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ABSTRACT

During the past decade, a number of different studies have iden-
tified several peculiar properties of networks that arise from a di-
verse universe, ranging from social to computer networks. A re-
cently observed feature is known as network densification, which
occurs when the number of edges grows much faster than the num-
ber of nodes, as the network evolves over time. This surprising
phenomenon has been empirically validated in a variety of net-
works that emerge in the real world and mathematical models have
been recently proposed to explain it. Leveraging on how real data
is usually gathered and used, we propose a new model called Edge
Sampling to explain how densification can arise. Our model is inno-
vative, as we consider a fixed underlying graph and a process that
discovers this graph by probabilistically sampling its edges. We
show that this model possesses several interesting features, in par-
ticular, that edges and nodes discovered can exhibit densification.
Moreover, when the node degree of the fixed underlying graph fol-
lows a heavy-tailed distribution, we show that the Edge Sampling
model can yield power law densification, establishing an approxi-
mate relationship between the degree exponent and the densifica-
tion exponent. The theoretical findings are supported by numerical
evaluations of the model. Finally, we apply our model to real net-
work data to evaluate its performance on capturing the previously
observed densification. Our results indicate that edge sampling is
indeed a plausible alternative explanation for the densification phe-
nomenon that has been recently observed.
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1. INTRODUCTION

Over the past decade, investigations in different fields have fo-
cused on studying and understanding networks that arise in their
respective domains, ranging from biological to social to technolog-
ical networks. Surprisingly at first, many of these networks exhibit
common topological features, such as a heavy tailed degree distri-
bution and the small world effect!. Surveys in this area, known as
Complex Networks, include the work of Albert and Barabasi [1],
Newman [10] and Boccaletti [3].

Most of the work on such complex networks has focused on
static scenarios, where a single snapshot of the network is con-
sidered for investigation. More recently, the focus has changed to
consider dynamic scenarios, where the network evolves with time.
Indeed, most real networks evolve over time, as edges and nodes
can be added or deleted from the system. In this context, a recently
observed feature is densification, which occurs when the number
of edges grows faster than the number of nodes. More precisely,
the average degree of the network grows with time. This surpris-
ing phenomenon has been empirically validated by the recent work
of Leskovec et al. [9], where densification is observed in six large
datasets. Even more surprising is the fact that the observed densi-
fication exhibited a very specific and precise relationship, namely,
a power law of the form e(t) ~ n(t)®, where e(t) and n(t) denote
the number of edges and nodes of the network at time ¢ and « is a
constant greater than 1. We refer to power-law densification with
exponent « as a-densification.

Besides investigating and discovering peculiar features of graphs
that arise in real data, another direction of work is the development
of plausible mathematical models that can explain or capture the
observed phenomena. Several models have been proposed to cap-
ture different features, such as the preferential attachment model [5,
2]. With respect to network densification, Leskovec et al. [9] have
proposed mathematical models for network growth that result in a-
densification. A key element of their model is the fact that newly
created nodes establish more edges than nodes that were created
earlier. They show that this model can lead to a power law densifi-
cation over time.

Densification is a surprising feature. It implies that the aver-
age node degree grows without bound, which is counter intuitive
in many real settings. For example, does it make sense that an in-
dividual’s number of social ties depends on the size of the total
population of the planet? Even more counter intuitive is the notion
that densification can lead to a decrease of the network diameter (or
of the average distance) as the network grows. Does it make sense
that the average distance between Internet domains decreases as the
Internet grows? Despite these intuitive doubts, the evidence from

'A network is considered a small world if it exhibits a high cluster-
ing coefficient and short pair-wise distances.



several disparate datasets is convincing and solid. We feel therefore
that reconciling the observed phenomenon with domain intuition is
a promising area of research.

Our contribution is to provide a novel explanation for the ob-
served densification in real networks. Our explanation posits that
densification may arise as a feature of a common procedure to ob-
serve - or measure - dynamic networks, rather than as a feature of
the network itself. To sharpen this explanation, we show in this
paper that densification can actually arise even when observing a
fixed network that is gradually discovered through a sampling pro-
cess. This sampling process captures the usual way of observing
dynamic networks.

More specifically, two observations are at the heart of our ap-
proach, which explains densification through the sampling of a
fixed underlying graph. The first observation concerns the way
we measure networks. In fact, we argue that in many empirical
studies of complex networks, it is the links (or edges) that are ob-
served directly, and the nodes (or vertices) are only revealed indi-
rectly through the observation of links. For example, most stud-
ies of email networks are based on a log of email messages. An
email message exchanged between two email addresses a and b is
taken as evidence of a social link (a,b). At the same time, this
message reveals the nodes a and b if these nodes were not already
known. We believe that the direct observation of edges, which at
the same time gradually reveals the nodes, is a feature of most em-
pirical studies of complex networks. We argue in this paper that
this way of observing - or sampling - a network can give rise to
perceived densification.

The second observation concerns the way we explain network
growth. Many studies of network evolution have assumed that new
nodes are added to the network in sequence, with some rules to
establish links to existing nodes. However, we argue that network
growth may be at least partially explained by the gradual observa-
tion of nodes and links that exist permanently “in the background”.
In other words, there exists a fixed underlying network that is not
directly observable. For example, this network may represent the
people in a large organization, and the social and professional ties
that bind them. An edge of this network can be observed only once
this edge “fires”, e.g., a message is sent over this edge. We be-
lieve that in many situations, it is reasonable to assume that such a
hidden network exists, which changes on a time-scale much longer
than the sampling process. The network growth is then a direct con-
sequence of the sampling process, i.e., the gradual discovery of this
underlying network, rather than a property of the network itself.

We believe that these two features are quite universal in the study
of complex networks. The goal of our paper is to shed light on the
possibility that densification can at least partially be explained by
the observation of a fixed network that is gradually discovered by
sampling its edges, e.g., the exchange of email messages to reveal
social ties.

To support this claim, we propose a model formed by a fixed un-
derlying graph and by a process that discovers this graph by sam-
pling its edges over time. We refer to this model as the edge sam-
pling model. We consider two variants of this model, which capture
two common procedures for the observation of real networks. The
first variant is the accumulation model, where we assume that the
observed network is the result of all the edges discovered since the
start of the observation. As time evolves, the observed network
grows and “converges” to the hidden full network. The second
variant is the modulation model, where we assume that indepen-
dent snapshots are obtained at different times, which we can view
as samples of the hidden full network. We study these two vari-
ants to reflect different measurement methodologies used in stud-
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ies of network evolution, and we show that both variants can lead to
densification in the observed network. How the sampled networks
densify depends both on the structural properties of the underlying
network and on the sampling process itself.

