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ABSTRACT
In dynamic networks the topology evolves and routes are
maintained by frequent updates, consuming throughput avail-
able for data transmission. We ask whether there exist low-
overhead schemes for these networks, that produce routes
that are within a small constant factor (stretch) of the op-
timal route-length. This is studied by using the underlying
geometric properties of the connectivity graph in wireless
networks. For a class of models for wireless network that ful-
fill some mild conditions on the connectivity and on mobility
over the time of interest, we can design distributed routing
algorithm that maintain the routes over a changing topol-
ogy. This scheme needs only node identities and integrates
location service along with routing, therefore accounting for
the complete overhead. We analyze the worst-case (conser-
vative) overhead and route-quality (stretch) performance of
this algorithm for the aforementioned class of models. Our
algorithm allows constant stretch routing with a network
wide control traffic overhead of O(n log2 n) bits per mobil-
ity time step (time-scale of topology change) translating to
O(log2 n) overhead per node (with high probability for wire-
less networks with such mobility model). We can reduce
the maximum overhead per node by using a load-balancing
technique at the cost of a slightly higher average overhead.
Numerics show that these bounds are quite conservative.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Routing Protocol; F.2.0 [Analysis
of Algorithms and Problem Complexity]: General

General Terms
Algorithms, Design, Theory
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distributed routing algorithms; wireless networks; geometric
random graphs; competitive analysis
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1. INTRODUCTION
Designing distributed routing algorithms that consume

a minimal amount of network resources is a major chal-
lenge in wireless ad hoc networks. In dynamic networks,
the topology can change over time, and routing tables must
be updated frequently. Such updates incur control traf-
fic, which consumes bandwidth and power. It is natural
to ask whether there exist low-overhead schemes for dy-
namic wireless networks that could produce and maintain ef-
ficient routes. We consider dynamically changing connectiv-
ity graphs that arise in wireless networks. Our performance
metric for the algorithms is the average signaling overhead
incurred over a long time-scale when the topology changes
continuously. We design a routing algorithm which can cope
with such variations in topology. We maintain routes from
any source to any destination node, for each instantiation1

of the connectivity graph. We want to guarantee that the
route is within a (small) constant factor, called stretch of the
shortest path length. In order to route to a destination, we
need only the identity of the destination and not any kind of
address or geographical position. Therefore, in the wireless
routing terminology, we have included the “location service”
in the control signaling requirement, and therefore hope to
characterize the complete overhead needed to maintain effi-
cient routes.

In order to develop and analyze the routing algorithms
we utilize the underlying geometric properties of the con-
nectivity graphs which arise in wireless networks. This geo-
metric property is captured by the doubling dimension of
the connectivity graph. A graph induces a metric space by
considering the shortest path distance between nodes as the
metric distance. The doubling dimension of a metric space
is the number of balls of radius R needed to cover a ball of
radius 2R. For example a Euclidean space has a low dou-
bling dimension as will be illustrated in Section 2. A metric
space having a low (constant independent of the cardinality
of the metric space) doubling dimension is called “doubling”.
We show that several wireless network graphs (under condi-
tions given in Section 2) are doubling and therefore enable
the design and analysis of hierarchical routing strategies. In
particular, it is not necessary to have uniformly distributed
nodes with geometric connectivity for the doubling property
to hold, as illustrated in Figure 2 in Section 2. Therefore,
the doubling property has the potential to enable us to de-
sign and analyze algorithms for a general class of wireless

1We assume inherently that the round-trip time (RTT) of a
packet from source to destination is much smaller than the
time-scale of topology change.



networks. Moreover, for a large class of mobility models,
the sequence of graphs arising due to topology changes are
all doubling (for specific wireless network models). Since
there are only “local” connectivity changes due to mobility,
there is a smooth transition between these doubling graphs.
We can utilize the locality of topology changes to develop
lazy updates methods to reduce signaling overhead.

We show that several important wireless network models
produce connectivity graphs that are doubling. In particu-
lar, we show that the geometric random graph2 with connec-
tivity radius growing as

√
log n with network size n; the fully

connected regime of the dense or extended wireless network
with signal-to-interference-plus-noise ratio (SINR) threshold
connectivity; some examples of networks with obstacles and
non-homogeneous node distribution. We define a sequence
of wireless connectivity graphs to be smooth if each of the
graphs is doubling and the shortest path distance between
two nodes in the graph changes smoothly (defined in Section
2).

Our main results in this paper are the following. (i) For
smooth geometric sequence of connectivity graphs, we de-
velop a routing strategy based on a hierarchical set of bea-
cons with scoped flooding. We also maintain cluster mem-
bership for these beacons in a lazy manner adapted to the
mobility model and doubling dimension. (ii) We develop a
worst-case analysis of the routing algorithm in terms of to-
tal routing overhead and route quality (stretch). We show
that we can maintain constant stretch routes while having
an average network-wide traffic overhead of O(n log2 n) bits
per mobility time step. The load-balanced algorithm would
require O(log3 n) bits per node, per mobility time. Through
numerics we show that the theoretically obtained worst-case
constants are conservative.

1.1 Related Work
Routing in wireless networks has been a rich area of in-

quiry. The two main paradigms for routing have been ge-
ographic routing and topology based routing. Geographic
routing algorithms (see for instance [10] and references therein)
exploits the geometry of wireless networks, and base rout-
ing decisions on the Euclidean coordinates of nodes. Their
performance depends on how well the Euclidean coordinate
system captures the connectivity graph, and they can there-
fore fail in the presence of node or channel inhomogeneity
(like in Figure 2 in Section 2). An often overlooked issue
is the overhead incured because the geographical positions
of the nodes need to be stored and continuously updated
in a distributed database in the network, to allow sources
of messages to determine the current position of the desti-
nation. This database is called a location service (see for
instance [13]) and must be regularly updated so that source
nodes can query it. Location services typically rely on some
a priori knowledge of the geographical boundaries of the
network. This is necessary because these approaches typi-
cally establish a correspondence (e.g., through a hash func-
tion) between a node identifier and one or several geograph-
ical locations where location information about that node
is maintained. An important feature of our work is that
we consider the total overhead incurred by the update and
lookup operations in the overhead of the routing algorithm
itself.

2To the best of our knowledge, it is the first such observation
for geometric random graphs

Topology based routing schemes (see [14] and [9]) com-
pute routes based directly on the communication graph. To
reduce overhead, most of these schemes establish routes on
demand through a reactively, rather than continuously main-
taining a route between every pair of nodes. In this respect,
they differ significantly from their counterparts for the wired
Internet (such as OSPF, IS-IS, and RIP). Recently estab-
lished routes are cached in order to allow their reuse by
future messages. In distance-vector based approaches (e.g.,
[14], this cached state resides in the intermediate nodes that
are part of a route, whereas in source-routing approaches
(e.g., [9]), the cached state resides in the source of a route.
Despite such optimizations, topology-based approaches suf-
fer from the large overhead of frequent route discovery op-
erations in large and dynamic networks. This issue was, in
fact, the reason why geo-routing approaches have reached
prominence.

