to full utilization, which makes it more susceptible to
admission mistakes.

The approximations used here are based in the heavy traf-
fic regime, where the system size is large and when scaling
up the size of the system, we exploit the additional statis-
tical regularity by increasing the system utilization, while
keeping the QoS constant. This is in contrast to the large
deviations regime, where the system utilization is asymptoti-
cally constant, but where the QoS-requirement is scaled with
the system size. The heavy traffic approximations allow us
to linearize the dynamics of the system and to use Gaussian
statistics. This will prove even more valuable as we analyze
more complex models in the next sections. A large deviations
analysis of a related measurement-based admission control
problem can be found in [14].

3.2 Finite Holding Time

Now that we have convinced ourselves that estimation error
can have an impact that should not be neglected, we want to
refine the previous model. More specifically, we now assume
that the time-scale separation is finite. There still is a burst
of flows arriving at time 0 and demanding admission into the
system. However, these flows are now assumed to have finite
duration. In fact, we assume that the length of a flow (i.e.,
the time between the flow’s admission and the time when it
departs from the system) is an exponential random variable
with mean T}, and the lengths of different flows are assumed
independent. We let p; denote the probability that a flow
has not departed from the system at time ¢. It is given by

Pt = exp (—Tih) . (16)



Furthermore, we let p(t) denote a flow’s autocorrelation func-
tion.

If N; is the number of flows left in the system at time
t, and My is the initial number of flows admitted into the
system, then expected number of flows E[N:] at time ¢ is
p+E[Mp]. Using eqn. (9), this implies that

E[N] = pin — ’%\/ﬁ

We observe that the system size is n, and so approximately
a fraction p: of the total capacity is used at time ¢. The law
of large number suggests that as n becomes large and every-
thing else fixed, the overflow probability at time ¢ actually
goes to zero!

Intuitively, this can be explained as follows. When per-
forming certainty-equivalent admission control, we set aside
some bandwidth in order to accommodate fluctuations of the
aggregate bandwidth. This spare bandwidth is on the order
of /n (cf. (5)). On the other hand, the flow departure
rate is proportional to the number of flows in the system,
approximately proportional to n/T,. Now suppose that at
some time instant, the system is close to overloading. How
much time is necessary to restore the “safety margin” of \/n
by letting flows depart? This restore time is on the order
of \/n/(n/Th) = Th/\/n. Thus, the larger the system, the
faster can the safety margin be restored. This means that to
cause an overload, the aggregate bandwidth must fluctuate
fast enough so that this fluctuation cannot be compensated
for by just letting flows depart. However, as the time-scale
gets shorter, the aggregate bandwidth tends to be more cor-
related, thus making such a quick change more and more
unlikely.

While the above suggests that for large enough n, the
overflow probability gets close to zero, it is clear that the
longer the duration 7% of the flows, the larger the system
size has to be for this effect to kick in. The above asymp-
totic analysis is crude in the sense that the flow duration,
which may be quite long, does not enter the picture, since
all other parameters are kept fixed while n grows large. On
the other hand, it can be seen from the above discussion that
the restore time T} /+/n is the natural time-scale to analyze
the dynamics due to flow departure. To make such analysis
more convenient, let us rescale the flow holding time:

Ty = Tar/n

where we view T}, fixed as n grows large. The advantage of
this scaling is that it allows us to make approximations for
large n but at the same time taking into consideration the ac-
tual duration of the flows. More specifically, it can be shown,
under this scaling, the flow departure rate can be thought of
as constant equal to /n/Th. Letting D[0,¢] be the number
of flows departing in [0, t], we have the approximation:

D[0, 1] ~ ,Tiv\/ﬁ (17)
h

Using eqn. (9), the number of flows left in the system at time
t can therefore be approximated as

Ny = Mo — D[0,t] ~ n — [%(Yo+aq)+%] vn o (18)

Using Lemma 3.2, the aggregate load at time ¢ can be ap-
proximated as:

Si = ) Xi(t)m Nep+oYiy/n
i=1

np+o<Yt—Y0—“—i—aq) Ja o (19)
o1y

Q

where Y; is an approximation of the scaled fluctuation of the
aggregate bandwidth

% lz X;(t) — n,u] .