Using a simplified instantiation of the edge sampling model, we
establish analytical results indicating that the number of nodes and
edges discovered indeed densify over time. In particular, we prove
that densification is present for all time instances greater than a
threshold. We also prove that densification converges to a power
law as time increases, with an exponent that is inversely propor-
tional to the probability mass of degree one nodes. Finally, we
apply our model to real network data and show that it can fairly
capture the densification observed in practice. Our results indicate
that edge sampling is a plausible alternative explanation for the net-
work densification.

As stated above, the key motivation for our model lies in the way
many real networks are observed: edges of an underlying graph
are observed directly, with nodes being observed indirectly. We
do not claim that all networks densify because of edge sampling.
Neither do we claim that all real networks densify. However, we
claim that edge sampling can be a plausible explanation for the
observed densification of some networks, where the observation of
edges leads to the discovery of nodes from the underlying graph. In
other words, we explain densification as a feature of the statistical
estimation instead of a feature of the real network. In [9] Leskovec
et al. propose network growth as a plausible model to explain den-
sification.

We close this section by commenting on the difference between
degree power laws, a widely researched feature of many real net-
works, and power-law densification. It is important to note that
the two are orthogonal, in the sense that each can exist indepen-
dently. For example, a sequence of d,-regular graphs G(n,dy)
with d, = n®" ! (o > 1) does not exhibit a degree power law,
as every snapshot has constant degree over the ensemble of nodes;
however, it does exhibit a-densification. On the other hand, a se-
quence of random graphs whose degree distribution is drawn from
a distribution D with power-law tail (and with E[D] < oo) does
exhibit degree power law, but not densification.

Degree power laws have often been linked to the "rich get richer"
phenomenon. This refers to the fact that rich (e.g., large degree)
nodes tend to become richer (i.e., even larger degrees) as the net-
work grows in size, giving rise to power law degree distributions.
This is the main idea, for example, behind the preferential attach-
ment models [5, 2], used for explaining how a single snapshot of
the network is formed. This degree distribution is usually fixed,
despite models that allow the graph to grow over time. However,
power law densification refers to the relationship between number
of nodes and edges as the network evolves (i.e., in different snap-
shots of the network). In other words, power-law degree distri-
bution is the property of a single snapshot of the network, while
power-law densification refers to the relationship between number
of edges and nodes for a sequence of networks (e.g., because the
network is growing). Notice that in classical graph models the av-
erage degree is assumed to be constant over time (i.e., the number
of edges grows linearly in the number of nodes), thus no densifica-
tion is present (though featuring power law degree distribution).

The remainder of this paper is organized as follows. Section 2
shows a concrete example of network densification and the problem
statement. Section 3 presents the Edge Sampling model, its theo-
retical properties and numerical evaluations. Sections 4 presents
an evaluation of the proposed model when applied to real network
data. Section 5 briefly discusses the related work. Finally, Section
6 concludes the paper.



2. MOTIVATION

In order to motivate and illustrate the concept of densification,
we present an example of a real network that densifies over time.
In particular, we consider what is known as an email network. In
this directed graph, nodes represent email addresses and edges rep-
resent message exchanges. The network evolves in time through
the observation of new messages that are exchanged, as described
below.

Let m;;(t) denote a message sent from email address ¢ to email
address j at time ¢. Moreover, let M|t1,t2] denote the set of all
messages sent in the interval [t1, t2].

Let G[t1, t2] = (V[t1,t2], E[t1, t2]) be a directed graph defined as
follows. Let E[t1,t2] = U, cnrpsy 1) €(M), Where e(mi;(t)) =
{(i,7)}. Thus, E[t1, t2] denotes the set of directed edges that ap-
pear in the graph in the interval [¢1, t2]. Similarly, let V[t1, ¢2]
Usnenrfes 1) (), where v(mi;(t)) = {4, j}. Thus, V[t1, 2] de-
notes the set of nodes that appear in the graph in the interval [t1, t2].

We consider a dataset of email messages collected at the mail
server of EPFL for a period of 89 weeks. The dataset is aggregated
by week, such that timestamps are in the timescale of weeks (i.e.,
all messages sent in a particular week have the same timestamp).
To filter out bogus messages (spam, mailing lists, wrong addresses,
etc), only emails to or from registered EPFL personnel were con-
sidered, as well as only email addresses that both sent and received
amessage at least once in the observed interval of time. The filtered
dataset contains a total of 23,679, 417 email messages.

Following the procedure describe above, we construct the email
network by growing it one week at a time, computing G[1, t], where
t=1,...,89. Thus, for each week ¢, we have a value for the num-
ber of edges e(t) = |E[1,¢]| and the number of nodes n(t)
|[V[1,¢]| in the graph. Figure 1 plots the number of nodes versus
the number of edges for all values of ¢ in log-log scale. The re-
sult clearly shows a densification of the network, as the number
of edges grows must faster than the number of nodes. In particu-
lar, the number of nodes grows from n(1) = 45,782 to n(89) =
431, 200, while the number of edges grows from e(1) = 115, 898
to e(89) = 3,945, 937. Moreover, we can observe a fairly precise
linear relationship between log e(t) and log n(¢), which indicates
that the two variables are related through a power law of the type
e(t) ~ n(t)®. Let & be the slope of the line obtained by perform-
ing a linear regression of the points in the plot. Thus, for the data
shown in Figure 1 we have that & = 1.57.

As stated earlier, Leskovec et al. [9] have also observed power
law relationships between the number of edges and nodes for vari-
ous real networks, including an email network. The fact that power
laws seem to be ubiquitous relationship between the number edges
and nodes of an evolving network motivates us to search for alter-
native explanations for densification.

It is important to notice how the email network was grown in
the example above. Indeed, the network is grown one message at
a time, revealing edges at each step, while nodes are discovered
through these edges. We believe that many real networks are also
grown in this same way, that is, through the observation of edges.
For example, in the World-Wide Web network, web documents
(nodes) are discovered through the observation of hyperlinks in the
documents (edges). In the Internet AS-level graph, ASes (nodes)
are inferred through the observation BGP announcements (edges).
In the IMDB actors to movies networks, actors and movies (nodes)
are discovered when an actor plays in a movie (edges). Thus, the
process of growing the network through the observation of edges
(or edge sampling) seems fairly universal and is the key motivation
for the model we introduce next.
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Figure 1: Evolution of the number of nodes n(t) versus the
number of edges e(¢) over time for EPFL email network.

