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Abstract

We study information transmission through a finite buffer queue. We model the channel as

a finite-state channel whose state is given by the buffer occupancy upon packet arrival; a loss

occurs when a packet arrives to a full queue. We study this problem in two contexts; one where

the state of the buffer is known at the receiver, and the other where it is unknown. In the

former case, we show that the capacity of the channel depends on the long-term loss probability

of the buffer. Thus, even though the channel itself has memory, the capacity depends only on

the stationary loss probability of the buffer. The main focus of this paper is on the latter case.

When the receiver does not know the buffer state, this leads to the study of deletion

channels, where symbols are randomly dropped and a subsequence of the transmitted symbols

is received. In deletion channels, unlike erasure channels, there is no side-information about

which symbols are dropped. We study the achievable rate for deletion channels, and focus our

attention on simple (mismatched) decoding schemes. We show that even with simple decoding

schemes, with i.i.d. input codebooks, the achievable rate in deletion channels differs from

that of erasure channels by at most H0(pd) − pd log K
K−1 bits, for pd < 1 − K−1, where pd

is the deletion probability, K is the alphabet size and H0(·) is the binary entropy function.

Therefore the difference in transmission rates between the erasure and the deletion channels

is not large for reasonable alphabet sizes. We also develop sharper lower bounds with the

simple decoding framework for the deletion channel by analyzing it for Markovian codebooks.

Here it is shown that the difference between the deletion and erasure capacities is even smaller

than that with i.i.d. input codebooks and for a larger range of deletion probabilities. We also

examine the noisy deletion channel where a deletion channel is cascaded with a symmetric

discrete memoryless channel (DMC). We derive a single letter expression for an achievable

rate for such channels. For the binary case, we show that this result simplifies to max(0, 1 −

[H0(θ) + θH0(pe)]) where pe is the cross-over probability for the binary symmetric channel.
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1 Introduction

In a packet-switched communication network, such as the Internet, the source of a session encodes

information in a set of packets, which are transported as independent units through a set of links to

reach their destination. A packet reaches its destination if there exists a route to the destination,

and if there is buffer space available at every node along the path followed by this packet. The

context motivating our problem formulation is that of a packet-switched communication network

where packet flows share resources, which gives rise to random packet losses due to the randomness

of packet arrivals to buffers in the network, and the effects of congestion control protocols such

as TCP that regulate the packet generation rate of flows. We assume that (a) a packet either

reaches its destination or is lost completely, and (b) the original order of packets is conserved. We

propose an abstraction for this finite buffer channel, and examine reliable transmission rates over

this channel. We ignore the possibility of information transmission through timing (i.e., through

interarrival times), but do allow for coding of successive packets1.

We study this problem in two scenarios, one when the locations of the packet drops are known

at the receiver, and the other when they are not. In the case where the location of the packet

drops is known, we formulate this problem as transmission over a finite-state channel where the

transitions of the finite-state channel occur due to arrivals and departures of packets to the buffer.

This is a finite-state channel with memory whose transitions are not Markovian in general. We

show that under some regularity conditions, the capacity is determined by the long term stationary

loss probability of the buffer. Thus we get the intuitively satisfying result that the capacity is the

product of the capacity of the DMC and the long term probability of a packet not being dropped2.

This is the case even when we allow for feedback.

The main limitation of the erasure channel as a model for a finite-buffer queue (or a sequence

thereof) is that there is no mechanism in the network to explicitly signal a dropped packet to the

destination. Rather, transport protocols such as TCP use sequence numbers in the packet header3

to detect lost packets. The sequence number uses up a certain number of bits to detect lost packets

and to request retransmission of those packets. A fundamental question therefore arises: if we do not

assume a-priori the existence of sequence numbers, what is the capacity of the resulting channel?

This question naturally leads to the deletion channel, which essentially differs from the erasure

channel in that the destination receives no explicit symbol indicating loss of a packet. Instead, the

received sequence of symbols is shorter than the original sequence, with deleted symbols simply

1Transmission of information through inter-arrival times, though elegant, is not optimal when the packet sizes

(i.e., alphabet size of the transmitted symbol) is large enough. This was demonstrated in Theorem 10 in [1], where it

was shown that the capacity of the queue can be achieved without coding for timing information when the alphabet

size is large. This is the case in current networks, where packet sizes range from a few tens of bytes to a few thousand.

Furthermore, it would be difficult to characterize the timing transfer function for a flow of packets in a multihop

packet-switched network shared by many other traffic flows.
2This is akin to the result showed for memoryless erasure networks in [2].
3Strictly speaking, in the TCP header.
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removed.

The deletion channel is a special case of insertion/deletion/substitution channels4 which model the

effect of synchronization errors and have a long history [3, 4, 5, 6, 7, 8]. A coding theorem for

such channels in terms of maximizing mutual information over input distributions was proved in

[6]. However, even in the presence of i.i.d. deletions, this does not lead to a single-letter charac-

terization for achievable rates. Gallager, in an unpublished report [4], analyzed the performance of

convolutional codes over insertion/deletion/substitution channels. He proposed adding a pseudo-

random sequence to convolutional codes to correct such synchronization errors and derived lower

bounds for achievable rates using sequential decoding for these codes. A similar idea was studied

in “watermarking” codes proposed in [9], where LDPC codes and iterative decoding were used.