By the Central Limit Theorem applied to pairs of random

variables [1], Yo and Y; are jointly Gaussian random vari-

ables with zero means, unit variances and covariance p(t) (i.e.

same as an individual flow). Thus, Y; —Yp ~ N[0, 2(1—p(t))]-
The overflow probability ps(t) at time ¢ is given by

Q

t
ps(t) Pr{yz—yo>“—~+aq}

oTh

_ ! Bl oL,
B Q( 2(1— p(t)) [UﬁJr q]) 0

From (20), we can see clearly the two effects affecting the

overflow probability. For small ¢, the denominator {/2(1 — p(t))
is close to zero, making the overflow probability very small.
This is because shortly after the admission decision, due to
correlation in the bandwidth of the flows, the aggregate band-

width does not change much. For large ¢, t/ﬁ makes the
argument of the Q-function large as well, i.e. the overflow
probability small. This is because enough ﬂgyvs have de-

parted to make overflow unlikely. Intuitively, T defines the
critical time-scale for this system: it is unlikely that an over-

flow event occurs at times significantly after Tn. Thus, in the
study of this system, we can concentrate on what happens

between times of the order of Ty. It is interesting that since

Ty = Tx//n, this critical time-scale depends not only on the
average holding time but also the size of the system.

4 The Continuous Load Model

‘We shall now consider a full-blown dynamical model, where
flows arrive continuously over time. We assume a worst-case
scenario, where the effective arrival rate is infinite, i.e. there
are always flows waiting to be admitted into the network.
Thus, admission control decisions are made continuously at
all times. Clearly, the performance of any admission con-
trol algorithm under finite arrival rate will be no worse than
its performance in this model. Another advantage of this
model is that we need not worry about the specific flow ar-
rival process which may be hard to model in practice. As
before, when flows are admitted, they stay for a duration
exponentially distributed with mean 7. In this section, we
will look at both memoryless MBAC schemes and schemes
with memory and compare their performance.

4.1 Memoryless MBAC

We first look at the scheme that was considered in the impul-
sive load model, where admission control decisions are made
based on estimates of the mean and variance using the cur-
rent bandwidths of the flows. Assume that the system is
in steady-state. Our goal is to find the overflow probability
at an arbitrary time t. We do this by first analyzing the
dynamics of the number of flows in the system.

Let M; be the number of flows that the MBAC determines
should be in the network at time ¢; as in (21), M, is given
by:

= Pqg; (21)

& (t)VM:

["# — M. j(t)
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(22)
Observe that M; is random and depends only on the cur-
rent bandwidths X;(t)’s of the flows. Call M, the estimated
admissible number of flows at time ¢. The actual number
of flows N; in the system at time ¢ is no less than M; since
there are always flows waiting to be admitted and thus the
system is always filled to the limit as currently determined
by the MBAC. On the other hand, N; can be strictly greater
than M, as flows that were admitted earlier stay for a certain
duration and thus N; cannot perfectly track the fluctuations
of M; (see Fig. (2)). To compute N, first observe that if
s* is the last time at or before time ¢ that flows were ad-
mitted, then the number of flows in the system at time s*
is precisely the same as number of flows admissible at time
s*, i.e. Nsg+ = M,+. In between time s* and time ¢, no new
flows were admitted. Hence, if we let D[s,t] be the number
of flows departed in time interval [s, t], then

N¢ = Ny« — D[s",t] = Ms+ — D[s", 1] (23)
On the other hand, for any s < ¢,
N: = N+ Als,t]—Dl[s,t] > Ns —DJs, t] > M, —DJs,t] (24)

where Afs,t] is the number of flows admitted during [s, t].
Thus we conclude from (23) and (24) that

Ny = max {M; — DIs, t]} (25)

Eqgn. (18) in the previous section tells us that M, — D[s, ] is
the number of flows in the system at time ¢ if there were only
a single impulse of flow arrivals at time s. Thus, the effect
under a continuous load can be thought of as the worst-case
over all impulsive arrival times.