3. THE EDGE SAMPLING MODEL

In this section, we propose a model for the discovery of an un-
known but fixed underlying graph G = (V, E). The key feature
of this model is that edges are observed directly, while vertices are
only implicitly revealed through its adjacent edges. This is moti-
vated by the fact that many datasets of real networks are constructed
through the observation of its edges. For this reason, we call our
model edge sampling, since edges are directly revealed during the
discovery process. The key idea is that edges of the unknown un-
derlying graph randomly fire, revealing themselves to the discovery
process. When an edge is sampled, the two adjacent vertices of that
edge are also revealed.

We elaborate the model by considering specific properties of
the underlying graph and specific properties for the sampling of
edges. In particular, let G = (V| E) be the underlying graph with
ny = |V denoting the total number of vertices and n. = |E| de-
noting the total number of edges in the graph. Let fp(k) denote
the empirical degree distribution of G. We assume that all edges
e € E are associated with a sampling probability p.. We obtain
a single sample G’ = (V'  E') of the graph by including every
edge e € E independently with probability pe, and by letting V"’
be the set of adjacent vertices of all edges in E’. Note that p, is the
sole parameter of the proposed model and will be referred to as the
sampling parameter.

Thus, we can define the set E' C E to denote the set of edges
that have fired in the realization when the sampling parameter is pe,
and hence discovered. Similarly, define the set V' = |, v v(e) C
V to denote the set of vertices that have been discovered, where
~(e) is a function that returns the set of vertices adjacent to the edge
e, thatis, v ((u,v)) = {u,v}. Thus, we can define e(p.) = |E’|
and n(p.) = |V’| as the number of edges and vertices, respec-
tively, that are discovered when the sampling parameter is pe. In
the following, we determine both E[e(p.)] and E[n(p.)], that is,
the expectation of these random variables.

Since all edges are discovered with same probability p., we can
write:

Ele(pe)] = nepe (D
However, let E[D] denote the expected degree of the underlying



graph. It can be shown that n. = n, E[D]/2. Thus, we can rewrite
equation (1) as follows:

Ele(pe)] = nv E[Dlpe /2 )

Let p, denote the probability that a node is discovered by the
process when the sampling parameter is p.. This means that at
least one edge adjacent to the node fired. This probability is the
complement of the node not being discovered, which means that
none of the edges adjacent to the node fired when edges fire with
probability p.. Thus, conditioning on the node degree and sampling
and sampling parameter of the adjacent edges, we have:

[e3)

po = Yok [1-(1-p)] 3
k=0
Similarly to E[e(pe)], we can then write E[n(p.)] as follows:
Eln(pe)] = nopo G}

We can establish limiting results for both E[e(p.)] and E[n(p.)]
as pe goes to 1. In particular, we can show that:

' = lim Ele(p.)] = nvB[D]/2 5)
n' = lim Eln(p.)] =no(1= fp(0)) (©)

Thus, p. = 1 reveals all the edges of G, but only its non-isolated
nodes (i.e., nodes with positive degree).

As stated earlier, our ultimate goal is to establish a relation-
ship between E[e(p.)] and E[n(p.)]. In particular, can the edge
sampling model lead to densification on the number of edges and
nodes discovered? We start by defining two terms: densification
and a-densification. The former means that the number of edges
and nodes discovered are related super-linearly, but not necessarily
through a power law relationship. The latter means that densifi-
cation follows a power law relationship of the form E[e(p.)] ~
E[n(pe)]® for an approximately constant o > 1. It is usually un-
derstood that this relationship should span several orders of mag-
nitude over E[n(p.)] to be unambiguous; we do not make this re-
quirement explicit in the definition.

As we soon show, the edge sampling model can lead to densifica-
tion, and under some conditions to «-densification. This indicates
that densification can arise based on how we observe the fixed un-
derlying graph, without requiring any dynamic growth process that
modifies its structure.

We investigate the relationship between E[e(pe)] and E[n(pe)]
by defining «(pe ), as follows:

Olog (Ele(pe)])
0log (E[n(pe)])
(fﬂog (Ele(pe)]) ) <3log (E[n(pe)]) ) - e

Ope Ope

a(pe)

Thus, a(p.) denotes the instantaneous slope of the E[n(pe)] ver-
sus Fle(pe)] plot in log-log scale. Densification then means that
a(pe) > 1 for several order of magnitude on E[n(p.)], while a-
densification means that a(p.) is approximately constant for sev-
eral order of magnitude on E[n(pe)].

Using equations (2) and (4), we can derive a(p.) analytically by
applying its definition, which is given in equation (7). In particular,
we have:

(1—pe) (1= 32, fo(k)(1 — pe)®)

pe >, fo(k)k(1 — pe)* (8)

a(pe) =
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We can obtain both a lower bound and an upper bound for a(pe ).
In particular we show that for p. > 1/2, the following holds:

1<ape) < ©)

fo(1)’
The proofs are found in the appendix.

We can also establish two limiting results for a(p.). Let o be
the limit of cv(p.) when p. goes to 1. Similarly, let o be the limit
of a(pe) when p. goes to zero. We show that:

T _1-fp(0)
a = plelgl1 a(pe) = o) (10)
® = lim a(p) =1 (1)
pe—0

Once again, the proofs are found in the appendix.

This result can be intuitively understood as follows. As p. grows
to 1, where the probability that an edge fires is quite large, the prob-
ability that a node of degree two or higher has been revealed is very
close to one. The asymptotic slope of log E[n(pe)]/ log Ele(pe)]
when almost all nodes have been discovered is then dominated by
the discovery of the remaining edges and nodes of degree one,
which occur at the same rate. As p. shrinks to 0, where very few
edges fire and therefore very few nodes are discovered, it is very
likely that when an edge fires it will reveal two undiscovered nodes.
Thus, the number of edges and nodes will grow linearly.

To support this last claim, we can establish yet another result for
the case p. is small, near zero. In particular, when p. is small we
have that 1 — (1 — pe)d ~ dp.. Therefore, p, ~ p.E[D]. And
finally,

E[n(pe)] = noE[D]pe (12)

Using equations (2) and (12) and applying it to equation (7), we
obtain a(pe) = 1. Therefore, when p. is sufficiently small, the
discovery process through sampling does not yield densification.