Zigangirov [7] studied a more general insertion/deletion channel and improved the lower bounds

of [4] for the performance of convolutional codes with sequential decoding. The bounds of [4, 7]

coincide for i.i.d. deletion channels and are given by

Cdel ≥ 1−H0(pd), pd ≤ 0.5 (1)

where H0(pd) = −(1 − pd) log(1 − pd) − pd log(pd) is the binary entropy function. Ullman [5]

studied the binary insertion/deletion channel from a zero-error point of view rather than vanishing

error probability. He provided combinatorial upper bounds to insertion/deletion channels when

asymptotically (in the codeword block size) the number of synchronization errors is a fraction of

the codeword block size. His bounds are (see (33) and (44) in [5])

1− p log2 e2

(

3

2p
+

15

16

) (

3

2p
+

47

16

)

≤ C ≤ 1− (1 + p) log2(1 + p) + p log2(2p), (2)

where p in his notation is the fraction of total insertion/deletion errors asymptotically in the code-

word block size. The zero-error rate bounds are more pessimistic than the bounds when the error

is allowed to vanish asymptotically and hence the lower bound (1) in [4, 7] is sharper than (2).

The insertion/deletion/substitution channel was also pioneered by Levenshtein [3], where asymp-

totic bounds in the number of codewords capable of correcting up to a finite number of synchro-

nization errors was studied. He also provided number-theoretic constructions for such codes and

motivated a large body of literature on this topic (see [8] for a recent survey of such code construc-

tions).

Our focus in this paper is on asymptotic information-theoretic bounds rather than on code con-

struction, for the case when the number of deletions is a non-zero fraction of the codeword block

size. More specifically, we are interested in achievable rates when the error probability vanishes to

zero asymptotically, and not in zero-error achievable rates. Our main results are the following. In

Section 4.2, we provide an alternative (and simpler) proof for the Gallager-Zigangirov result given

in (1). The proof is based on a random coding argument which analyzes an i.i.d. (memoryless)

4In an insertion channel, additional symbols can randomly be inserted into the codeword. Substitutions are the

familiar symbol errors for noisy channels.
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codebook with a simple (not maximum likelihood, i.e., mismatched) decoder. The advantages of

this proof technique are two-fold. The simple decoder analysis is easily extended to larger (non-

binary) alphabet sizes. It is also applicable when the deletion process is only stationary and ergodic

(but not necessarily i.i.d.). Moreover, the simple decoding technique is more efficient than opti-

mal (maximum likelihood) detection. Our key insight is that the transmission capacity of deletion

channels is quite close to that of the erasure channel. That is, the penalty in achievable rate for the

decoder not knowing the packet losses is small, though the code design problem is much harder. We

do examine the deletion channel when the optimal decoding is used, and unfortunately we have not

found any single letter characterization of the achievable rate for this case. However, we extend our

framework of analyzing simple decoding techniques to input codebooks with memory, using Marko-

vian codebooks. In Section 4.3 we derive bounds that improve (1) by using such codebooks. An

important component of this analysis is the study of common subsequences between independent

Markov processes, which might be of independent interest. One of the main insights of this results

is that codebooks with memory can significantly increase the achievable rate for deletion channels.

Our result shows that even with a first order Markovian codebook, we can provably show significant

improvement in the achievable rate. Moreover, this is the first result to show that the achievable

rate of the deletion channel is non-zero even for deletion probabilities pd close to 1. In Section

5, we analyze the noisy deletion channel where a deletion channel is cascaded with a symmetric

DMC. We give a single letter expression for the achievable rate which naturally generalizes the

results for i.i.d. input codebooks of Section 4.2. In summary, the main contribution of this paper is

the development of analysis techiniques that allow for single letter expressions for achievable rates

over (noisy) deletion channels. A preliminary version of this work had appeared in [10], and since

then there have been some interesting follow-up work [11, 12] which have further developed on our

framework.

The remainder of this paper is structured as follows. Section 2 formally states the problem. In

Section 3, we analyze the erasure channel, which models the transmission over a finite buffer channel

with receiver side-information about packet losses. In Section 4, we present the main results of the

paper, which are the analysis of achievable rates over deletion channels, including some illustrative

numerical results. In Section 5, we generalize some of our results to the noisy deletion channel, which

is the concatenation of a deletion and a discrete memoryless channel (DMC). Section 6 concludes

the paper with a discussion of several open issues.

2 Problem Formulation

In the finite buffer channel, whether a packet (symbol) gets through to its destination depends on

whether the buffer in a router is full when the packet arrives, in which case the packet is dropped;

otherwise, the packet is delivered, possibly subject to some corruption for other reasons, such as bit

errors in optical fibers or fading effects over a wireless link.
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The finite buffer queue viewed as a channel is reminiscent of the finite-state Markov channel. The

state of such a channel is governed by an underlying Markov chain. Information transmission over

such channels has been studied for the case where the channel state evolves independently of its

input and output [13, 14].

For the finite buffer channel, the channel state is determined by the state of the buffer. However,

there is in general no reason why the finite buffer channel should be driven by a Markov process,

given that the evolution of the queue depends on the arrival processes of all the flows sharing the

queue, which in turn depend on the other queues these flows have already traversed, as well as

other effects, such as congestion control protocols regulating the rate of packet generation. Hence

the channel memory could be much more complicated. Therefore, we need to rely on weaker

regularity conditions on the state process under which a coding theorem exists. Note that in our

case, channel memory need not be finite and hence the results of finite-state channels (with finite

memory) given in [15] are not directly applicable. However, we use results from [16] which allow

the state process to have longer memory. More details are given in Section 3.

In Section 3, we make the assumption that the receiver knows when the packet is dropped, i.e., it

receives an explicit erasure symbol. In practice, this is achieved through a sequence number asso-

ciated with each packet to allow the receiver to detect missing packets. This channel is equivalent

to an erasure channel, albeit with complicated memory.