Two schemes that utilize the underlying geometry of graphs
in static wireless networks algorithms are the works pre-
sented in [15] and the beacon vector routing (BVR) intro-
duced in [4]. Both these schemes are heuristics which build
a virtual coordinate system over which routing takes place.
They were shown to work well through numerics. However,
they utilize an external addressing scheme to make a cor-
respondence between addresses and names. In [19], routing
on dynamic networks using a virtual coordinate system was
studied. For large scale dynamic wireless networks, these
heuristics pointed to significant advantages to using some
geometric properties for routing and addressing. These re-
sults motivated the questions studied in this paper.

There has been a vast amount of theoretical research on
efficient routing schemes in wired (i.e., static) networks (see
for example [5]). Most of this work has been focused on the
trade-off of memory (routing table size) and routing stretch.
There are two main variants of such routing schemes (i) la-
beled (or addressed) routing schemes, where the nodes can be
assigned addresses so as to reflect topological information;
(ii) named routing, where nodes have arbitrary names, and
as part of the routing, the location (or address) of the des-
tination needs to be obtained (similar to a location service).
This examines the important question of how the node ad-
dresses need to be published in the network. Routing in
graphs with finite doubling dimension has been of recent in-
terest (see [11], and references therein). In particular [17]
showed that one could get constant stretch routing with
small routing table sizes for doubling metric spaces, when
we use labeled routing. This result was improved to make
routing table sizes smaller in [3]. The problem of named
routing over graphs with small doubling dimension has been
studied in [11] and [1], and references therein. It is worth
pointing out that there is no direct correspondence between
control traffic and memory. Bounds on memory do not take
into account the amount of information which needs to be
sent around in the network in order to build routing tables.
An illustration is the computation of the shortest path be-
tween two nodes u and v in a graph. While it is sufficient for
every node on the path between these two nodes to have one
entry for v (of roughly log n bits i.e., the name of the next
hop), computing that shortest path requires a breadth first
search of the communication graph and leads to a control
traffic overhead of O(n log n) bits.

To the best of our knowledge, there has been no prior
work on dynamic graphs over doubling metric spaces and on



theoretical analysis of control traffic overhead. In particular,
we do not know of any other formal results to which ours
are directly comparable.

2. MODELS AND DEFINITIONS
A wireless network consists of a set of n nodes spread

across a geographic area in the two-dimensional plane. We
model the network region as the square area [0,

√
n)×[0,

√
n) .

The n nodes move randomly in this area and we denote by
x(t)(u) the position of node u at time t. The connectivity
between two nodes is represented by an edge on the con-

nectivity graph G(t)
n if they can communicate directly over

the wireless channel. The connectivity between two nodes
depends on the distance between the two nodes, and could
also depend on the presence of other nodes, see Section 2.23.
We consider that when a node u transmits on the wireless
channel, it broadcasts to all its neighbors in the connectiv-

ity graph G(t)
n . Consequently, one transmission of a packet is

sufficient for all direct neighbors to receive that packet. To
make the notation lighter, we will only add the dependence
on time if it is necessary to avoid confusion. The distance
d(t)(u, v) between nodes u and v is the shortest path distance

between these nodes in G(t)
n . Note that d(., .) is a metric on

G(t)
n , i.e., the distance between a node and itself is zero, the

distance function is symmetric and the triangle inequality
applies. We will now define a ball of radius R around a
node u. It is simply the set of nodes within distance R of
u. More formally, we can define it more generally for any
metric space as follows:

Definition 1. A Ball B(t)
R (u) around node u at time t in

a metric space X is the set
{

v ∈ X |d(t)(u, v) ≤ R
}

.

In order to bound the control traffic overhead, we will re-
cursively subdivide the connectivity graph into balls. It will
be crucial for us to bound the number of balls of radius R
necessary to cover a ball of radius 2R around some node
u. In other words, we want to find the smallest number of
nodes vi such that all nodes within 2R of u are also within
R of some node vi. The notion of doubling dimension of a
metric space captures this idea4.

Definition 2. The doubling dimension of a metric space
X is the smallest α such that any ball of radius 2R can
be covered by at most α balls of radius R, for all R ≥
min(u,v)d(u, v) i.e., ∀u ∈ X ∃ Su ⊆ X , |Su| ≤ α and

B(t)
2R(u) ⊆

⋃

j∈Su

B(t)
R (j)

Moreover, if α is a constant, we have the following definition:

Definition 3 (Doubling metric space). A metric space
X is doubling if its doubling dimension is a constant inde-
pendent of the cardinality of X .

3Note that we do not require unit disc connectivity i.e., two
nodes need not be connected if and only if they are within
a given fixed distance. We show in subsection 3.1 that our
approach is also applicable to inhomogeneous network topol-
ogy where nearby nodes could potentially be disconnected
4This concept was originally introduced in [6]. How defini-
tion differs slightly from the original definition which allowed
arbitrarily small balls

A good way to illustrate the concept of doubling dimension
is to look at the metric space defined by a set of points X in
R

2 with the Euclidean distance. A ball of radius 2R around
a point x will simply be a disc of radius 2R around this point.
To cover this disc, we will select a set of points such that
all the surface is covered by the corresponding set of discs of
radius R. Note that the number of discs required is indepen-
dent of R and |X |. Hence, this metric space is doubling (see
Figure 1). In Section 2.1, we describe the geometric random

Figure 1: The metric space defined by a set of points
in R

2 and the Euclidean distance is doubling. In-
deed, we can cover a disc of radius 2R by a constant
(8 in this case) number of discs of radius R, whatever
the value of R.

graph model, which will be the canonical model we will use
to illustrate the ideas of the paper. In Section 2.2, we will
develop the model where connectivity is determined by the
SINR, and in Section 3.1 we will focus on inhomogeneous
topologies. We give the requirements for the mobility model
to result in a smooth sequence of wireless network graphs in
Section 2.3. We state the underlying assumptions and give
a table of notations in Section 2.4.

2.1 Geometric random graph
We denote the geometric random graph by G(n, rn) and

define its connectivity as follows.

Definition 4. A random geometric graph G(n, rn) has
an unweighted edge between nodes u and v if and only if
||x(u)− x(v)|| < rn, where {x(u)} are chosen independently
and uniformly in [0,

√
n) × [0,

√
n) .

In this paper we will be interested in fully connected geo-
metric random graphs, and therefore focus on the case rn >√

log n [7]. As a natural extension, we can also define a

sequence of random graphs G(t)(n, rn) with an unweighted

edges between u and v at time t if ||x(t)(u)− x(t)(v)|| < rn.

Whether each graph in the sequence G(t)(n, rn) corresponds
to a random geometric graph as in Definition 4, depends on
the mobility model for the nodes. We discuss this in more
detail in Section 2.3.

In Figure 2, we illustrate a non-homogeneous random net-
work where connectivity is not completely geometric as in
Definition 4. This example is revisited in Section 3.1, where
we show that though this connectivity graph is more com-
plicated than G(n, rn), it is still doubling, and therefore the
algorithms developed in this paper are applicable. This illus-
trates the advantage of our approach to network modeling.