It is interesting to note that the densification exponent, «, in the
asymptotic regimes analyzed above (i.e., when p. is near O or near
1), does not depend on the degree distribution, which may seem
counter-intuitive. However, these results say nothing about the be-
havior of the E[n(pc)]/E[e(pe)] curve for non-extreme values of
the sampling parameter. In what follows, we estimate the densifi-
cation exponent « for a range of values p. when the degree of the
underlying graph follows a specific distribution.

3.1 The power-law case

Motivated by the fact that many real network topologies exhibit

a heavy tail node degree distribution [3, 1], we will consider a Zipf

distribution to model the degree of the fixed underlying graph G.
Thus,

11

f D (k) - k s Aa

where s is a Zipf parameter and A = _*, 1/i° is the normal-

ization factor with n, corresponding to the total number of nodes

in the underlying graph G. Note that as n, grows large, the Zipf

distribution approximates a power-law. Moreover, it can be shown

that for very large n, the distribution has infinite mean and vari-

ance for s < 2, finite mean and infinite variance for 2 < s < 3,

and finite mean and variance for s > 3. From now on, we denote
1

13)

CcC = A
We have:
Ny _ Ty _ _1
1:chs~/ k™ dk = c=—> — ~s—1,
k=1 k=1 1777/1)

when s > 1 and n, is large.



Given the sampling parameter p., the probability that a node
with degree d is discovered is given by 1 — (1 —p,)?. Note that this
probability is close to 1 for large enough d. Moreover, when the
node degree follows a Zipf distribution, nodes with large enough
degree can exist with non-negligible probability. This motivates the
following approximation for the probability that a node is discov-
ered. If a node has degree greater than 1/p., then with probability
one it is discovered, otherwise with probability zero it is discov-
ered. Thus, we let 1/p. define a large enough degree. As before,
let p,, denote the probability that a node is discovered. Using the
approximation above, we have:

pu > P(D > 1/p) (14)
where D is a random variable with distribution fp (k) that denotes
the node degree.

Notice that out of the d edges incident to a given node with de-
gree d, the expected number of edges that will fire is given by dpe.
The above approximation is equivalent to saying that a node will be
discovered if this expectation if greater than 1, while it will remain
unknown to the discovery process otherwise.

As before, assume the underlying graph has n. edges and n,
nodes. Consider a sequence of values for p., in particular, let
pe(i) = b,b < 1 denote this sequence, for i 0,1,.... No-
tice that when ¢ = 0 all edges of the underlying graph are discov-
ered (since p.(0) = 1), while as we increase i, less and less edges
are discovered. Let e(7) and n(i) denote the number of edges and
nodes discovered at step ¢. As we showed:

Ele(pe(i))] = ne - pe(i)

En(pe(i))] = nv - pu(i),

where pe (i) and p, (i) correspond to the probability of edge and
node discovery at step .

For the number of discovered nodes, using the approximation
above, we can write:

puli) = P(D > 1/pe(i)) =~ /knb— ok~ dk
~ :Elb’“‘” =57 (15)
Thus, for n, large, we obtain:
Ele(i)] = ne-b’
En@)] = ny- b0,

Since n. and n,, are fixed,
for all 4, it suffices to have:

in order to have E[e(i)] ~ E[n(4)]*

1<s<?2

This result establishes a direct relationship between the exponent
of the degree distribution (s) of the underlying graph and the a-
densification exponent. As we will soon show through numerical
evaluations, this relationship is indeed a good approximation for
the a-densification exponent.

Notice, however, that this approximation is too crude for s > 2,
since pe (i) becomes larger than p,, () in this case. For s > 2, we
conjecture that o is close to 1, in particular for increasingly larger
values of s. We will investigate this issue numerically in the next
section. Thus, when s > 2 the edge sampling model does not yield
densification.
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3.2 Numerical Evaluations

In this section we conduct numerical evaluations of the edge
sampling model presented above. We assume that the node degree
of the underlying graph follows a Zipf distribution, given by equa-
tion ((13)), with s denoting the exponent. Moreover, we assume
that the underlying graph has n,, = 107 nodes.

Figure 2 shows the evolution of E[e(p.)] and E[n(p.)] over dif-
ferent values for the sampling parameter p., computed using equa-
tions (2) and (4)), for a Zipf distribution with s = 1.5. Note that
the y-axis in the bottom plot is in log-scale. The curves exhibit an
interesting behavior. As shown in the top plot of Figure 2), at first,
while p. is small, the number of nodes discovered grows faster than
the number of edges discovered. This occurs because in this range,
almost every edge discovery results in the discovery of two nodes,
which leads to a constant slope in edge-node curve. This is in line
with our claim before, i.e. no densification when p. is close to zero.
However, as p. increases, the number of nodes discovered grows
much slower than the number of edges. This occurs because in this
range almost all nodes have been discovered while edges continue
to be discovered. Finally, as p. approaches 1, the discovery process
saturates and no new edges or nodes are discovered (bottom graph
in Figure 2).
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Figure 2: Evolution of the number of nodes (£[n(p.)]) and the
number of edges (E[e(p.)]) discovered over change of sampling
parameter for an underlying graph with a Zipf degree distribu-
tion (n, = 107, s = 1.5, top plot is a zoom).

Figures 3 and 4 depict the expected number of nodes discovered
versus the expected number of edges discovered using the same
sampling parameter for Zipf distributions with different degree ex-
ponents. Notice that the plot is in log-log scale, thus, densification
is present when the derivative (i.e., slope) of the curve is greater
than 1 for a wide range of scales on E[n(p.)]. Moreover, if this
derivative is approximately constant for a wide range of scales on
E[n(pe)], then the relationship between Ee(p.)] and E[n(p.)] is
a power law of the type Ele(pe)] ~ E[n(pe)], where « is the
slope of this straight line. Indeed, the curves for the Zipf distribu-
tion with s < 2 in Figure 3 show a-densification, as indicated by
the theoretical analysis.