If such side information about dropped packets is not available at the decoder then the chan-

nel is equivalent to a deletion channel. The K-ary deletion channel is defined as follows. Let

xn = (x1, . . . , xn) be a codeword, where xi ∈ {1, . . . , K}. A deletion pattern dn is a binary vector

(d1, . . . , dn), where di = 1 indicates that the i-th symbol of x is deleted, and di = 0 indicates that

the i-th symbol is received at the output. Let e be the total number of 1’s in dn, i.e., the number

of deletions. We define i(k) as the position of the k-th 0 in the sequence d; clearly 0 ≤ k ≤ n− e.

Then the received sequence is Y = (y1, . . . , yn−e), with yk = xi(k), 1 ≤ k ≤ n − e. In other words,

Y is a sequence of length n − e containing the non-deleted symbols in x. The difference between

erasure and deletion channels is illustrated in Figure 1.

0 0 1 0 1 1 1 1 0 0 1

0 0 1 0 0 1 1 0 0 0 1

0 0 0 1 1 0 0

deletion channel

0 0 1 0 1 1 1 1 0 0 1

0 0 1 0 0 1 1 0 0 0 1

0 0 E 0 1 E E 1 0 0 E

erasure channel

Xn

Dn

Y M

Xn

Qn

Y n

Figure 1: The output of a binary erasure and of a binary deletion channel for identical input Xn

and identical erasure/deletion pattern Qn = Dn. Note that the length of the output of the erasure

channel is n, while for the deletion channel it is random.

We are mainly interested in i.i.d. distributions (with P {Di = 1} = pd) for the binary sequence Di,
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but results in Section 4.2 also apply when Dn is stationary and ergodic. Note that the deletion

channel has memory in that p(Y|xn) does not become a product distribution even for an i.i.d.

deletion process. Intuitively, this is because the k-th output symbol yk depends on the entire

history of the deletion process up to i(k). In Section 4, we focus on the pure deletion channel, i.e.,

where the symbols that are not deleted are received without error. Section 5 gives some results on

the noisy deletion channel where there is a DMC following the deletion channel.

We define a (|C|, n) code as a set of |C| codewords C = {x(1), . . . , x(|C|)} of length n. The encoding

function results in a codeword x(j) to be sent when a message j ∈ {1, . . . , |C|} is drawn. The

deletion process D causes the random sequence Y = y of length at most n to be received. We also

define a decoding function Ŵ : S → {1, . . . , |C|}, where S is the set of all K-ary sequences of length

at most n. The average probability of error for a given codebook C and decoding function Ŵ is

defined as

Pe(C, Ŵ ) =
1

|C|

|C|
∑

j=1

P

{

Ŵ (Y ) 6= j|X = x(j)
}

. (3)

We define a rate R to be achievable if there exists a sequence of (d2nRe, n) codes and a decoding

rule Ŵ such that the average probability of error Pe(C, Ŵ ) tends to 0 as n →∞.

We use the following notation in the remainder of the paper:

i sample index of point process

j index of a codeword in the codebook C

Qi state of erasure channel upon arrival of packet i (1: packet erased; 0: packet gets through)

Di state of deletion channel upon arrival of packet i (1: packet deleted; 0: packet gets through)

pd probability of packet drop

θ = 1− pd probability that packet gets through

n block size

Xi information packet

Yi received information packet, or erasure symbol E for dropped packet

Zi received information packet from concatenation of deletion channel and DMC

Y,Z sequence of received packets of random length

Xn, Dn sequence of length n of information packet and deletion states

K alphabet size of Xi

H0(.) binary entropy function, H0(x) = −x log x− (1− x) log(1− x)

|x| the length of a sequence x

weight of x the number of 1’s in x

y = d ◦ x y is the result of applying the deletion pattern d to codeword x

∆x the derivative of x, defined as a sequence of length |x| − 1,

whose lth component is 1 if xl+1 6= xl, and 0 otherwise
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3 The erasure channel with memory and feedback

In this section we study the finite-state model described in the previous section, where we assume

that the decoder knows which symbols (packets) have been erased, because it receives an explicit

erasure symbol E for each such symbol. Given the finite-state model, we calculate the capacity as

the maximum mutual information between the input and the output. In order for this to make

sense, there has to be some regularity conditions imposed on the state process. In this context,

there is a result in [16] (see also [17]) which states that if the input process {Xi} is stationary and

ergodic, and the state process {Qi} is weakly mixing and stationary, then the output process {Yi}

is jointly stationary and ergodic with the input process {Xi}. In this case, there is information

stability, which ensures that the mutual information is the operational rate [18].

We use this result to compute the capacity of the finite buffer channel, where we also allow for

receiver feedback. We make the following definition. Let θ denote the long-term fraction of packets

that are not dropped, i.e.,

θ = lim
n→∞

1

n

n
∑

i=1

P {Qi = 0} . (4)

We consider causal feedback, i.e., when the received sequence {yi} is fed back noiselessly to the

transmitter after it has been received. Therefore the transmitter knows the buffer state in the

previous transmission but not the current state of the buffer. Given that the capacity is determined

by the long term loss probability of the buffer and the capacity of the DMC, it seems unlikely that

feedback would help to improve this. The following result formalizes this intuition.

Proposition 3.1 If the state process {Qi} is stationary and weakly mixing, then the capacity of

the finite buffer channel with feedback is given by

C = θC0, (5)

where C0 denotes the capacity of the DMC. The capacity is achieved for an i.i.d. input process {Xi}

that achieves the capacity of the DMC.