2.2 SINR full connectivity
Since the wireless channel is a shared medium, the trans-

missions between nodes nterfere with each other. However,



Figure 2: n nodes are distributed uniformly at ran-
dom on a square area of side

√
n. A wall of width rn/c

is added which only has a small hole in the middle.
Again, we assume rn >

√
logn. Nodes cannot com-

municate through the wall. Finally, we remove the
nodes below the wall, which leads to an inhomoge-
neous node distribution.

the signal strength decays as a function of the distance trav-
elled, and therefore we can define the SINR for transmission
from node u to v as,

SINR =
P ||x(u) − x(v)||−β

N0 +
∑

w 6=u,v P ||x(w) − x(v)||−β
, (1)

where β is a distance loss (decay) parameter depending on
the propagation environment, P is the common transmit
power of the nodes and N0 is the noise power. We can
of course easily adapt this to have power control for the
nodes. For static nodes, just as in the case of geometric
random graph, we assume that the node locations {x(u)}
are chosen independently and uniformly in [0,

√
n)×[0,

√
n) .

For such a random network, we can design a fully connected
wireless network TDMA scheduling scheme [8, 12] for the
SINR connectivity model of (1). The structure of such a
resulting connectivity graph is identical to that of G(n, rn),
for rn >

√
log n. Therefore, the results we prove for G(n, rn),

would also be applicable to such graphs.

2.3 Uniform speed-limited (USL) mobility
Nodes are mobile and move according to the uniform speed-

limited (USL) model, a fairly general mobility model defined
next. The USL model essentially embodies two conditions:
(i) the node distribution at every time step is uniform over
the network domain, and (ii) the distance a node can travel
over a time step is bounded. We restrict ourselves to the
case in which the maximum speed is not dependent on n.
In practice, of course, such an assumption is realistic since
the maximum speed of the nodes will not increase when new
nodes join the network.

Definition 5. A collection of n nodes satisfy the uniform
speed-limited (USL) mobility model if the following two con-
ditions are satisfied:

(i) At every time t, the distribution of nodes over the net-
work domain is uniform;

(ii) For every node u and time t, the distance traveled

in the next time step is bounded, i.e., ||x(t+1)(u) −
x(t)(u)|| < S.

The USL mobility model is quite general. For example,
it includes the following cases: (i) The nodes perform in-
dependent random walks (on the torus) with bounded one-
step displacement. The random walks can be biased, and
the displacement distribution does not need to be homoge-
neous over the node population. We have to assume that

the nodes operate in the stationary regime. (ii) The nodes
follow the random waypoint model (RWP). The system has
to be in the stationary regime. (iii) The generalized ran-
dom direction models from [16], which interpolate between
the random walk and the random waypoint cases, through a
control parameter that can be viewed as the ”locality” of the
mobility process. (iv) We can also allow for models where
nodes do not move independently. As an illustrative exam-
ple, assume we uniformly place nodes on the square; the
nodes then move in lockstep according to any speed-limited
mobility process, maintaining their relative positions to each
other. Observe that the uniform distribution is maintained
for all time steps (note that we move on a torus), and that
the speed-limited property is true by definition.

We see that the USL class of mobility models is fairly
general, and includes many of the models that have been
proposed in the literature. For simplicity, we consider that
time is discrete. In other words, we look at a snapshot of the
network every ∆T seconds. At every time step, the connec-
tivity between nodes will be modified. Hence, we will work
with a sequence of connectivity graphs. In order to design a
routing algorithm with a low control traffic overhead, we will
need to understand how fast the distances between nodes
can evolve over time. In particular, consider two nodes u
and v at distance d = dt(u, v) at time t. We want to bound
the multiplicative factor by which this distance can change
in κ time steps. Formally, we define κ(τ, d) as follows:

Definition 6. We say that a communication network is
κ(τ, d)-smooth if the shortest path distance between any two
nodes u an v at shortest path distance d cannot change by
more than a factor κ(τ, d) in τ time steps i.e.,

max

{

d(t)(u, v)

d(t+τ)(u, v)
,
d(t+τ)(u, v)

d(t)(u, v)

}

≤ κ(τ, d)

, ∀u, v.

Additionally, we simply say that the network is κ-smooth
if there exists a constant ν such that κ(νd, d) ≤ κ(ν) = κ
independently of d. In this case, the distances grow at the
same speed at all scales. In the sequel, we will bound κ
and ν for our model. This USL property holds for a general
class of random trip mobility models studied in [2], where
it is shown that the stationary distribution of such mobility
models is uniform and ergodic. We restate this theorem
without proof.

Theorem 1. ( [2]) The random-trip mobility model has
uniform stationary distribution on [0, a) × [0, a).

2.4 Assumptions
We consider that a time step ∆T is much larger than

the round trip time (RTT) through the network i.e. the
time scale for mobility is much larger than the time scale for
communications. In order to simplify the analysis, we will
make the assumption that nodes can communicate instanta-
neously through the network. We also make the assumption
that there is a random permutation π on the nodes, and
nodes know their rank in the permutation. In Section 6 we
will then drop these assumptions and consider practical as-
pects of the implementation. Finally, we say that a result
holds with high probability (w.h.p.) if it holds with proba-
bility at least (1−O( 1

nρ )), for some constant ρ > 0. In table
1, we summarize the notations used in this paper.



x(t)(u) Position of node u at time t

d(t)(u, v) Shortest path distance from u to v at time t
rn Wireless communication radius

G(n, rn) Random geometric graph

B(t)
R (u) Ball of radius R around u

κ(τ, d) max
{

d(t)(u,v)

d(t+τ)(u,v)
, d(t+τ)(u,v)

d(t)(u,v)

}

≤ κ(τ, d)

Table 1: Table of notations

3. NETWORK PROPERTIES
We now prove some properties of the network models pre-

sented in Section 2, which are necessary to analyze our al-
gorithm. We will focus our attention on the geometric ran-
dom graph G(n, rn), but all the arguments can be extended
to other models (Sections 2.2 and 3.1). In particular, for
G(n, rn), we will now consider the case in which the com-

munication radius rn is such that rn =
√

(1 + ǫ) log n >

log1/2 n, where ǫ > 0.
For uniform speed-limited (USL) mobility models discussed

in Section 2.3, at each time, the node locations {x(t)(u)}
have an empirical distribution that is uniform over [0,

√
n)×

[0,
√
n) . Therefore, we now discuss the property of a se-

quence of geometric random graphs, G(t)(n, rn), with USL
mobility model. We subdivide the network area on which
the nodes live into smaller squares of side rn

c
, where c is a

constant chosen such that nodes in neighboring squares are
connected and that an integer number of squares fit into the
network area.

We arbitrarily set c =
√

5. We number the small squares

from 1 to m = n
(rn/c)2

= nc2

(1+ǫ) log n
and denote by Ei the

event that small square i does not contain any node. In
the next theorem, we show that when nodes move according
to USL mobility model, all small squares will be populated
w.h.p. in a sequence of length nρ, for some constant ρ.