Figure 3 also illustrates the two different regimes for . In par-
ticular, when p. is small enough, we have « close to 1. As pe



increases beyond this threshold, we have o greater than 1 and ap-
proximately constant. Moreover, as we increase s, the range over
which densification is present (i.e., « greater than 1) decreases (for
afixed n,), however, a higher a-densification exponent is achieved.
For s = 1.2, a-densification spans less than two decades, while for
s = 1.5 it spans three decades. Finally, for s = 2.5, we observe a
slope of 1 for the entire range of values for pe, i.e. no densification
is present, as expected.

For comparison, we estimate the densification exponent after the
threshold using linear regression of the data points in this interest-
ing regime, denoted by &. We observe that the estimated slope
found through numerical evaluations is close to our previous result,
ie. 311. For example, for s = 1.5, we have that & = 2, which is
equal to our theoretical approximation of 1/(s — 1).

Figure 4 is simply a zoom for larger values of p., which corre-
sponds to values that are close to the saturation of the discovery
process (i.e., all nodes being discovered). In this regime, we expect
the slope to be close to the limiting theoretical slope, . For com-
parison, this slope is also shown in the plot for different values of
s.

It is interesting to observe that o' —which is the asymptotic slope—
is not far from &. Indeed, this indicates that graphs where nodes
follow a Zipf distribution tend to saturate slowly, since they have
many low-degree nodes. This results in an a-densification expo-
nent that is close to 1/ fp(1).

We should again emphasize that the interesting regime is when
the edges and nodes are being discovered, while we are away from
both early transient and late saturation phases. In this range, we ob-
serve a constant densification exponent over wide range of E[n(pe)].
For small sampling parameter, no densification is observed, while
for large p. we reach the asymptotic slope of a’.
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Figure 3: The number of nodes discovered (E[n(p.)]) ver-
sus the number of edges discovered (E[e(p.)]) by the same
sampling parameter for Zipf degree distributions (n, = 107,
s=15,s=1.2,s5 =2.5).

Figure 5 depicts the evolution of a(pe) for Zipf distribution with
different values of s, computed using equations (8). We first ob-
serve that densification occurs for all sampling parameters (a(pe) >
1 for all 0 < pe < 1). More surprisingly, we observe that o(p.)
quickly converges to a nearly constant value as p. increases, and
finally reach o*. If this convergence occurs orders of magnitude
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Figure 4: The number of nodes discovered (E[n(p.)]) ver-
sus the number of edges discovered (E[e(p.)]) by the same
sampling parameter for Zipf degree distributions (n, = 107,
s =1.5,s = 1.2, s = 2.5, zoom near larger E[n(p.)]).

before saturation of the discovery process, then the model yields an
a-densification. Finally, although o' depends only on fp (1) (see
equation (10)), the underlying degree distribution plays a role on
determining if the edge sampling model will yield a-densification.
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Figure 5: The densification exponent o(p.) as a function of
time for Zipf degree distribution (n, = 107, s = 1.5).

Finally, in order to support our conjecture, Figure 6 depicts the
relationship between the estimated densification exponent & and
the degree exponent s. As before, & was computed through a linear
regression of the points in the interesting regime (i.e., slope greater
than 1). As illustrated in the figure, as s increases large, specifi-
cally when s is greater than 2, & approaches 1. This supports our
conjecture that a-densification occurs when 1 < s < 2.

To summarize, the edge sampling model has a single parame-
ter p. that varies between zero and one and is used to sweep the
edge-node curve. As p. approaches zero, the slope of the curve
approaches 1 and thus, no densification is present. However, for



Densification Exponent (o)

2 25 3 35
Zipf Degree Exponent (s)

1 1.5

Figure 6: Relationship between the densification exponent ()
and the degree exponent (s) for an underlying graph with a Zipf
degree distribution (n, = 107)

sufficiently large pe, it is possible that the curve follows a power-
law, thus exhibiting a-densification. Moreover, this cut-off point
for a sufficiently large p. depends on the skewness of the degree
distribution of the underlying graph. In particular, a larger skew
(i.e., smaller s) requires a larger cut-off (i.e., a larger p.). How-
ever, a larger skew also means that the densification exponent will
be larger (since @ = 1/(s—1)). Finally, if the degree distribution is
not skewed enough (i.e., if s > 2), then no cut-off exists, meaning
that the slope is always 1, and thus, no densification is present.

3.3 Observation Models

The previous subsection presented the edge sampling model, which

has a single parameter, namely, the edge sampling probability, pe.
In this section, we comment on the relationship between how datasets
of real networks is gathered and the parameter p.. In particular,
considering how these datasets are obtained, we believe that the
parameter p. varies for either of the following reasons:

Accumulation In this interpretation of the sampling model, knowl-
edge about the edges and nodes of the underlying graph is
simply accumulated over time. This captures studies where
each new edge (and consequently nodes) are added to an
evolving graph; this is the case, for example, in arXiv ci-
tation graph, or IMDB actors-to-movies graph (analyzed in
[9]). Thus, the key parameter of this model is time, which
will determine the probability that edges and nodes are dis-
covered, i.e. po = f(t). As time grows from 0 to oo, the
sampling parameter varies from zero to one, resulting in the
gradual discovery of edges and nodes.

We suppose any edge e is associated with an independent re-
newal process of rate A, started in steady state. We define
then Fr (¢, A) to be the inter-sampling time cumulative dis-
tribution for an edge with a sampling rate of A. Moreover,
the sampling rate of an edge is also a random variable with
cumulative distribution Fr(X), identical for all edges of G.
We will also assume that sampling rates are chosen indepen-
dently and that edges are also sampled independently of each
other.

Modulation In this interpretation of the model, a fixed time win-
dow is considered. In other words, the sampling parameter,
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Pe, is a function of a global sampling rate, which determines
the rate with which the edges fire within a given fixed length
time window. Different time windows can have different in-
tensities with respect to the edge sampling rates. This is mo-
tivated by the fact that analysis of real data is often done con-
sidering fixed windows of time over the dataset, as opposed
to an increasing time interval. However, different windows
of time may have different sampling rates. For example, con-
sider the study of email networks and a time window of one
month. It is natural that different months will have differ-
ent intensities of email exchange. For example, a vacation
month is surely to have a lower sampling rate than a end-
of-semester month, when considering the email network of a
large university.

As before, we introduce an inter-sampling time distribution.
However, here we define a modulating intensity parameter
A, which influences the edge sampling rates. So we have
pe = f(A). In particular, the edge sampling rate will be
given by:

A=A\ (16)

where )\, is a random variable that follows the original edge
sampling rate cumulative distribution, Fr(\). Note that the
actual edge sampling rate distribution is just the original edge
sampling rate distribution scaled by a constant A.