This result can be generalized if the probability distribution maximizing the mutual information

for the DMC for each of the states is identical. Under this condition the capacity is given by

C =

Q−1
∑

q=0

πqC
(q)

where πq is the long term probability of the state to be q and C (q) is the capacity of that state.

This does not hold if this compatibility condition is not met.

Finally, we note that (47) is the capacity per arrival of the input. This can be converted into

capacity per unit time using arguments similar to Theorem 5 in Appendix 6.2 in [19].
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4 The deletion channel

In this section, we develop lower bounds for the “noiseless” deletion channel formulated in Section

2. In Section 5 we analyze the noisy deletion channel for some special cases. We start in Section

4.1 with achievable rates for optimal detection. The rest of the section is focused on the analysis of

a simpler decoding scheme which uses subsequence matching. This framework not only allows us

to assess the performance of low complexity decoders, it also gives a single letter characterization

of its achievable rate (which lower bounds the capacity of the deletion channel). In Section 4.2,

we analyze the simpler decoder for i.i.d. input codebooks. This bound is valid even when there is

memory in the deletion process, i.e., when the deletion process is just assumed to be stationary and

ergodic. Given that input codebooks with memory would do better, in Section 4.3 we analyze the

Markovian input codebooks in the simple decoding framework. This improved bound is valid only

for i.i.d. deletion patterns. However, a bound using this approach can also be worked out when the

deletion patterns are Markovian.

4.1 Mutual information formulation for deletion channels

If the decoder does not have access to the packet loss pattern, it receives a subsequence of the

transmitted sequence. There is a subtle assumption made in the model in that we assume that the

decoder knows when to start decoding, i.e., it does not expect more received symbols. In practice

this can be done through a time-out mechanism. In [6], it was shown that if we employ optimal

decoding, the capacity can be written in terms of the mutual information. It was proved that this

is the case when there are rare synchronization symbols available which allow the transmitter and

receiver to synchronize block boundaries. Given a transmission block of size n, the capacity [6] is

written in terms of maximizing the mutual information.

Theorem 4.1 (Dobrushin, [6]) For the deletion channel, a constant C is defined for which reli-

able transmission is possible if and only if R < C, where

C = lim
n→∞

1

n
Cn, where Cn = sup

p(xn)

I(Xn;Y), (6)

where Y is the received sequence.

Note that the received sequence Y is of random length M = |Y|.

Dobrushin proved this result for more general insertion/deletion channels. However, there has not

been any single letter characterization of the mutual information.

The mutual information can be written as,

I(Xn;Y) = H(Xn)−H(Xn|Y) = H(Y)−H(Y|Xn) (7)
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For a given input codebook it is not difficult to calculate H(Xn), but the main difficulty is in

characterizing or bounding H(Xn|Y). The other expressions give rise to similar difficulties. We

can write H(Xn|Y) as

H(Xn|Y) = H(Dn|Y) + H(Xn|Dn,Y)−H(Dn|X,Y), (8)

where Dn = {D1, D2, . . . , Dn} is the deletion pattern. In order to see the relationship between the

erasure and the deletion channel notice that if the side information about the deletion pattern was

known at the receiver, the mutual information of interest would be I(Xn;Y, Dn) and this can be

written as

I(Xn;Y, Dn) = I(Xn;Y|Dn) = H(Xn)−H(Xn|Dn,Y), (9)

since the deletion process is independent of the input. Comparing (8) and (9) we see that the

difference comes from H(Dn|Y)−H(Dn|Xn,Y) = I(Xn; Dn|Y), that is, the dependence between

the deletion process and the input, given the received sequence. This argument of course ignores

the fact that the optimal input distribution for the i.i.d. erasure channel and the i.i.d. deletion

channels are different. But it gives a flavor of where the difference might lie. Unfortunately we

have not been able to give a single letter characterization of the mutual information of the deletion

channel.

Optimal decoder: Achieving the rate defined in (6) requires optimal decoding. In the case of

the deletion channel, if we know the block boundaries, we receive a sequence Y of length M where

n − M is the number of deletions. We need to find the most likely codeword that would have

produced Y. For the i.i.d. deletion channel this corresponds to finding the codeword Xn(j) ∈ C

such that Y occurs most number of times as a subsequence of Xn(j). This would mean finding

for all codewords in C the number of times Y occurs as a subsequence. In the rest of the section

we analyze a simple decoder that finds the codeword that contains Y as a subsequence, and if it is

not unique, declares a decoding error. The advantages of this suboptimal decoder are its simplicity

and the fact that we are able to characterize its achievable rate. However, we expect that more

sophisticated decoders can achieve higher transmission rates.

4.2 Simple decoding framework

For the rest of the section we analyze a simple decoder defined as follows. We check the number

of codewords in the codebook that could have produced the received sequence under any deletion

pattern, i.e., the codewords that contain the received sequence as a subsequence. If there is more

than one possible codeword, then we declare a collision error. If there is no collision, we are

certain that the unique candidate codeword is the correct one (as the channel is not noisy), and the

transmission is successful.

In this section, we assume a stationary and ergodic model for the deletion process D. Therefore,

for large n, the fraction of deleted packets is close to (1 − θ)
def
= pd with high probability. Note
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that, as mentioned in Section 1, if the deletion patterns were known (through sequence numbers for

example) then the channel would be equivalent to an erasure channel, whose capacity is θ log(K).

Clearly, conveying the deletion pattern to the receiver constitutes side-information and therefore

this rate is an upper bound to the deletion channel capacity.