Theorem 2. There exists a constant ρ such that if we
divide the network into small square of side rn

c
(with rn >√

log n), every small square contains at least one node at
every time step w.h.p. in a sequence of length nρ

Proof. Consider a sequence of length Z = nρ. Denote

by E
(j)
i the event the small square i is empty at time j. Let

m = n
r2

n
. We can compute:

P
[

⋃Z
j=1

⋃m
i=1E

(j)
i

]

≤ Z
∑m

i=1 P
[

E
(j)
i

]

= Z
∑m

i=1(1 − 1
m

)n

≤ Z
∑m

i=1 e
− n

m

= Z nc2

(1+ǫ) log n
e−

nc2(1+ǫ) log n

n

≤ Z nc2

(1+ǫ) log n
1

n(1+ǫ)

= Z c2

(1+ǫ)nǫ log n

≤ O(nρ

nǫ )
= O( 1

nǫ−ρ )

We can now choose ρ such that ǫ − ρ > 0 and the result
follows.

It is immediate that a single instantiation of the connectivity
graph, every small square is populated w.h.p.

Corollary 1. There is no empty small square with prob-
ability at least (1 −O( 1

nǫ )) in a sequence of length 1.

We are now ready to show that the connectivity graph is
doubling at every time step in a sequence of nρ connectivity
graphs w.h.p. As far as we know, this is the first result
showing that G(n, rn) are doubling. Since we have a USL

mobility model, the behavior of any graph G(t)(n, rn) at time
t, is statistically identical to G(n, rn).

Theorem 3. G(n,
√

(1 + ǫ) log n) are doubling w.h.p.

Proof. By Lemma 1, all small squares contain at least
one node w.h.p. Consequently, neighboring squares (ver-
tically and horizontally) have at least one communication
link. Denote by L(m, r) the grid having the small squares
as vertices, and with edges between vertical and horizontal
neighbors. Consider a ball Bupper = BG

2R(u) centered around
some node u. Clearly, all nodes in Bupper must be contained
in a square which is part of BL

4Rc(u) i.e., Bupper ⊆ BL
4Rc(u).

This follows from the fact that no node in Bupper can be
further away from u than 2Rr in Euclidean distance, and
that the grid is fully connected w.h.p. Similarly, one can
see that BL

R(u) ⊆ Blower = BG
R(u). This is a consequence of

the fact that L is a subgraph of G i.e., two nodes in small
squares R hops a part in L cannot be more than R hops
apart in G (see Fig. 3). It is easy to see that one can cover
BL

4Rc(u) with a constant α BL
R(vj). Hence,

Bupper ⊆ BL
4Rc(u) ⊆

α
⋃

j=1

BL
R(vj) ⊆

α
⋃

j=1

BG
R(vj) (2)

and G(n,
√

(1 + ǫ) log n) is doubling.

Figure 3: Proof of theorem 3

Note that it is possible to build a deterministic geometric
graph for which this property does not hold (see [18]). Fur-
ther, one can show that G(n, rn) are not doubling w.h.p
when rn <

√
log n. We prove this result [18]. At this point,

we would like to emphasize that our results depend only
on the doubling constant and can be applied to any type
of networks or node configuration which lead to a doubling
connectivity graph.

3.1 Inhomogeneous Topologies
In this subsection we state a result that shows that we

can relate the doubling dimension in a metric space to the
doubling dimension in another metric space if we know the



distortion of the embedding that maps one to the other.
Consider two metric spaces (X, d) and (X ′, d′), where d and
d′ are distance functions which define a metric on the sets of
point X and X ′5. A metric embedding is a bijective function
φ : X → X ′ which associates to a point in one metric space
a point in another metric space.

Definition 7 (Distortion of an Embedding). A map-
ping φ : X → X ′ where (X, d) and (X, d′) are metric spaces,
is said to have distortion at most D, or to be a D-embedding,
where D ≥ 1, if there is a K ∈ (0,∞) such that ∀x, y ∈ X,

Kd(x, y) ≤ d′(φ(x), φ(y)) ≤ KDd(x, y)

if X ′ is a normed space, we typically require K = 1 or K =
1
D

.

We can now relate the doubling dimensions.

Theorem 4. Consider a metric space E with doubling di-
mension β. A metric space H that can be divided in k sets
S1, S2, ..., Sk (with distances in H), such that each set em-
beds individually with distortion Di into E has doubling di-
mension at most

∑k
j=1 β

2 log 2Dj .

Proof. A complete proof is given in [18].

Hence, if we can subdivide the communication graph into a
constant number of subsets, such that each one is embed-
ded with constant distortion into the Euclidean plane, the
whole network is doubling. In common language, if the net-
work is such that there exist a constant number of subsets of
nodes, and for each of these subsets the Euclidean distance
between nodes is proportional to the hop distance, the net-
work is doubling. Consequently, topologies such as the one
shown in Figure 2 are doubling. Here, we embed the commu-
nication graph into the Euclidean plane6. In such cases, it
is obvious that geographic routing (greedy forwarding based
on geographical co-ordinates) would fail, even though the
inherent complexity of the network is low. Indeed, packets
would get stuck against walls. Remarkably, our routing al-
gorithm is oblivious to the topology and only depends on the
doubling dimension. Hence, there is absolutely no need to
detect or identify obstacles. The communication overhead
will simply depend on the doubling dimension.

3.2 Dynamic Topologies
We now show that a sequence of G(t)(n, rn) of length nρ,

for some constant ρ, with the USL mobility model is κ-
smooth. As already seen in Theorem 3, such a sequence of
graphs is doubling at every time instant.

Theorem 5. A sequence of G(t)(n, rn) of length ≤ nρ,
where nodes move according to the USL mobility model with
maximum constant speed S is

max







rnd
(t)

rnd(t)
√

5
√

2
− 2

√
5
√

2τS
,
√

5
√

2(1 +
2τS

√
5
√

2

rnd(t)
)







5We could for instance consider the points in the plane with
the Euclidean distance and the nodes in the graph with the
shortest path distance
6In our case, ρrnd(u, v) ≤ ||x(u) − x(v)|| ≤ O(1)ρrn. If this
equation is true for all pairs of nodes, then the distortion is
O(1). The above rule implies that the Euclidean distance
between neighbors in the communication graph should be
at least O(rn). However, we can ignore the distances below
2 as we have a broadcast medium and the degree of a node
does not impact the communication overhead (see Section
5)

smooth w.h.p.

Proof. Consider two nodes u and v at Euclidean dis-
tance q

(t)
2 = ||xu − xv||2 at time t. Let q

(t)
1 = ||xu − xv||1 =

∑2
m=1 |xm(u) − xm(v)|. Further, denote by d(t) = d(t)(u, v)

their shortest path distance at time t. One can see that
q
(t)
2
rn

≤ d(t) ≤
√

5
√

2q
(t)
2

rn
. Indeed, the shortest possible path

will follow a straight line between u and v. The length of

this line is q
(t)
2 and one hop can be of length at most rn.