Notice that we are only giving different interpretations to p.. In
particular, we let p. be controlled either by ¢ or by A, which will be
the case when we apply the edge sampling model to real datasets.

4. EDGE SAMPLING AND REAL DATA

In this section, we apply the edge sampling model to two datasets
of real network data. The goal is to illustrate that the sampling
model can capture and thus partially explain, the observed densifi-
cation when considering data from these networks. In order to do
this, we consider the two variations of the model, i.e. accumulation
and modulation. Thus, the sampling parameter p. will be a func-
tion of time or intensity, respectively, and is determined through the
choice of this function, as described below.

Unfortunately, we do not have the real underlying graph to drive
the edge sampling process. We also have no knowledge of the edge
sampling probability, p., which can be characterized by the edge
sampling rates and the inter-sampling time distribution. Therefore,
in order to apply the model we propose, we will use the actual
dataset to derive estimates for these unknown parameters.

The underlying graph G = (V, E) we consider is given by the
accumulated graph over the entire dataset, that is

G[()’ tf] = (V[Ovtf}vE[Oztf})v

where ¢ is the length of the available dataset. Thus, we will as-
sume that the degree distribution of the underlying graph is given
by the empirical degree distribution of G[0, ¢ ¢], namely fp (k).
Concerning the edge sampling process, we will assume that the
edge sampling rate is given by its average over the entire dataset.
Thus, for each edge e € E, we define Ae = |M;;[0,t¢]|/ts, where
edge e = (4,7) and M;;[0,ts] is the set of samples of the edge
(4,7) available in the dataset in the period [0, ¢f]. Using the sam-
pling rates A for all e € E, we can determine the empirical edge
sampling rate distribution, namely, fr (). Finally, we assume that
the inter-sampling times of an edge e € E is exponentially dis-
tributed with an associated rate ), i.e. the sampling parameter p.
will be a function of time. Thus, Fr(t, \) = p(t) = 1 — e~ .



We will consider EPFL email dataset described in Section 2. Re-
call that this dataset leads to a-densification, as illustrated in Figure
1. Using the same dataset, we obtain the necessary parameters to
construct the edge sampling model, as described above. Finally, we
numerically compute E[n(t)] and E[e(¢)] for this specific model.
As with the original dataset, ¢ is measured in weeks and varies from
1 to 89.

The results produced by the model are shown in Figure 7. The
plot clearly indicates that the edge sampling process leads to densi-
fication on the number of nodes and edges that are discovered over
time. Moreover, the densification produced by the model seems to
follow a power law, with & = 1.8 (recall that & is the slope of
the line obtained through a linear regression over the points in the
plot). Surprisingly, this exponent closely matches the actual data
(& = 1.57, see Figure 1) which indicates that the edge sampling
process is a very plausible explanation for the observed densifica-
tion.

To assess the goodness of the fits, we consider the confidence
interval for the slope of the line obtained through linear regression.
Using simple statistical tools, we obtain the 95% confidence inter-
val for the slope of the fitted line. For EPFL email data set, we find a
confidence interval of (1.55,1.59) with the slope being & = 1.57.
Thus, the estimated slope is well above 1 with high probability,
which shows a clear densification as the network grows. The same
is true when applying the edge sampling model to real data, giving
a slope of sufficiently larger than 1 with small error.
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Figure 7: The edge sampling model applied to the EPFL email
network dataset.

4.1 Modulation Model

In this section we will apply the edge sampling model over a
fixed window of time (proposed in Section 3.3 as modulation) to
real data. Recall that the motivation for this model is that real data
is often provided in snapshots over a fixed window of time. More-
over, even when this is not the case, data analysis often considers
data only over a fixed window of time, varying the position of the
window over the dataset.

4.1.1 EPFL Email Dataset

We start by presenting the results for the actual EPFL email
dataset. Recall that EPFL email dataset is provided in snapshots
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of weeks (i.e., all messages that were sent/received during a given
week). Thus, for each week ¢ 1,...,89, we can define the
graph G[t, t] = (V'[t,t], E[t, t]), which is defined using only mes-
sages exchanged during that week. For each graph, we let n(t)
|V'[¢, t]| denote the number of nodes and e(t) = |E[t, t]| denote the
number of edges. Differently from before, notice that n(¢) and e(t)
correspond to the number of nodes and edges respectively, seen on
week t only.

Figure 8 shows the plot of n(t) versus e(t) fort = 1,...,89 for
EPFL email dataset. Interestingly, we again observe densification
despite the fact that information about the graph is not accumulated
over time. Thus, densification arises here for reasons other than
accumulation over time, since each point corresponds to exactly
one week. Moreover, there is no trend between time and the points
in the plot. Although the points do not form a straight line, there is
a clear increasing trend among them. When fitted to a straight line,
we obtain a slope of & = 1.89, as illustrated in the figure.

As before, we find the confidence interval for the estimated slope,
which in this case is (1.65, 2.12). Although not being tight bounds,
we can still claim that with high probability we observe a clear den-
sification.
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Figure 8: Densification of EPFL email dataset using a fixed
time window (1 week).

In order to apply the edge sampling model through modulation
we again need to determine its parameters. Besides the underly-
ing graph and the sampling process, we also need to determine the
edge sampling intensity. We will estimate the actual underlying
graph and sampling process as before, by considering the graph ac-
cumulated over the entire dataset and the average rate of messages
per edge. However, we still need to determine the edge sampling
intensity for each fixed time window.

Let A; denote the edge sampling intensity of week . We de-
fine Ay = |M[t,t]|/A, where M|t,t] is the set of messages in the
dataset during week ¢ and A is the overall average message rate
(per week). In particular, we define A = |M[1,89]|/89. Thus, A,
measures the average intensity of the edge sampling rate of week ¢
in relationship to the overall average edge sampling rate. In other
words, the sampling parameter p. will be a function of the modu-
lating intensity parameter in this case.

We can now apply the edge sampling model with fixed time



window. Notice that each week ¢ corresponds to a different time
window with edge sampling intensity A¢. Figure 9 shows the ex-
pected number of nodes E[n(A:)] versus the expected number of
edges Ele(A:)] discovered for each week ¢. It is clear that the
model yields densification when considering the different weeks.
Moreover, there is strong linear dependence between E[n(A+)] and
Ele(Ay)] indicating a power law relationship. Finally, a straight
line fitted to the data yields the slope & = 1.5, which is fairly close
to the actual dataset, with a confidence interval far above 1. This
supports the claim that the proposed edge sampling model captures
the discovery process of edges and nodes.
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Figure 9: The edge sampling model with fixed time window
applied to EPFL email dataset (1 week).