To study this problem we use the following lemma proved in [20] for common subsequences of

random sequences.

Lemma 4.1 [20] For a given K-ary sequence y of length |y|, the number F (n, y, K) of K-ary

sequences of length n which contain sequence y as a subsequence is given by:

F (n, |y|, K) =
n

∑

j=|y|

(

n

j

)

(K − 1)n−j (10)

Note that the function F (·) depends on y only through its length |y|. Lemma 4.1 implies that if

Xn is an i.i.d. sequence with uniform distribution over its K-ary alphabet then,

P {Y subsequence of X} =
F (n, |Y|, K)

Kn
(11)

as all sequences are equally likely. Given this result, we prove the following lower bound on the

capacity of the deletion channel.

Theorem 4.2 Given a stationary and ergodic deletion channel with stationary deletion probability

pd = 1− θ (with pd < 1− 1/K), and an input alphabet size K, the capacity of this channel is lower

bounded as

Cdel ≥ log

(

K

K − 1

)

+ θ log(K − 1)−H0(θ). (12)

Proof: Generate a random codebook of 2nR i.i.d. codewords chosen uniformly from a K-ary

alphabet. As the channel randomly deletes symbols from a codeword, the length of the received

sequence M = |Y| is a random variable. Assuming that the deletion process is stationary and

ergodic, it follows that

lim
n→∞

P

{
∣

∣

∣

∣

M

n
− θ

∣

∣

∣

∣

> ε

}

→ 0. (13)

We use the following decoding rule. If the received sequence Y has fewer than m = (θ − ε)n

symbols, we declare an error. Because of (13), the probability of this error goes to zero. If the

received sequence Y has at least m symbols, we check the number of codewords in the codebook

that could have produced Y under any deletion pattern, i.e., the codewords that contain Y as a

subsequence. If there is more than one possible codeword, then we declare a collision error. If

there is no collision, we are certain that the unique candidate codeword is the correct one (as the

subsequent channel after deletions is not noisy), and the transmission is successful.
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We now compute the asymptotic probability of collision error. We first consider the pairwise

probability of collision error between two codewords X1 and X2 from the codebook, averaged over

all the codebooks. A collision error occurs between two codewords5 X1 and X2 if the received

sequence Y = Dn
1 ◦X1 generated by a random deletion pattern Dn

1 is a subsequence of X2 (because

this implies that there exists a deletion pattern Dn
2 such that Dn

2 ◦X2 = Y.)

Consider the error probability conditional on the number of received symbols M . This probability

obviously decreases with M , because the probability of a common subsequence decreases with

its length. Therefore, an upper bound for the collision probability can be obtained by setting

m = b(θ − ε)nc and assuming M = m. For computational reasons, we set m = (θ − ε)n− 1, which

is conservative. Therefore, we can write the pairwise error probability that X2 collides with the

transmitted codeword X1 averaged over random codebooks as,

P̄2 = EC[P {error|X1, M}] =
∑

Y,|Y|=m

P {y is a subsequence of X2|X1}P {Y = Dn ◦X1} (14)

(a)
=

F (n, m, K)

Kn

∑

Y,|Y|=m

P {Y = Dn ◦X1}
(b)
=

F (n, m, K)

Kn

(c)

≤
1

Kn
n

(

n

m

)

(K − 1)n−m
(d)

≤
1

Kn
n2nH0(

m
n

)(K − 1)n−m

where (a) follows from (11) and the independence of X1 and X2; (b) follows because the probability

summed over all deletion patterns (conditioned on the weight of the deletion pattern) is unity; (c)

follows from the inequality that F (n, m, K) ≤ n

(

n

m

)

(K − 1)n−m (which can be easily verified

[20]); and (d) follows from the inequality

(

n

m

)

≤ 2nH0(
m
n

) (see [21], Chapter 12, pp 284).

A union bound over all codewords X2 bounds the error probability P̄e (averaged over codebooks)

as,

P̄e ≤ 2nR
EC[P {error|X1, M > m}] + P {M ≤ m} ≤ n

[

(K − 1)2R2H0(
m
n

)

K(K − 1)
m
n

]n

+ δn. (15)

Therefore, if the first term decreases exponentially with n, the probability of error goes to zero

asymptotically in n as δn → 0 from (13). This happens when

R < log

(

K

K − 1

)

+ θ log(K − 1)−H0(θ) (16)

Therefore, by using the well-known random coding argument [21], there exists a deterministic

codebook which has an achievable rate given by R. Note that this is in the regime where θ is such

that log( K
K−1

) + θ log(K − 1)−H0(θ) > 0, which occurs for pd < 1− 1/K. �

5By slight abuse of notation we use X1, X2 for the codeword sequences of length n.

11



Therefore, as the capacity of the deletion channel is upper bounded by that of the erasure channel,

we obtain the following double inequality,

log

(

K

K − 1

)

+ θ log(K − 1)−H0(θ) ≤ Cdel ≤ θ log(K) (17)

For the binary case (K = 2), Theorem 4.2 coincides with the achievable rate proved in [4, 7].

However, the decoding technique is not the sequential decoding rule used in [4, 7], but is a common

subsequence (mismatched) detection rule.

Corollary 4.1 Given a stationary and ergodic deletion channel with long term deletion probability

given by 1 − θ (with θ > 1/2), and a binary input alphabet, the capacity of this channel is lower

bounded as

Cdel ≥ 1−H0(θ), (18)

where H0(.) is the binary entropy function.