N_t: actual # of flows

s* time

Figure 2: The relationship between the current estimate of
admissible number of flows M; and the actual number of flows

N;. The time-scale T}, is the typical time for the system to
recover from admission errors.

Using formula (25), we can approximate N; using our ap-
proximations for M, and DJs, t] as discussed in the previous
section. Eqn. (9) gives an approximation for M,:

Mszn—%(n+aq)\/ﬁ (26)

where {Y;} is a stationary zero-mean Gaussian process with
unit variance and auto-correlation function p(t) (that of an
individual flow), and can be interpreted as the scaled aggre-
gate bandwidth fluctuation of the flows around the mean.
Eqn. (17) gives an approximation for D[s, t]:

D[s,t] = @\/ﬁ

T

An approximation for the number of flows in the system is
t%hen given by:

~ max{n— |Z a (t—s) n
e sst{ [#(Ys+ T ]f}
= n—|—Mmax{—Ys—#(t7:,s)—aq} (27)
pooest oTh

In terms of N;, the aggregate load at time ¢ can be approxi-
mated as in (19):

S: = Nip+oYi/n
~ nu+am<ax{Yt—Ys—B(t—s)—aq}\/ﬁ
s<t

where we define for brevity

R 28
B s (28)

The steady-state overflow probability is therefore:

pf = Pr{S; >np}zPr{m§§{Y}—Ys — Bt —39)} >aq}

(29)
Interestingly, one can interpret this probability as that of
the length of a certain queue exceeding ag. The queue is one
which has a constant service rate of (3, with the amount of
work arriving in time interval [s,t] given by Y; — Y.

4.2 Analysis of Overflow Probability

Our next step is to analyze the approximation to the overflow
probability given by eqn. (29). Since the process {Y;} is
stationary and symmetrically distributed around 0, we can
rewrite that as

pf zPr{Igag({Y_t—Yo—ﬁt} >aq}.

This can be interpreted as the hitting probability of a Gaussian
process {Y_,—Yp} on a moving boundary y = 874+ a4. While
there is no known closed-form solution to this problem, an
approximation can be derived by extending some of the re-
sults by [4] on hitting probabilities of stationary Gaussian
processes to non-stationary ones. Define

o?(t) = E[(Yr — Yo)’] = 2[L - p(1)]

to be the variance of Y_; — Y. (Recall that Y; has zero mean
and unit variance.) Assume the single-sided derivatives of
p(t) at t = 0 exist and are finite, let v*(0) be the right deriv-
ative of the function o%(t) at t = 0. ® Then an approximation
to the hitting probability is given by:

Pr {Tﬁé‘ {Y_: — Yo — Bt} > aq} ~

~ %/0 v*(0) O‘Z;Etftqs (O‘qu;)ﬁt) dt (30)

where ¢(z) is the N(0,1) probability density function. The
integrand above can be viewed as an approximation to the
first hitting time density at time ¢; integrating over all ¢
yields the probability that hitting occurs at all. This is an
approximation in the sense that as oy — oo, the ratio of the

2 2
Sie. v (0) :=lim,_ 4 8= O



left-hand and the right-hand sides approaches 1. Hence this
approximation is good when p, is small.

While this yields an approximation that can be computed
numerically for general auto-correlation functions, we would
like to get more analytical insights. To that end, consider
the specific auto-correlation function:

o) = exp(— 1), (31)

With this choice of the auto-correlation function, {Y;} is the
well-known Ornstein-Uhlenbeck process. The parameter T.
governs the exponential drop-off rate of the correlation func-
tion, and is a natural correlation time-scale for the burst
dynamics of the traffic. Substituting this into the approxi-
mation (30) and rescaling the time variable, we get:

~ e (ag + 1) g+t d
P ”/0 [2(1—exp(—7t))]%¢< 2(1—exp(—vt))>t

(32)
where N
1 Th a
= =—.—.
Bl. T p

One can think of v as the separation between the flow and
burst scales, although note that 7} is the scaled holding time.
If we make a time-scale separation assumption, i.e. v > 1,
then

~ * (ag +1t) aq +1 _ 1,
pf~7/0 53 ¢(\/§)dt 2\/—eXp( a)

(33)
—t) = 0 for

Note that the first approximation is via exp(
> 1.