4.1.2 AS Graph Dataset

In this section we consider another dataset of network data that is
publicly available, the AS graph. The Internet today is composed
of several thousands Autonomous Systems (ASes) that intercon-
nect with each other providing global connectivity. Most of ASes
are owned and operated by Internet Service Providers (ISPs) like
AT&T or MCI, while other ASes belong to smaller businesses or
universities. The interconnection of ASes forms a graph, which is
known as the AS graph.

Information about the AS graph is provided daily through snap-
shots generated from an aggregate of information about the net-
work. However, for a myriad of reasons, these daily snapshots pro-
vide only an estimate of the real AS graph. Moreover, the real AS
graph is constantly changing as both ASes and their interconnec-
tions are added and deleted over time.

We consider a dataset of the AS graph formed by 735 daily snap-
shots. As for EPFL email dataset, each snapshot defines a graph
G[t,t] = (V[t,t], E[t, t]) formed by all nodes and edges that ap-
pear in day t. For each day ¢, we thus have a number of nodes
n(t) = |V[t,t]| and a number of edges e(t) = |E[t, t]].

Figure 10 shows the result of plotting n(¢) versus e(t) in log-log
scale for all days. Although the number of nodes and edges vary
little from one day to the other, the plot still strongly indicates a
power law densification with & = 1.09.

To assess the goodness of this fit, we calculate the confidence
interval for the slope, which yields the interval (1.08,1.1). Thus
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although & is close to 1, with high probability it will be a value
above 1, resulting in densification.
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Figure 10: Densification of the AS graph dataset using a fixed
time window (1 day).

We will apply the edge sampling model with fixed time window
to the AS graph dataset. Notice that since each snapshot provides
full view of the AS graph, the edge sampling model where infor-
mation is accumulated over time is not suitable for this dataset.
However, in order to apply the fixed time window model we need
to estimate its parameters from this dataset. We execute the same
procedure used for EPFL email dataset, estimating the fixed un-
derlying graph and the edge sampling rates using the accumulated
graph®. We also determine, for each daily snapshot, the edge sam-
pling intensity in the same manner.

Figure 11 shows the result obtained with the model for the vari-
ous sampling intensities A;. Once again, we observe densification
on the number of nodes and edges discovered when considering
each fixed time window. Moreover, there is a roughly linear trend in
this relationship, indicating a power law densification, with & = 2,
as illustrated in the plot.

Although the slope of the fitted line (&) yielded by the model is
not very close to that of the actual data, we still believe the model is
representative of how nodes and edges are revealed in this dataset,
and a clear densifying behavior is observed.

There can be different reasons why the model does not match the
data accurately. First, the real underlying graph is unknown, and it
also changes in time. We made the assumption of having the de-
gree distribution of the final accumulative graph for the underlying
graph in order to apply the model to real data and do the simu-
lations. As seen before, the degree distribution of the underlying
graph is a key factor in the densification behavior and the observed
exponent. Thus, this assumption surely affects the result when edge
sampling is applied to real data. Moreover, in applying the model
to fixed time windows, we estimated an average intensity through
finding the ratio of total number of messages in a fixed window and
the total number of messages in the final accumulative graph. How
accurate this estimation is still needs to be investigated on more

’In the AS graph dataset, for each snapshot, each edge has either
rate 1 (i.e., edge is present in the AS graph) or O (i.e., edge is not
present).
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Figure 11: The edge sampling model with fixed time window
applied to the AS graph dataset 1 day).

datasets. Summing up, although not matching the data accurately
for the reasons above, but we observe a neat densification behavior
applying the edge sampling model to the data, finding exponents
not far from reality.

We have also applied the proposed models to the exact structure
of the underlying graph (where the underlying graph is given by the
final cumulative graph), as opposed to considering only the empir-
ical degree distribution. Using the edge sampling model with ex-
ponential inter-sampling time distribution, we observed that results
from the models match real data very accurately for both cases of
accumulation and modulation. This further strengthens our claim
that densification arises regardless of the process used for sampling
the edges.

We also considered a couple other datasets analyzed by Leskovec
et al. [9], namely the IMDB actors-to-movies bipartite graph and
arXiv citation graph. However, these datasets are not good exam-
ples for which the proposed edge sampling model can be applied.
To be more precise, in the citation graph, nodes (i.e., papers) in
the graph appear first, and edges (i.e., citations) appear afterwards,
when a given paper cites another. Thus, in this dataset, new nodes
are not revealed through sampling the edges of the graph. In the
IMDB dataset, movies and actors correspond to the two different
types of nodes of a bipartite graph. An edge between a given pair
of nodes is present when a given actor plays a role in a given movie.
Thus, each edge is sampled only once (i.e., when an actor plays in
a new movie), as the edge will never be sampled again, giving rise
to a constant edge sampling rate for all edges. For these reasons,
in this work, we do not consider these datasets in the framework of
the proposed edge sampling model.

S. RELATED WORK

Network (or graph) densification is a phenomenon that has been
recently observed by Leskovec et al. in various datasets of real
data over time [8, 9]. In particular, they empirically observe that
the number of edges was growing much faster than the number of
nodes in these graphs. More surprising, for all datasets considered,
this relationship seemed to follow a power law of the type

e(t) o< n(t)?,

214

where e(t) and n(t) denote the number of edges and nodes of the
graph at time ¢, and a is called the densification exponent, which is
a constant greater than 1. Under this relationship, known as densi-
fication power law, the average node degree grows with time and,
thus, the graph densifies.

Most of the graphs considered in their work were generated by
accumulating the data available in the datasets over time. However,
they also considered the case where the graph is generated by con-
sidering only a fixed window of time. This is the case for the AS
graph and the email network. For the email network, they observe
that the densification exponent is larger for the fixed time window
case, which is consistent with our observations.