4.3 Markov lower bound

In Section 4.2, the codewords were i.i.d. However, we believe that the optimal codebook construction

has memory, because the deletion channel has memory. In this section, we sharpen the result in

Section 4.2 by using input codebooks which are generated from a Markov process. For simplicity,

we consider only first-order Markov chains. We continue with the simple decoding framework

introduced in Section 4.2.

In analogy with the analysis for i.i.d. codewords in the previous section, we need to find the

probability that two independent Markov chains of length n have a common subsequence of length

greater than m. In order to simplify the analysis, we assume that the deletion sequences are i.i.d.

processes6.

Theorem 4.3 Given an i.i.d. deletion channel with deletion probability given by pd = 1− θ, and a

K-ary input alphabet, the capacity of this channel is lower bounded as

Cdel ≥ sup
γ>0

0<p<1

[−θ log{(1− q)A + qB} − γ] nats (19)

where A = A(p, γ) = e−γ (1−p)

(K−1)[1−e−γ{1− 1−p

K−1
}]

, B = B(p, γ) = e−2γ (1−p)2

(K−1)[1−e−γ{1− 1−p

K−1
}]

+ pe−γ and

q = q(p) = 1
K

[

1 + θ(K−1)(pK−1)
(K−1)−(1−θ)(pK−1)

]

.

6The technique developed here can be easily extended to the case where the deletion sequences are finite-state

Markov processes as well.
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Figure 2: Markov chain generating codebook.

Proof: We generate a random codebook C of enR codewords, with each codeword an independent

sequence generated using the first-order Markov chain illustrated in Figure 2. We use the same

decoding framework as the one used in the proof of Theorem 4.2, i.e., we declare an error either

when the received sequence Y has fewer than m = (θ − ε)n symbols, or when there is more than

one codeword in C that contains Y as a subsequence. In order to compute the asymptotic collision

error probability, we again consider the pairwise probability of error P̄2 between two codewords X1

and X2 averaged over random codebooks. As in (14) this can be written as,

P̄2 = EC[P {error|X1, M}] =
∑

Y,|Y|=m

P {Y is a subsequence of X2|X1}P {Y = Dn ◦X1} (20)

The central difference between the calculation done in (14) and here is that when the input codebook

has memory, the term P {y is a subsequence of X2|X1} depends explicitly on the subsequence Y

not just through its length M as was the case in (14). Moreover, this implies that we need to also

explicitly calculate the term P {Y = Dn ◦X1} when the deletion process is i.i.d. and X1 is a Markov

process. For both these calculations, the weight of the derivative7 ∆Y of Y becomes important.

Note that the number Ni of K-ary sequences y of length |y| = m with ∆y having weight i is given

by

Ni = K(K − 1)i

(

m− 1

i

)

. (21)

7∆Y is defined as a sequence of length |Y| − 1, whose lth component is 1 if Yl+1 6= Yl, and 0 otherwise. See also

the table of definitions at the end of Section 2.
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Therefore, to calculate the pairwise error probability expression in (20) we use the following results,

which are proved in the Appendix. Once having calculated the pairwise error probability we can

prove the claim in (19).

Result 1: The probability of a given subsequence y occurring through an i.i.d. deletion process D

in X, averaged over the input codebook, is given by

P {Y = Dn ◦X} =
1

K

(

1− q

K − 1

)i

qm−1−i, (22)

where i is the weight of ∆Y, |Y| = m, and q = 1
K

[

1 + θ(K−1)(pK−1)
(K−1)−(1−θ)(pK−1)

]

.

Result 2: The probability of a given subsequence y occurring in a Markov sequence X2 generated

by the transition probability illustrated in Figure 2 is bounded by,

P {Y is a subsequence of X2} ≤ inf
γ>0

FeγnAiBm−1−i, (23)

where

A = e−γ (1− p)

(K − 1)
[

1− e−γ
{

1− 1−p

K−1

}] , (24)

B = e−2γ (1− p)2

(K − 1)
[

1− e−γ
{

1− 1−p

K−1

}] + pe−γ, (25)

and

F =
1

K
e−γ

[

1 +
(1− p)e−γ

1− e−γ
{

1− 1−p

K−1

}

]

. (26)

Again, in (23) i denotes the weight of ∆Y, and |Y| = m.

Using (21), (22) and (23) in (20) we obtain,

P̄2 ≤

m−1
∑

i=0

Ni inf
γ>0

[

FeγnAiBm−1−i 1

K

(

1− q

K − 1

)i

qm−1−i

]

(27)

≤ inf
γ>0

[

Feγn

m−1
∑

i=0

(

m− 1

i

)

{(1− q)A}i{Bq}m−1−i

]

(a)

≤ F inf
γ>0

[

eγn {(1− q)A + qB}m−1] ,

where (a) follows by using the binomial expansion of (a + b)m−1.

As in the proof of Theorem 4.2, we use a union bound over all codewords X2, if X1 was the

transmitted codeword to obtain,

P̄e ≤ enR
EC[P {error|x1, M > m}] + P {M ≤ m} (28)

≤ enRF inf
γ>0

[

eγn {(1− q)A + qB}m−1] (29)

≤ F inf
γ>0

[

1

(1− q)A + qB

{

eReγ [(1− q)A + qB]
m
n

}n
]

+ δn.
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Therefore the probability of error goes to zero asymptotically in n if,

R < sup
γ>0

0<p<1

[−θ log{(1− q)A + qB} − γ] nats (30)

giving us the desired result.

�

Remarks:

• Note that for p = 1
K

, it can be shown that the result in Theorem 4.3 reduces to that in

Theorem 4.2 specialized to the i.i.d. deletion channel.