In the worst case, the shortest path from u to v will follow
the shortest path in the grid formed by the small squares
of side rn

c
= rn√

5
, which exists w.h.p. Recall that we can

only guarantee horizontal and vertical connectivity between
small squares. The number of small squares in this path will

be at most
√

5q
(t)
1

rn
. One can easily show that q

(t)
1 ≤

√
2q

(t)
2 .

Let x =

(

x1

x2

)

=

(

x1

sx1

)

= (x(u) − x(v)). We have

q
(t)
2 =

√

x2
1 + x2

2 = x1

√
1 + s2

= (1 + s)x1

√
1+s2

1+s
= q

(t)
1

√
1+s2

1+s
.

Since, we have
q
(t)
2

q
(t)
1

=

√
1+s2

1+s
, the term is maximized when

s = 1. In Figure 4, we illustrate this point. Similarly, at

Figure 4: Upper and lower bounds for the shortest
path

time t + τ , the shortest path distance will be bounded by
q
(t+τ)
2
rn

≤ d(t+τ) ≤
√

5
√

2q
(t+τ)
2

rn
. However, we know that the

Euclidean distance can change by at most 2τS in τ time
steps7. Consequently,

q
(t)
2 − 2τS

rn
≤ d(t+τ) ≤

√
5
√

2(q
(t)
2 + 2τS)

rn
(3)

We can now bound the multiplicative stretch as follows:
Hence,

max
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( 1√
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}
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= κ(τ, d)

7One can show that this remains true even if the nodes are
reflected on the borders of the network



One can now observe that the time it takes to multiply the
shortest path distance between two nodes at distance d is
proportional to d. Note that the larger the communication
radius rn, the smaller κ. Hence, the distance grows at most
linearly with time. In particular, we have:

Corollary 2. There exist constants ν and κ defined in
the proof such that a sequence of nρ connectivity graphs, un-
der the USL mobility model with maximum constant speed
S, is κ-smooth w.h.p.

Proof. By theorem 5, we know that the sequence is

max
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
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-smooth w.h.p. Note that both terms decrease as a function
of the communication radius rn. Hence, we can set rn = 1
without decreasing κ(τ, d). Similarly, both terms go down

when the distance d(t) goes up. We can therefore also set
d(t) = 1, which is the smallest possible distance in an un-
weighted graph. Consequently, if we set τ = νd(t) = ν, we
can now write

κ(τ, d) ≤ max

{

1
1√
5
√

2
− 2

√
5
√

2νS
,
√

5
√

2(1 + 2νS
√

5
√

2)

}

which is constant for ν constant.

4. ROUTING ALGORITHM
We develop the routing algorithm and performance analy-

sis for a general class of dynamic networks which produce a
sequence of doubling and smooth connectivity graphs. We
have seen in Sections 2 and 3 that this applies to a class of
wireless connectivity models with USL mobility. For nota-
tional convenience we will illustrate the ideas for a sequence
G(t)(n, rn) geometric random graphs with USL mobility.

Our algorithm does not require the nodes to be equipped
with a positioning device, such as the Global Positioning
System (GPS). It is based on a hierarchical decomposition
of the network uniquely dependent on the distance between
nodes in the communication graph. This hierarchy is main-
tained and refreshed over time. Every node is a member
of one cluster at each level in the hierarchy. To establish a
route for a given source destination pair, the source searches
this hierarchy until it finds a cluster of which the destination
is a member. In turn, a recursive search down the hierarchy
inside this cluster allows us to reach the destination. Hence,
our algorithm does not require a location service per say.
Rather, we perform an efficient search for the destination
based on the destination’s identifier. In the sequel, we will
show how we designed such a scheme and prove its efficiency
analytically.

We decompose a time step into two phases: a beaconing
phase and a forwarding phase. In the former phase, a set of
routes are established by letting all or a subset of nodes flood
the network at geometrically decreasing radii and nodes reg-
ister with beacon nodes. In the latter phase, this subset of
routes is then utilized by source nodes to efficiently search
for the destination. Every node is equipped with a rout-
ing table as shown in Table 2. We will first describe two
procedures used in the beaconing and the routing phase.

Node identifier distance [hops] level next hop
...

...
...

...

Table 2: Routing Table RT

flood(R,level) procedure: When a node u initiates the
flood(R, level) procedure, it broadcasts a flood packet as
shown in Table 3 to its direct neighbors in G(n, rn). The
hop count field is initialized to 0 and the content of the Level
field will be specified in the sequel. All nodes can compute
the maximum hop count given the level of the source. The

Pkt. Type Node Id. Hop Count Level
O(1) bits O(log n) bits O(log n) bits O(log ∆) bits

Table 3: Flood Packet

neighbors which receive this packet, after increasing the hop
count by 1, add an entry to their routing table for node u
if no entry for the same node with a lower or the same hop
count is present in the RT for the same level. The next hop
field is set to the identifier of the node from which the packet
was received. The level field in the routing table is set to the
level given in the packet. In turn, these nodes broadcast this
packet to their neighbors which follow the same procedure
and update the routing table if necessary. The packet is
discarded when the hop count reaches the maximum hop
count (which is a function of the level). Note that with this
procedure, every node forwards the packet at most once and
the distance added to the routing table is the shortest path
distance in G(n, rn).

probe(relay,destination) procedure: This procedure
consists in sending a probe packet (see Table 4) to a relay
node for which the source has an entry in its routing table.
The relay node will set the success bit to 1 if it has an
entry for the destination and 0 otherwise. We will make sure
that all nodes on the path between the source and the relay
node have an entry for the relay node in their routing table.
Additionally, nodes on the path add a temporary entry for
the source in the routing table. They set the next hop field
to the identifier of the node from which they received the
packet and leave the level and distance field empty. Upon

Pkt. Type Relay Id. Dest. Id. Success
O(1) bits O(log n) bits O(log n) bits 1 bit

Table 4: Probe Packet

receiving the packet, the relay node can either answer to the
source on the reverse path we just created if the answer is
negative. Alternatively, it can take action as explained in
the sequel if it has an entry for the destination.