It is interesting to compare this overflow probability for
the continuous-load model with the corresponding result for
the impulsive load model under long flow durations, given in
Proposition (3.3). To do this, we first use the approximation
¢(m

as

~ Q(z) and rewrite (33) in terms of the flow parameters

Tn ooy Qq
=~ . — 34
PR ST, Q ( Ve (34)

=>

Te overload

time

Figure 3: The ratio of correlation time-scale 7. and of the
critical time-scale T determines the overflow probability.

For the impulsive load model, the overflow probability is
approximately Q(%) Eqgn. (34) tells us that in the regime

of separation of time-scales, the corresponding overflow prob-
ability can be much worse in the continuous-load model. This
is because while estimation errors can occur only at a sin-
gle point of time in the impulsive load model (time 0), in
the continuous-load model estimation errors occurring at any

time in an interval of size roughly 73 before time ¢ will have
a significant impact on the number of flows at time ¢. The
shorter the traffic correlation time-scale T., the faster the
memoryless mean bandwidth estimates fluctuates, and the
larger the probability of having an under-estimation at some
time in the interval. Hence, the overflow probability in the
continuous-load model increases with the separation of time-

scale % For example, note the multiple peaks (underesti-

mations of x) within the interval of length Ty in Fig. 3: each
of these peaks c01’1_l£1 potentially cause overload within the

critical time-scale 7}. The lesson is that it’s not only impor-

tant to consider the estimation error at a single time-instant,

but also the chance of making error any time in the inter-

val defined by the effective flow holding time-scale T%. Note

also since T}, decreases as %, where T3, is the actual mean

holding time, the overflow probability decreases roughly as
1

ﬁ.
We can also write the above approximation as (using

again @ = Q(z)),

[N

L. (V2ragps) (35)

\/_T\/ﬂu

4.3 MBAC with Memory

We see that the memoryless scheme suffers from two prob-
lems . First, the estimation error at a specific admission time
instant is large, and in fact has impact which is of the same
order of magnitude as that due to the statistical fluctuations
of the bandwidths when the correct number of flows are ad-
mitted. Second, the correlation time-scale of the estimation
errors is the same as that of the traffic itself; thus, in the
regime when the flow holding time is much larger than the

traffic correlation time-scale (ﬁ > T.), the probability of
having a large under-estimation of mean bandwidth at some

time during the time-scale T3 is high. A strategy which, as
we will see, counters both these difficulties is to use more
memory in the mean and variance estimators.

To be more concrete, let us consider using the first-order
auto-regressive filter with impulse response:

h(t) := ﬁ exp (—%) u(t)

to estimate both the mean and the variances. (Here, u(t)
is the unit step function.) Thus, in place of the memoryless
estimators in eqn. (22), the MBAC would use:

/oo l%ZXi(t—T) h(r)dr
G2t = /Ooo [nilg(&-(t

Note that the estimates are obtained by an exponential weight-
ing of the past bandwidths of the flows. The parameter
T, governs how the past bandwidths are weighted; it can
thought of as a measure of the memory size of the estima-
tors. The relationship between I (t) and the memoryless
estimator zi(t) is simply fim = 1 * h, where * is the convolu-
tion operation.

Corresponding to eqn. (27) in the memoryless case, we
can show that the number of flows N; in the system at time
t under the MBAC with memory is approximately

Ntznd—mmax{—Zs—L:,s)—aq} (36)

pooest oTh

Fim (t)

- #m(t))2] h(r)dr



where Z; = (hxY), and {Y;} is the scaled aggregate band-
width fluctuation around the mean. One can interpret Z; as
the error in the filtered estimate of the mean bandwidth of
a flow at time ¢. The overflow probability under the MBAC
with memory can be approximated by:

pf = Pr {r{lzag((Zt —Yo —Gt) > aq}

This is again a hitting probability of a Gaussian process
({Z-: — Yo}) on a moving boundary, and an approximation
of such a probability is given by:

VT, > (ag +1) aq +1 T.
= dt+ agy 1+
YT AT, / ontor* \om@ ) TV T,

(37)
where
2 ey 2T+ Tm 2T B
02 (1) 1= Bl(Z = Yo = T — e exp(—)