• Also note that the optimization of (19) for a given p can be accomplished in closed form as it

results in a simple quadratic equation in γ.

We can specialize the result in Theorem 4.3 to the binary K = 2 case, as follows.

Corollary 4.2 Given an i.i.d. deletion channel with deletion probability given by pd = 1 − θ, and

a binary input alphabet, the capacity of this channel is lower bounded as

Cdel ≥ sup
γ>0

0<p<1

[−θ log{(1− q)A + qB} − γ] nats (31)

where A = A(p, γ) = (1−p)e−γ

(1−pe−γ)
, B = B(p, γ) = (1−p)2e−2γ

(1−pe−γ)
+ pe−γ and q = q(p) = 1− 1−p

1+(1−θ)(1−2p)
.

It is interesting to note that with a Markovian codebook, non-zero capacity is achievable even for

pd > 1− 1/K, the cutoff deletion probability for i.i.d. codebooks in our decoding framework. This

is further examined in the next subsection, where we give some numerical results. This leads us to

conjecture that a promising approach to achieve higher rates over the deletion channel is through

codebooks generated by higher-order Markov processes, as it is unclear whether i.i.d. geometrically

distributed runlengths are optimal.

4.4 Numerical results

In order to gain insight into the behavior of deletion channels, we give some numerical examples.

In Figure 3, we plot the achievable rates derived in Sections 4.2 and 4.3. We also plot the “upper”

bound derived by Ullman [5] given in (2). Note that this bound is only given for reference, as the

underlying assumptions differ from ours: it relates to the combinatorial zero-error rate, while we

are interested in vanishing error probability. Therefore, the achievable rate for the deletion channel

is not necessarily upper bounded by the Ullman zero-error upper bound. Note that the lower bound
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derived in 4.3 (labeled as the Markov bound) is non-zero up to pd = 0.96 and in particular improves

the previously known lower bound given in (1) [4, 7]. In Figure 4, we illustrate that for non-binary

alphabet sizes, the difference between the deletion channel and the erasure channel rates can be

quite small. In particular, we have compared the lower bound (12) derived in Theorem 4.2 to the

erasure channel rate. As can be seen from (12), the difference is at most H0(pd)− pd log K
K−1

bits,

which is at most 1 bit. This is true with i.i.d. codebooks, and the bound becomes sharper with

Markovian codebooks. This suggests that the use of sequence numbers to detect deletions is quite

inefficient8. For example, in TCP, 32 bits per packet are sacrificed for the sequence number, while

our result shows that at most one bit of redundancy per packet is necessary to convert a deletion

channel into an erasure channel.
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Figure 3: Achievable rates versus deletion probability for binary alphabet size.

5 Noisy deletion channel

In this section we briefly examine the effect of cascading a deletion channel with a discrete memory-

less channel (DMC) as shown in Figure 5. We will mainly develop the lower bounds for i.i.d. input

codebooks as done in Section 4.2. Also for simplicity we consider symmetric DMCs for which it is

known that the optimal input distribution is uniform over the input alphabet (see [21], pp 190).

We first start with a description of a decoder suitable for the noisy deletion channel. Using this

decoder we provide a single letter achievable rate bound for the noisy deletion channel.

8Strictly speaking, sequence numbers are not a feasible coding scheme, as they require log n bits per packet.
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Channel

Xn
Y

m
Z

m

Figure 5: A deletion channel followed by a discrete memoryless channel.

Consider a received sequence Z of random length M which is the output of the cascade of the

deletion channel and the DMC. Informally, the decoder looks at the set Aε(Ỹ
M |Z) sequences of

length m which are “typical” with respect to the particular noisy received Z, where typicality is

defined with respect to the discrete memoryless channel. Now, the decoder constructs a list L of all

codewords for which any sequence in Aε(Ỹ
M |Z) is a subsequence of the codeword. Unless |L| = 1,

the decoder declares an error. If |L| = 1, then the decoder declares that j is the index of the

transmitted codeword, where j ∈ L. Therefore, an error occurs either if |L| 6= 1 or if j ∈ L is not

the transmitted message. We bound the rate for which this error probability diminishes to zero

asyptotically in n and this provides an achievable rate for the noisy deletion channel.

Consider a discrete memoryless channel (DMC) defined by the transition probability p(z|y), where

we take Y as the input and Z as the output of the DMC. As mentioned earlier, we restrict our

attention to symmetric DMCs. The mth extension of the DMC is given by the product distribution,

p(zm|yM) =
∏M

i=1 p(zi|yi). We define the set Aε(Ỹ
M |Z) to be the set of input sequences ỹM , that

are jointly ε − typical with a particular output sequence Z [21]. Therefore, we immediately have
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the following result (see [21], Theorem 14.2.2) that for sufficiently large m,

|Aε(Ỹ
M |Z)| ≤ 2m(H(Y |Z)+2ε). (32)

Theorem 5.1 Consider a stationary and ergodic deletion channel with stationary deletion prob-

ability pd = 1 − θ (with pd < 1 − 1/K), and an input alphabet size K. If the deletion channel

is cascaded with a symmetric DMC (as shown in Figure 5) then capacity of this channel is lower

bounded as

Cdel ≥ max

{

log

(

K

K − 1

)

+ θ log(K − 1)− [H0(θ) + θH(Y |Z)]

}

. (33)

Proof: Generate a random codebook {xn(1), . . . , xn(2nR)} of 2nR n-length i.i.d. codewords chosen

uniformly from a K-ary alphabet. As in the proof of Theorem 4.2, if the received sequence Z has

fewer than m = (θ − ε)n symbols, we declare an error. As before due to (13), the probability of

this error goes to zero asymptotically in n. Without loss of generality, let us assume that i = 1

was the transmitted message, i.e., xn(1) was the transmitted sequence. If we denote the output of

the deletion channel as Y, then clearly it is a subsequence of xn(1). However note that the noisy

sequence Z observed after Y may not be a subsequence of xn(1).