We now separately detail the beaconing and the routing
algorithms underlying our routing protocol

4.1 Beaconing Algorithm
We will first describe the first time step, where nodes have

not yet moved. Let the cover radius at level i, for i =
1, ..., log ∆ (∆ being the diameter of the network), be defined
as ri = 2i and the flooding radius at level i be defined as
fi = κ(ri+1 + ri), where κ is a constant chosen such that
κ(νd, d) ≤ κd, ∀d. The idea of the algorithm is to build



a hierarchical cover of the network i.e., we would like every
node in the network to be within ri of a beacon node at every
level i. We say that when a node is within ri of a beacon
b at level i, it is a member of b’s cluster at level i. A node
can only be in one cluster at every level. To achieve this,
we let the nodes flood in a random order which can change
at every time step. Every node u is a beacon at a given
level β(u). The flooding radius, however, will depend on the
highest level at which a node is not covered. Let us denote
by h(u) the highest level at which node u is not covered.
When node u’s turn to flood comes, it will determine the
value of h(u) set β(u) = h(u) and call flood(fh(u), h(u)). A
node v which receives this flood will determine the lowest
level at which it could be a member of u’s cluster, say l(v).
That is, it will determine the lowest value j for l(v) such
that d(u, v) ≤ 2j . This distance d(u, v) is known since v
just received a flood packet from u. It will then become a
member of u’s cluster for all levels above l(v) for which it has
no membership yet and are below β(u). If a node becomes
a member of u’s cluster, it will send a membership packet
(see Table 5) back to u which will store the identifier of the

Pkt. Type Node Id. Beacon Id. Level
O(1) bits O(log n) bits O(log n) bits O(log ∆) bits

Table 5: Membership Packet

nodes in its cluster. Note that a node v could send back
none or several such packets to u. Note that u also applies
this procedure to itself, and consequently could be a beacon
at level i but not at level j < i.

The control traffic will be dominated by the messages sent
back by nodes to beacons when they become members of a
cluster. On the other hand, we do not want the distance be-
tween a node and the beacons it belongs to to grow by more
than a constant factor. Since we consider that the maxi-
mum speed of the node is constant, the higher the level of a
beacon, the more time it will take for nodes to double their
distance to this beacon. We want to elect new beacons and

Figure 5: The memberships up to level i are updated
every ν2i time steps. At the levels above, beacons
elected at earlier time steps simply flood again.

update memberships only for levels at which the distances
could have been multiplied by κ. Recall that the network is

κ-constrained. Consequently, the distance d(t)(u, v) between
two nodes u and v cannot change by a factor κ in less than
νd time steps (see Corollary 2). In particular, if a node is
at distance 2i of a beacon at the time it becomes a member
of its cluster, then we have dt+ν2i ≤ κ2i. Hence, we will
update the memberships at level i every ν2i time steps (see
Figure 5). This will lead to a routing scheme in which the
distances can be distorted by at most a constant factor to
be calculated in the sequel. Additionally, in a dynamic envi-
ronment, routes can break. This is why we let the beacons
at all levels flood at every time step. Levels at which no
membership updates take place simply use the floods of the
beacons to update their routes toward theses beacons. This
will ensure that a route always exists for all pair of nodes8.
In Figure 6, we give a simple with three levels. The beacon-
ing algorithm is presented in Algorithm 1. It is important
to note that the routes are updated at every time step and
consequently routing toward a beacon will always be suc-
cessful. Further, when the membership at a given level i is

Figure 6: The example start with empty routing ta-
bles. First, on the left, node u1 floods at level 3.
We focus on nodes u2 and u3. Node u2 is within 8
hops from u1 but further away than 4 hops. Conse-
quently, it can only had an entry for node u1 at level
3. At the same time, node u3 can add an entry for
node u1 at the levels 2 and 3, since it is at distance
4 of u1. Next, on the right, u2’s turn to flood comes
(right after u1’s turn). This node is already covered
at level 3. Consequently, it will flood at level 2. The
node u3 could potentially add an entry for this node
at levels 1 and 2. However, it is already covered at
level 2 and so adds only an entry for level 1. We do
not show the entries beacons add for themselves.

updated, all the memberships at the levels j < i will also be
updated, and all memberships at these levels canceled.

4.2 Forwarding Algorithm
The forwarding algorithms works as follows: a source node

u wishing to communicate with a target node v will search

8Note that this gives us a way to detect beacon failures. A
recovery mechanism would let nodes that do not hear their
beacon at a given level anymore start a local beacon election
process i.e., such a node starts a random timer and can elect
itself as a beacon if it is not covered by another node’s flood.
Memberships could then be updated.



Algorithm 1: Beaconing Algorithm at node u

Data: Routing Table, Time t
begin

Let Γ = max
{

0 ≤ j ≤ log ∆|t mod ν2j = 0
}

;
Clear routing table entries with level ≤ Γ;
Let β(u) be the level at which u is a beacon;
if π(ℓ) = u then

if β(u) ≤ Γ then
Let h(u) be the highest level at which u is
not covered;
β(u) = h(u);

end
flood(fh(u), h(u));

end
end

for v by first probing all the level 1 beacon it knows of. To do
so, it looks at the last column of its routing table and selects
all nodes it knows of at level 1. If all answers are negative, it
will probe all level 2 beacons it knows of. The procedure is
repeated as long as all beacons answer negatively. A beacon
at level i that has an entry for the destination in its routing
table will not answer directly to the source. Rather, it will
probe all the level i − 1 beacons it knows of. We will show
in the next section that one of these beacons must have an
entry for the destination. That beacon in turn probes all
the beacons in knows of at level i− 2. Meanwhile, the other
beacons at level i − 1 will answer negatively to the beacon
at level i. The procedure is repeated recursively until the
target itself is reached9. The target will then answer to
the source on the reverse path which will later be used for
communication between the source and the destination. We
illustrate the forwarding procedure conceptually in Figure
7.

4.3 Load-balancing
This approach guarantees a low network wide control traf-

fic overhead. Even though over a long period of time all
nodes will get approximately the same average overhead,
beacons at the highest levels might get overloaded by the
membership packets of the nodes in their cluster when a
membership update takes place. These nodes will be hot
spots in the network for a short period of time. To work
around this problem, memberships can be distributed in the
cluster instead of stored at the beacon itself. First, we now
set f ′

i = κ(2ri+1 + ri). Additionally, whenever a beacon
floods at level i, it includes its membership at level i + 1
in the packet. This information is stored by all nodes that
receive this flood packet. This will guarantee that all nodes
that are members of a cluster at level i, know how to reach
all beacons at level i−1 inside that cluster. A node that be-
comes a member of the cluster of beacon bi(u) at level i will
now send its membership packet directly toward the beacon
ψi−1(u) at level i − 1 inside this cluster with the identifier
closest to u’s. In turn, as soon as the packet reaches a node
which is a member of ψi−1(u)’s cluster at level i − 1, the
membership packet is redirected toward the beacon ψi−2(u)

9If the destination node fails, at least one beacon on the
path will fail in finding a next step for the routing path.
In this case, this beacon can reply to the source that the
destination is not available anymore.