Now, under separation of time-scales, v > 1, we have the
approximation that

o2 (1) n et T
Tc + Tm

in which case the above integral can be explicitly computed
as:

. VT, 1 exp( Te+ T a2>
! \/(TC+Tm)(2TC+Tm) V2r (2T + Tn)
Tc
1
+Q | aq +Tm)

To compare this result to the memoryless case, let us first

use the approximation Q(z) & 2 to rewrite (38) in terms
of py and also the flow parameters:

pr o~ ﬁ . g ( \/—a p )zq;fctq’;”;
V(T +Tn) (2T + Trn) V271p o
Tc
+Q | gy /14 (39)

overload

T+ Tm

with memory

memoryless

time

Figure 4: Estimation memory reduces the variance of the
bandwidth estimator, and also smoothes its fluctuation.

Comparing eqn. (38) to eqn. (33), we can see explicitly
the effect of memory. Let us look at the first term in (38),

which corresponds to (35). The exponent is % which

is % when there is no memory (as we had in the memoryless

scheme), monotonically increases with 7., and reaching a
value of 1 for infinite memory. This effect can be explained
by the fact that the variance of the mean bandwidth esti-
mate, E[Z}], is % and decreases monotonically to zero
with more memory. Thus the inaccuracy in the estimates
and hence the inaccuracy in the number of flows accepted
decreases (cf. Fig. 4). Furthermore, increasing the amount
of memory has an additional effect of smoothing the mean
bandwidth estimates; thus, not only are the individual band-
width estimates more accurate, they also fluctuate less so
that the probability of having an under-estimation at some

time over an interval of length TNh is reduced. This is reflected
Th

in the first term
V(Te+Tm)(2Tc+Tm)

in the smaller pre-factor

of (39) replacing the factor in the memoryless case.

T
VAL
This can be interpreted as increasing the correlation time-
scale by 7., the estimator memory size.

In the limit for large 77, we always have exactly the right
number of flows in the system and the overflow occurs due
only to the fluctuation of bandwidth requirements of flows in
the system, and not to the fluctuation of the number of flows
in the system. This is now given by the second term in (39).

Although formula (39) gives the overflow probability in
terms of the memory size T, of the estimator, it also depends
on the traffic correlation time-scale 7., which may be hard
to estimate in practice as realistic auto-correlation functions
are more complex than a pure exponential. Thus, it may
not be easy to directly use formula (39) to determine what
the appropriate amount of memory to use in the estimator.
However, in the case that 7%, is chosen large compared to 7T,
formula (39) becomes

- ﬁ ooy
P (Tm o +1> (40)

which does not depend on T.. In this regime, the effect of the
estimator memory effectively masks the original correlation
structure of the traffic. Although this result is derived using
the simple exponential auto-correlation function (31), it can
be expected that the detailed correlation structure is not
relevant and a similar approximation holds for other auto-
correlation functions.

Formula (40) can be used to choose the memory size
and to adjust the certainty equivalent parameter p.. in the
MBAC such that the overflow probability meets the QoS re-
quirement, i,e, choose T;, and pc. such that:

%o )
(Tm ILQ (p65)+1)pce—pq

The shorter T, the more conservative the choice of p.. has
to be, resulting in a loss of utilization. This loss of utiliza-
tion can be quantified. The average utilization (in terms of
bandwidth) of the system is given by pE[N;], where IV, is the
(stationary) number of flows in the system at time ¢. Eqn.
(36) allows us to approximate this when p.. is used as the
certainty-equivalent parameter:

pE[Ni] = np+o/nE [I?Satx {—ZS — ,u(ti:/s) }] —UQ_l(pce)\/ﬁ

o’y

Since the other terms do not depend on p.e, we see that the
difference in utilization in using pc. and p.. is simply

oV [Q 7 (pee) — Q7 (pee)] (41)

This allows us to quantify the impact on the utilization on
using a more conservative certainty-equivalent parameter.