Besides providing empirical evidence of network densification,
Leskovec et al. also provide mathematical models that can capture
and partially explain this phenomenon [8, 9]. The intuition behind
their models is that densification occurs due to the growth of the
network. Basically, nodes created at a later point tend to establish
mode edges than nodes created earlier. The proposed Forest Fire
Model is based on this intuition and is a model for network growth,
where nodes and edges are added to the graph over time. They also
prove that this model leads to densification of the network over
time. Finally, Leskovec et al. also investigate other growth models
for networks, showing how properties such as power law densifi-
cation can arise, in particular when using the model of Kronecker
Graphs [6, 7].

An observation similar to the findings of Leskovec et al. con-
cerning network densification was also previously made by Doro-
govtsev and Mendes [4]. They empirically observed that the graph
formed by the World Wide Web was densifying over time, naming
this phenomenon accelerated growth. They also propose a model
to capture this phenomenon where the average node degree grows
as a power law in time.

6. CONCLUSION

This work investigates the recently observed phenomenon known
as densification, where the number of edges of a network grows
much faster than the number of nodes. In particular, we provide a
novel explanation for this phenomenon when considering some real
datasets. The key idea is that densification arises naturally from the
process used to reveal the edges and nodes of the unknown underly-
ing graph. For most datasets, this process is based on the discovery
of edges, that are then used to discover nodes. Based on this idea,
we propose the edge sampling model, where edges from a fixed un-
derlying graph are sampled by changing a sampling parameter p.,
leading to their discovery and to the discovery of adjacent nodes.

By assuming a heavy-tailed degree distribution for the underly-
ing graph, we prove properties concerning the densification of the
number of edges and nodes discovered over different values for the
sampling parameter. In particular, we show that a power law rela-
tionship, which we call a-densification, can arise over a wide range
of scales with exponent given by ﬁ, where s is the Zipf exponent
of the node degree distribution of the underlying graph. We also
prove limiting results for densification exponent as p. approaches
both extremes (i.e., 0 and 1), and show that densification can be
present and it is bounded for all 0 < p. < 1.

We also comment on the relationship of empirical network stud-
ies to the edge sampling model, and specifically, on what factors
affect the sampling probability p.. We introduce two observation
models, namely accumulation and modulation. In the first varia-
tion, edges and nodes are discovered and accumulated over time,
while in the second variation time is fixed but the edge sampling
intensity for a given time window is allowed to vary.

Finally, we consider datasets of real graphs, namely EPFL email



network and the Internet AS graph, both of which show densifica-
tion over time. We apply the two variations of our model to these
datasets and the results obtained indicate that the edge sampling
model is indeed a plausible alternative explanation for the observed
densification phenomenon.
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APPENDIX
A. PROOFS

Here we find upper and lower bounds for equation (8), i.e.

(1—pe) (1=, fo(k)(1 —pe)*)
Pe 2y, [o(K)k(1 — pe)k

a(pe) =

We first consider the upper bound. For p. > 1/2, we have 1 —pe <
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pe. Thus we can write:

(1—pe) (1 =3, fo(k)(1 —pe)¥) @ 1—pe
b S PR —p ) = S Fo(Rk(l— po)F
1 1
S @0 )t o)

where (a) follows since the second term in the numerator is P(v),
and thus less than 1.

Now we consider the lower bound. We can rewrite «(t) as:
1- Pe

_ =%, Fo®)(1—po)*
0= (s mami =) < 7. ) '

Q T

a7
Assuming fp(0) = 0 (which is the case for Zipf distribution),
and using >, fp(k) =1, we have,

fo()(1 = pe) + fo(2)(1 = pe) + fo(3)(L = pe) +---
fo(1)(1 —pe) + fp(2) - 2e(1 —pe)2 4 - -

Q=

(13)
Comparing the coefficients of fp (k) in the numerator and denom-
inator of (18) for all k > 1, we have,

. 1 In(k)
1—pe) > k(1 —p)f k=23,... ifl >
(L=pe) 2 k(1 —pe)” k=23 L e

(19)

In(k)

Since 57 is a decreasing function of k, the condition p. > 1/2

(derived by substituting k& = 2) suffices to have each term in the

numerator equal or greater than the corresponding term in the de-

nominator, i.e.

fD(k)(l_pP) 2 fD(k)k(l_p(’)k7 k= 17 27 37 e ifpe 2 1/27
(20)

which results in @ > 1. Note that for £ = 1 the two corresponding

terms are equal, thus satisfying (20).

Following the same approach for 7', we have,

Y

11— (fo(1)(1 —pe) + fo(2)(1 —p)? +- )
1—(fo(1)(X—pe) + o)A —pe) +-+)

zZ

T = 2n

Comparing the coefficients of fp(k),k =1,2,...inY and Z, we

observe,
fo(k)(1 =po)* < fo(k)(1=pe) k=1,2..., (22)
which results in Z <Y, yielding T" > 1. Thus,
at)=Q-T>1, ifpe > 1/2, 23)
which proves the lower bound in equation (9).
Putting all together, we proved that for p. > 1/2,
1< alpe) < 7 (24)

Next, we prove the two limiting results for o(p.) as defined in
equation (8). Define a® to be the limit of a(pe) when pe goes to



zero. Thus,
Oéo = pleiglooz(pe)
_ i A 2P (=5 oW —p)")
pe—0 pe Y. fo(k)k(1 — pe)*
— limlfzka(k)(lfkar...):
pe—0 p> . fo(k)k(l—pk---)

where we used the Taylor’s expansion for (1 — p)*.

Now define o' to be the limit of a(p. ) when p. goes to 1. Thus,

1

a = lim a(pe)
pe—1

(1—pe) (1=, fo(k)(1 —pe)*)

T TS Fo (k)R — po)F
L S R-pt (1-p)

pe—1 Pe Yok [o(R)k(1 — pe)k
C i LS fo®)(1—po* !

pe—1 Pe Ek Jo(k)k(1 — pe)k—1
Q1 fp(0) (f%(l))
_ 1-fp(0)
= a (25)
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where (b) follows since in the first term of the product, the de-
nominator goes to one and all terms in the sum go to zero except
for k = 0, and in the second term of the product all terms in the
sum go to zero except for k = 1.

Note that when fp(0) = 0, equation (25) simplifies to o (1)
This simplification applies in the case of the Zipf distribution, where
fp(0) = 0 independent of its parameter s and 1. Moreover, for the
Zipf distribution, we have that fp(1) = 1/A, where A is the nor-
malization factor of the distribution, which is given by:

1 1

A= 21/1 —1+—+—+ et

5 (26)

Thus, for the Zipf distribution, we have that o' = 1/fp (1) = A.