Figure 7: Node u has a packet for node v. It searches
in its routing table for all beacons it knows of at
level 1 and sends them a probe packet containing
v’s identifier. None of the beacons at level 1 has an
entry for this node and consequently they all answer
negatively to node u. Next, node u repeats the same
procedure with all the beacons it knows of at level 2.
Again, all beacons answer negatively. On the third
level, now, a beacon has an entry for node v. This
beacon will probe all the beacons it knows of at level
2, while the other beacons at level three will answer
negatively to u. A beacon at level 2 must have an
entry for v. This beacon again probes all the beacons
it knows of at level 1 among which one must have
an entry for v itself. Meanwhile, the other beacons
reply negatively as they do not have any entry for
v.

which is a member of ψi−1(u)’s cluster at level i−1 and has
the identifier closest to node u’s. The process is repeated
until we reach a single node, which will store u’s identi-
fier on behalf of bi(u). Note that the membership can only
be registered at a single location in the cluster reachable
through a unique sequence of clusters. This remains true
even when nodes move. Indeed, the nodes in the cluster of
bi(u) will only forward the packet to beacons at level i − 1
which were in the same cluster at the time the membership
for this level got updated. Of course, whenever level a j < i
is updated, we do now not only need to send u’s identifier
toward its new beacon at that level. Additionally, the node
that holds u’s identifier at level j might not anymore be
reachable through a path of clusters with identifiers closest
to u’s. Consequently, this node will need to forward u’s iden-
tifier toward the beacon at level j with the identifier closest
to u’s. Again the process will be repeated recursively until
a single node is reached. As we will see, the cost of avoiding
hot spots is a factor log n in the total control traffic. Finally
and most importantly, with this procedure beacons will no
longer get overloaded. Rather, the traffic will be distributed
in its cluster.

The data forwarding process remains the same except that
the source node will not probe the beacon itself, but rather
search for the node in the beacon’s cluster that should hold
the destination’s identifier. If this node holds the identifier,
it will then probe the beacons one level below in the same



way. Recall that the nodes which potentially hold u’s mem-
bership can be reached at any given instant in time through
a unique sequence of clusters. The procedure is repeated
until the destination is reached. Even though it is not the
focus of this paper, we expect the memory requirements for
this load-balanced approach to be polylogarithmic in n.

5. PERFORMANCE ANALYSIS
We will analyze the performance of our algorithm analyt-

ically both in terms of control traffic and of route stretch for
a sequence of doubling and smooth connectivity graphs. We
will use G(t)(n, rn) with USL mobility for illustration. We
derive order results for which the constants can be computed
explicitly. Our numerics confirm that these results do not
only hold in asymptotia.

The bounds derived in this section hold with w.h.p. when
we are in a sequence of α-doubling connectivity graphs of
length nρ. In the sequel, α, κ and ν are the constants de-
rived in Section 3. Let us denote by ∆ = O(

√

( n
log(n)

)) the

diameter of the network. To bound the control traffic neces-
sary for beaconing, we will rely on the α-doubling property
of the metric space to show that a node can only hear a con-
stant number of beacons at every layer. We will first show
that a ball of radius 2R around any node u can only contain
at constant number of balls (clusters) of radius R, when we
select the centers of the balls of radius R in an arbitrary
order and ensure that two centers cannot be closer than R.
We will later use this result to show that a node can hear at
most a constant number of beacons at any given level.

Theorem 6 (Random Cover). Let BX
2R(u) be a ball

of radius 2R in a graph metric (X, d) with doubling con-
stant α centered at u. Then, one can select at most k ≤ α2

nodes vi, (i = 1, 2, .., k) such that BX
2R(u) ⊆ ⋃k

i BX
R (vi) and

min(i,j)d(vi, vk) > R.

Proof. By definition of an α-doubling metric space, there
must exist a cover of a ball of radius 2R consisting of at most
α balls of radius R. Recursively, there must also exist an R

2
-

cover consisting of α2 points. One can select at most one
center vi in each ball of radius R/2, as any other point inside
this ball is within R of vi. Hence, one can select at most α2

such centers.

Corollary 3. Let B be a ball of radius R > R′ in an
α-doubling metric space (X, d). Then, one can select at

most k ≤ ( R
R′ )

2log(α) nodes vi, (i = 1, 2, .., k) such that

BX
R (u) ⊆ ⋃k

i BX
R′(vi) and min(i,j)d(vi, vj) > R′. In par-

ticular, if R = ηR′ for some constant R, then k is at most
a constant (η)2log(α) independent of n.

Proof. Let R = 2iR′. Hence, R′ is doubled log R
R′ times

to obtain R. By Theorem 6, B can be covered by α2log R
R′ =

( R
R′ )

2log(α) balls of radius R′.

Here, one can think of the radius R of the large balls as the
flooding radius, and of the radius R′ of the small balls as
the cover radius. Indeed, we use this result to show that
a node u can hear the floods of all beacons within a given
radius R. Moreover, this ball of radius R can contain at
most ( R

R′ )
2log(α) beacons, since beacons must be at least R′

apart.

5.1 Control Traffic

Theorem 7. The average control traffic overhead per time
step for beaconing is at most O(n log2 n) bits.

Proof. We will analyze the control traffic at level i. Re-
call that a beacon at level i floods a distance fi = κ(2i+1+2i)
at every time step. Further, at the time the memberships
are updated at level i, a beacon node at this level cannot
be within ri = 2i of another beacon at that level. If it were
the case, this node would not elect itself as a beacon at this
level. Level i is updated every ν2i time steps. Consider a
node u. By corollary 5, only nodes that are within κfi at
the time the memberships are updated at level i could move
within fi of u in at most ν2i time steps. That is before this
level is updated again. Consequently, the number of beacons
whose flood can reach u at any given time step is at most
the number of level i beacons in a ball of radius κfi at the
time the membership is updated. In turn, node u will broad-
cast10 the flood packets of at most that many beacons for
this level i. By corollary 3, this number is a constant11 given
by (κfi

2i )2log(α) = (3κ2)2 log α. Given that there are O(log n)
levels, that there are n nodes and that a flood packet has
size O(log n) bits, the average control traffic overhead per
time step for beaconing is at most O(n log2 n) bits.

We now compute the control traffic overhead necessary for
nodes to update their memberships with beacons. Recall
that level i and all levels below are updated every ν2i times
steps and that a node can only be a member of one cluster
at every level. Furthermore, a node only becomes a member
of a cluster if it is within 2i of the corresponding beacon.

Theorem 8 (Membership Update Overhead). The av-
erage control traffic overhead per time step to update mem-
berships without load-balancing is at most

n log ∆ log n

ν
= O(n log2 n)

bits.

Proof. Consider a sequence of T time steps. The mem-
berships will be updated up to level i every ν2i time steps,
so T

ν2i times in a sequence of length T . At the time of the

update, a node can be at distance at most 2i from a beacon
at level i. Consequently, the overhead in bits generated by
a node in a sequence of T time steps is upper bounded by
∑log ∆

i=1
T

ν2i 2i log n = log ∆
ν

log n.

Finally, we will show that the average control traffic over-
head when load-balancing is used is increased by at most a
factor log n.

Theorem 9 (Membership Update Overhead). The av-
erage control traffic overhead per time step to update mem-
berships with load-balancing is at most

n log2 ∆ log n

ν
= O(n log3 n)

bits.
10recall that when a node broadcasts a packet it is received by
all direct neighbors in the connectivity graph. Consequently,
there is one packet transmission per beacon of which a flood
packet is received.

11In the load-balanced scheme, this constant is (5κ2)2 log α.