5 Discussions and Simulations

Our framework yields several interesting qualitative insights
about the measurement-based admission control issues we
discussed in the introduction:

e Memoryless certainty-equivalent admission control can
have very poor performance due to estimation error.
The target QoS overflow probability can be missed by
several orders of magnitude. The impact of the estima-
tion errors does not diminish as the system gets larger.

o Estimation errors of different statistical parameters can
have very different impact on the performance of an
MBAC scheme. In the heavy traffic regime, the effect
of error in estimating the mean is much more significant
than the error in estimating the standard deviation.

o Flow departure dynamics have a significant impact on
the performance of an MBAC scheme. The parameter

Ty = Tr/+/n, where Ty, is the average flow holding time
and n the system size, defines a critical time-scale for
which the effect of an admission error persists. This
critical time-scale decreases with a shorter holding time
or a bigger system because flows can leave the system
more rapidly to repair a wrong decision.

e A high flow arrival rate has a detrimental effect on the
performance of an MBAC scheme. A robust MBAC
not only has to make sure that the estimation error for
each decision is small, but also that the worst estima-
tion error over the critical time-scale is small. Thus, a
memoryless scheme which makes decisions based only
on estimating current bandwidths is not robust; if the
traffic correlation time-scale is short compared to the

critical time scale ﬁ, then the bandwidth estimates
fluctuate too wildly.

o Increasing the amount of memory in the estimator helps
in two ways. First, the individual bandwidth estimates
are more accurate because of averaging over a larger
number of samples. Second, it smoothes the bandwidth
estimates so that they fluctuate less over time. This
provides more control to the worst estimation error over
the critical time-scale.

These insights are obtained from our analysis, which cul-
minated in ezplicit formulas for evaluating the performance
of MBAC schemes in terms of key parameters such as esti-
mator memory size, traffic correlation time scale and average
flow duration. Specifically, the main results are the gen-
eral formula (37) for the overflow probability, the formula
(39) specialized to the regime of separation of flow and burst
time-scales, and the formula (40) with the further assump-
tion that the memory size is much longer than the traffic
correlation time-scale. Moreover, formula (41) yields the im-
pact of a more conservative MBAC scheme on the utilization
of the system, and, together with the previous formulas on
overflow probability, quantifies the tradeoff between estima-
tor memory size and the conservativeness of the MBAC for
a given target QoS.

We now describe some simulations we have performed
to validate and make concrete the above insights. We use
RCBR (Renegotiated Constant Bit Rate [6]) traffic sources,
i.e., the traffic rate produced by a source is constant over time
intervals. Rate changes (renegotiations) are source-initiated
and occur only on interval boundaries. We use independent
homogeneous sources where the marginal rate distribution
is Gaussian with o/p = 0.3. The interval lengths are i.i.d.
following an exponential law with mean T, which implies
that the autocorrelation function of the traffic rate process
is precisely as in (31).
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We simulate the admission controller under infinite load
and we measure the resulting overflow probability py. We
terminate simulations when (a) the 95% confidence interval
is less than +/- 20% of the estimated mean, or (b) the esti-
mated mean plus the confidence interval is at least an order
of magnitude below the target overflow probability (1.0e — 3
in all our simulations). The latter criterion is to terminate
simulations within a reasonable time for very small py.

We sample py at regular intervals of length 2 max(Ts, T, T¢).

This sample period is long enough to give approximately in-
dependent samples of the system, as the “memory” due to
flow dynamics, estimation memory, and traffic correlation is
taken into account. We also let the system initially warm up
to steady state without collecting samples.

The first experiment (cf. Fig. 5) shows py for a certainty-
equivalent MBAC as a function of memory size T, for dif-
ferent system sizes (both simulation results and the approx-
imations via eqn. (38)). It is clear that using little or no
memory, the performance of the system can be extremely
bad. For example, for n = 100 and memoryless estimation,
the target overflow probability is exceeded by more than two
orders of magnitude! Using more estimation memory clearly
improves the performance, but as the n = 100 case shows, is
not necessarily sufficient for achieving the target QoS: even
for Ton = 100, py is still larger than 1.0e — 3. Fig. 5 also
shows that (38) is a slightly conservative approximation of
the simulated ps. Qualitatively, the correspondence is good;
in particular, the “knee” in the curve is well matched.

The second experiment (cf. Fig. 6) shows the correction
to be applied to pce in order to reach a robust QoS target of
pq = 1.0e — 3, by inverting (38). It is another manifestation
of the importance of the issues we discuss to achieve robust
admission control: note that for small memory sizes, the
corrected pce can be as low as 1.0e— 10 for a target of 1.0e—3!

The third experiment (cf. Fig. 7) finally shows the simu-
lated performance of the robust MBAC where the correction
computed in the second experiment is applied. We see that
the QoS target of py < 1.0e — 3 is consistently met over
the whole parameter range. The slight conservativeness of
the approximation (38) carries through: p; is everywhere
between about 0.5 and 1.5 orders of magnitude below the
target.

Py (simulation and theory) as a function of Tm (pce =1.0e-3, Th =1.0e3)
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Figure 5: Non-robust MBAC: The simulated and theoretical
overflow probability ps for pce = 1.0e — 3.

An important open question is the appropriate choice of
the memory window size in practice. While our results pro-
vide quantitative insights into the role of estimator memory,
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Figure 6: Robustness correction: The p.. as a function of
memory 17, to achieve a robust QoS target of p, = 1.0e — 3.

they alone do not answer this question. This is because, as
remarked earlier, real traffic is non-stationary but our model
is a stationary one. A more comprehensive understanding of
this problem requires a non-stationary model to study adap-
tivity issues and how the non-stationarity time-scale inter-
acts with the various time-scales we studied in this paper.
We plan to address this issue in future work.

6 Related Work

Past work on measurement-based admission control [3], [12],
[7] have either ignored measurement errors or assumed a sta-
tic situation where calls do not arrive or depart the system
and there is arbitrarily long time to make accurate measure-
ments. Here we discuss two more recent papers which are
closer in spirit to our work.

Jamin et al., in [9], presented a specific algorithm for
measurement-based admission control of predictive traffic,
and evaluated its performance through simulation. The al-
gorithm relies on measurements of the maximum delay and
maximum bandwidth over a measurement interval. There
are several parameters in the algorithm (sampling window
size S, measurement window size T', utilization target, back-
off factor ) that are found to have a significant impact on
performance. However, clear guidelines on how to set these
parameters are lacking. We believe that our work offers some
insight into the impact of these system parameters. In par-
ticular, the measurement window size 7' is very similar to
our measurement time-scale T.,. Also, ) is a parameter that
controls an owerestimation of the actual measured delay - in
other words, it controls conservativeness, which in our work
is represented through the parameter p... Therefore, while
the details of the models and metrics are not exactly identi-
cal, we think that our work helps understand the issues that
govern the tuning of the above parameters. Our work has
the further advantage that we use a much simpler service
model so that we can focus on the issues associated with the
measurement process.

Gibbens et al. [5] studied memoryless measurement-based
admission control in a decision-theoretic framework. Their
work takes into account the impact of measurement errors on
performance and also considers the call dynamics. However,
there are some significant differences between theirs and our
work. First, a perfect time-scale separation is explicitly built
into their model by assuming that the network states seen
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Figure 7: Robust MBAC: The simulated ps with robustness
correction, for QoS target p; = 1.0e — 3.

by successive call arrivals are independent. This makes it
difficult to evaluate the performance of MBAC schemes with
memory and also the effect of traffic correlation on a system
with very high call arrival rates. Indeed they only focused
on memoryless schemes. Moreover, our results show that
the condition for time-scale separation is rather subtle, as it
depends, among others parameters, on the system size. Sec-
ond, while they also observed that a memoryless certainty
equivalent scheme can perform poorly, their remedy is quite
different. They relied on essentially two mechanisms: the
use of a Bayesian prior on the call statistics and network
state-independent call rejection. The first mechanism serves
to smooth out the fluctuation in successive memoryless esti-
mates, as the observations are weighted by a fixed prior. The
second mechanism counters very high call arrival rates, by
not accepting calls until one has left the system. In contrast,
we propose the use of an appropriate amount of memory in
the estimator , which as we have seen deals with both these
problems. Our framework, without a priori assuming time-
scale separation, allows us to evaluate the performance as a
function of the amount of memory used. We believe the ap-
propriate use of memory is a natural and effective strategy,
particularly when no reliable prior exists.