Proof. Consider a sequence of T time steps. The mem-
berships will be updated up to level i every ν2i time steps,
so T

ν2i times in a sequence of length T . At the time of

the update, a node can be at distance at most 2i+1 from
a beacon at level i − 1 inside its cluster at level i. Simi-
larly, a node can be at distance at most 2i from a beacon
at level i − 2 inside its cluster at level i − 1. In the load
balanced scheme, we have to count the overhead to go down
the hierarchy of beacons. For a beacon at level i, this is at
most 2i × 2. Consequently, the overhead in bits generated
by a node in a sequence of T time steps is upper bounded
by 4

∑log ∆
i=1

T
ν2i 2i log n = 4 log ∆

ν
log n. However, node u is a

member of a cluster at all log ∆ levels. Recall that the node
that holds u’s identifier must always be reachable through
a path by choosing the beacon (cluster) with the identifier
closest to u’s. Hence, whenever level i gets updated, all log ∆
nodes that hold u’s identity must follow the same procedure
as u itself. We conclude that the overhead is upper bounded
by log ∆4 log ∆

ν
log n bits.

5.2 Route Stretch
In this section we will show that the route found with the

forwarding algorithm is only a constant factor longer than
the shortest path. Additionally we show that the destina-
tion location discovery takes a negligible fraction of a flow
throughput.

Theorem 10 (Routing Stretch). The worst case mul-
tiplicative routing stretch is O(1).

Proof. We first analyze the stretch without load balanc-
ing. Consider that we want to route from a node u to a node
v, and that we had 2k ≤ d(u, v) ≤ 2k+1, the last time level k
was updated before the route search takes place. Let us de-
note by bi(v) the beacon to which node v had registered the
last time level i ≤ k was updated before the route search
takes place. Clearly, we have d(u, bv(k)) ≤ κ(2k+1 + 2k),
and d(bi(v), bi−1(v)) ≤ κ(2i + 2i−1). This is true since
the membership of node v at level i must have been up-
dated at most ν2i time steps before the routing takes place,
and that at the time the time level i gets updated, we
have d(bi(v), bi−1(v))) ≤ d(bi(v), v) + d(v, bi−1(v)) by trian-
gle inequality. Note that d(bi(v), bi−1(v)) ≤ fi−1 and that
d(u, bv(k)) ≤ fk. Hence, a route must exist between u and v

and the length r(t+τ)(u, v) of the route at time t is at most:

r(t)(u, v) ≤ ∑k
i=1 fk = κ

∑k
i=1(2

i+1 + 2i)

= 3κ
∑k

i=1 2i = 3κ 2k+1−1
2−1

≤ 6κd(t)(u, v)

In the worst cast, nodes u and v have moved closer together
(by a factor κ) while the beacons have moved further apart.

Indeed, we have d(t+τ)(u, v) ≤ κd(t)(u, v) for τ ≤ ν2k as our
network is κ-constrained. Note that if we waited longer that
ν2k, memberships would be updated again at level k and we
could find another beacon at distance 2k at most from v

at level k. Hence, the worst case stretch is r(t+ν2k)(u,v)

d(t+ν2k)
≤

6κ2 = O(1).

Every node can only hear floods from a constant number
(µ = (3κ2)2 log α, see Theorem 7) of beacons at every level.
Recall that the source will first probe all beacons at level
1, then all beacons at level 2 and so on. The procedure
is repeated up to level k at which the source u will send
a packet to bk(v). Note that the distance from u to this

beacon can be at most κ2k+1 + 2k = fk and so it must hear
its floods. In turn, when routing down the hierarchy, beacon
bj(v) will probe at most a constant number ((3κ2)2 log α of
beacons at level j−1. Finally, the distance between a node u
and a beacon at level i can be at most fi and a probe packet
will traverse at most 2fi packets when a beacon at level i is
probed (back and forth). This means that for discovery of
the location of the destination, we need a probe overhead of
at most µ6κd(u, v) packet transmissions. Therefore, this is a
negligible part of the throughput of a flow since it consumes
roughly the equivalent of a few packet headers of a flow from
source to destination. A similar statement can be made for
the load-balanced case.

6. IMPLEMENTATION ISSUES
In Section 5, we have computed worst case bounds which

may be conservative in terms of constants. In this section,
we explore this aspect by looking at simulation results for
the control traffic and for the stretch. Recall that we had
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Figure 8: Average control traffic overhead per node
in packets as a function of the network size. Nodes
move at a speed of maximum speed of 1. The con-
fidence interval is given by the 95% and 5% per-
centiles. The size of a packet is O(log n) bits. We
also plot 100 log n to show that our analytical predic-
tions match the simulation results.

computed that for each of the O(log n) levels, a node has to
retransmit a packet of at most (3κ2)2 log α beacons. Even if
we set the maximum speed as well as the parameter ν to 1,
this is still

√
10 + 20 and consequently the constant in the

bound on the overhead at least as high as (3(
√

10+20)2)2 ≈
2.5 · 106! In Figure 8, however, we show that in practice
this constant is approximately 30. This simulation was run
with 50 up to 10000 nodes moving at a maximum speed of
1. One can observe that the experimental scaling behavior
corresponds extremely well to the theoretical behavior. To
stress this fact, we also plot 100 log n as a benchmark. Note
that the overhead is expressed in number of packets rather
than bits (a packet being of size O(log n)).

Similarly, in Figure 9 we show that for a network of 1000
nodes, the stretch is at most 1.5 for all node pairs. If we com-
pute the maximum theoretical stretch, we can show that it
is again considerably larger and hence a pessimistic bound.
These small constants could make a practical implementa-
tion realistic.



In practice, the random permutations on the nodes, which
determines the order in which the flooding occurs, could
be implemented by using random timers i.e., by letting all
nodes draw a random delay independently of each other
every ∆T seconds. The interval from which nodes draw this
delay should be made sufficiently large so that we can avoid
collisions. We conjecture that our scheme can be imple-
mented without synchronization between nodes12. A level
in the hierarchy will be rapidly covered, and in a practical
implementation the covers at different levels could be built
in parallel. Hence, we speculate that it is possible to reduce
the length of the beaconing phase to a small constant times
the maximum round-trip time.
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Figure 9: Empirical cumulative distribution of
stretch (route length/shortest path) for a network
with 1000 nodes moving at a maximum speed of 1.

7. CONCLUSIONS
In this paper, we show that a large class of wireless net-

work models belong to a larger class of networks, the dou-
bling networks, in which efficient routing can be achieved.
To design an efficient routing scheme, one can hierarchically
decompose the network by relying on the doubling property
to prove that the control traffic overhead and the stretch
will remain low, even for dynamic doubling networks. This
holds for a fairly broad class of uniform speed-limited (USL)
mobility models. One advantage of the proposed routing al-
gorithm is that it is robust, in that it works well in certain
situations in which other existing algorithms cannot work
well. This was illustrated in Section 2.1 for an example net-
work with obstacles. We believe that many more such ex-
amples can be created where the use of the doubling rather
than geographic properties would be crucial. To the best
of our knowledge, our results are the first provable bounds
for routing quality and costs for dynamic wireless networks.
These techniques might give us insight into algorithm design
for more sophisticated wireless network models.
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