7 Conclusions

Measurement-based Admission Control simplifies the con-
tract between the user and the network, at the expense of
having to deal with additional uncertainty in the system.
The benefit of relieving the user of the burden of a-priori
traffic specification, and of relieving the network of the bur-
den of policing, far outweighs the costs of this uncertainty, if
it can be prevented from compromising the quality of service
experienced by the user. This problem has motivated the
present work.

In this paper, we have presented a framework for study-
ing the performance of admission control schemes under mea-
surement uncertainty and flow dynamics. Using heavy-traffic
approximations, the analysis of the resulting dynamical sys-
tems is simplified via linearization around a nominal operat-
ing point and by Gaussian approximations of the statistics
via central limit theorems. We believe that the insight de-
rived from our models, and the engineering guidelines on the
choice of memory and certainty-equivalent target overflow
probability, should be directly applicable in the design of ro-



bust MBAC schemes. In addition to the problem of memory
window size choice we discussed earlier, there are also some
additional issues that merit attention. For lack of space, we
have to limit ourselves to a brief discussion.

First, there is increasing interest in adaptive applications,
i.e., applications that are capable of functioning properly
even if the QoS falls below the desired level [2]. This interest
stems from the inability of the current Internet to guarantee
any level of QoS. The QoS metric used here, i.e., the proba-
bility that a flow cannot get at least its target bandwidth at
time ¢, is extreme in the sense that it does not account for the
fact that getting part of that target bandwidth is still useful
to an adaptive application. We are therefore working on a
generalization of the QoS metric based on utility functions,
inspired by Shenker’s work [13]. The goal is to assess the
impact of application adaptivity on the admission problem.

Second, we have assumed that individual flows are avail-
able for measurement. This might actually not be desirable
or feasible in practice. Aggregate measurements can be ex-
pected to be easier to implement, because no per-flow infor-
mation has to be maintained. While using only aggregate
measurement does not affect the mean estimator, the accu-
racy of the variance estimator is hampered without per-flow
information. We plan to study the effect on QoS of having
only aggregate estimates available.

Third, we have assumed that the statistics of the flows
are homogeneous. This is essentially a worst-case assump-
tion, as it can be shown that if the flows were heterogeneous,
the accuracy of the mean estimator remains the same but
the variance estimate is only an upper bound to the true
variance. Hence, the schemes presented here may be overly-
conservative for heterogeneous traffic, and it is interesting to
see how they can be improved for that case.
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8 Appendix

We use the notations — and “3" to denote convergence in
distribution and almost sure convergence respectively. The
following theorems are standard results in the theory of con-
vergence in distribution.

Theorem 8.1 (Continuous-Mapping Theorem) Let {}7(")}
be a sequence of random vectors on R*. If h: R* — R is

continuous and Y™ 2 Y, then h(Y™) A h(Y).

Theorem 8.2 Let Y™ ’s and Z™ ’s be random vectors de-
fined on the same probability space. If Y™ ZY and Z™ =%

@ where @ is a constant vector, then (Y™, Z(™)) KA (Y,a).

Proof of Proposition 3.1:

For each system size n, let fi, and &, be the estimates of
the mean and standard deviation of the bandwidth distribu-
tion of the flow, respectively. By definition of the MBAC,

1 2
72 (\/Er,%ozg + dnpp, — 6naq)

which is obtained by solving eqn. (6) for each n. Thus,

MM =

Mg —n _ A=) | Gnoh _onay [GRed o
Vn fin 2i3vn 202V n "

By the strong law of large numbers /i, “3 p and 6, =

o. For the first term above, v/n(p — fin) Z oY by the

Central Limit Theorem, where Yo ~ N(0,1). Also, fi. %
u and hence by theorems (8.2) and (8.1) above, the first
term converges to —%Yo in distribution. The second term

converges almost surely to 0, while the third term converges
almost surely to — % Applying the above theorems we now

get the desired result:

MM —n p o
—0 "2 ZYo+a
\/ﬁ ,LL( (1)