The decoder generates a list L of all messages for which there exists a sequence in Aε(Ỹ
M |Z) which

is a subsequence of the codeword. That is,

L =
{

j : ∃ỹM ∈ Aε(Ỹ
M |Z) such that ỹM is a subsequence of xn(j)

}

(34)

Let us define the event

Ej = {j ∈ L}, j = 1, . . . , 2nR. (35)

Clearly, we have from the union bound that

P {error|xn(1)} ≤ P {Ec
1}+

∑

j 6=1

P {Ej} . (36)

Since Y the output of the deletion channel is a subsequence of xn(1), the event Ec
1 will occur only

if Y is not jointly typical with the DMC output Z. Therefore by the definition of the typical set,

we see that P {Ec
1} ≤ ε. Now for the event Ej, j 6= 1, it is easy to see that

P {Ej} ≤
∑

ỹM∈Aε(Ỹ M |Z)

P
{

ỹM is a subsequence of xn(j)
}

(a)

≤ |Aε(Ỹ
M |Z)|

F (n, m, K)

Kn
(37)

In the above (a) is because we are considering uniform i.i.d. codebooks, and hence (a) is a conse-

quence of (11). Using (37) and (32), and following steps similar to (15) we see that

P {error|xn(1)} ≤ δn + εn +

[

(K − 1)2R2H0(
m
n

)2
m
n

[H(Y |Z)+2εn]

K(K − 1)
m
n

]n

(38)
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Hence, as δn, εn → 0, we see that the probability of error goes to zero asymptotically in n if,

R < log

(

K

K − 1

)

+ θ log(K − 1)− {H0(θ) + θH(Y |Z)} . (39)

This gives the desired achievable rate using standard random coding arguments. �

Corollary 5.1 Consider a stationary and ergodic deletion channel with long term deletion proba-

bility given by 1− θ (with θ > 1/2), and a binary input alphabet. If we cascade this with a binary

symmetric channel with cross-over probability pe, then the capacity of this channel is lower bounded

as

Cdel ≥ max {0, 1− [H0(θ) + θH0(pe)]} , (40)

where H0(.) is the binary entropy function.

6 Discussion

In this paper, we have studied information transmission over finite buffer channels. We considered

two cases. First, if the packet loss pattern is known at the receiver, the channel is equivalent

to an erasure channel. For this case, we focus on the impact of non-Markovian channel memory

and on feedback. Second, if the receiver does not have this side information, it is equivalent

to a deletion channel. For this case, we need to make stronger assumptions about the deletion

process. We developed bounds for the achievable rate of deletion channels when we use a simple

(but mismatched) decoder.

In Section 3, we studied the case where the packet loss is known at the receiver, i.e., the deletion

pattern is known. This led to a model of the channel as a finite-state channel (with memory) that

sends a special erasure symbol when the buffer is full. For this model we showed that even when

the state-process has complicated memory an i.i.d. channel input process achieves capacity, which

is not true for general finite-state channels. Moreover, for this model we showed that feedback does

not change the capacity as long as the sender does not change the arrival rate of the packets.

In Section 4, we studied the case where the packet loss is not known at the receiver. Under this

assumption, the finite buffer channel is a deletion channel, whose study is more complicated than the

erasure channel, and whose precise capacity remains elusive. We were able to significantly improve

upon previously known capacity bounds for the deletion channel. This was done using Markovian

input codebooks and a stronger assumption about the deletion process than for the erasure channel.

Specifically, we assumed an i.i.d. deletion process for those results, although our techniques could

be extended to finite-state Markovian deletion processes in a straightforward manner. Also, we

showed that a simple subsequence matching decoder can perform quite well for larger alphabet

sizes K, although its performance remains far below the erasure channel in the binary case even

with Markovian codebooks when the deletion probability approaches 1. We also examined the noisy
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deletion channel where the deletion channel is cascaded with a symmetric DMC. Here we gave a

single letter expression for an achievable rate that naturally extended from the bound for deletion

channels with i.i.d. inputs.

Several interesting questions remain open about deletion channels. Of course, the central question

is the single-letter characterization of its capacity. Even in the absence of such a characterization, it

would be important to develop tighter upper and lower bounds for achievable rates. In particular,

good upper bounds for small alphabet sizes will be useful in gaining insight into the behavior of

deletion channels.

The problem of code construction has a long history and still has a vast number of unresolved

problems (see [8] for example). A key insight from our work is that for small deletion probabilities,

random i.i.d. codebooks perform well, while for higher deletion probabilities one needs to introduce

memory into the codebook design. We believe that this stems from the need of having “runs” of

identical symbols in codewords, such that most of these runs survive the deletion process. This

leads us to conjecture that coding in run-lengths is a useful design technique for deletion channel

codes.

Acknowledgments

We would like to thank Yiannis Kontoyiannis, Michael Mitzenmacher, Alon Orlitsky, Neil Sloane,

Emre Telatar, and Vinay Vaishampayan for stimulating discussions on the topic of this paper. We

also thank the reviewers for detailed and constructive inputs. Their comments also encouraged us

to obtain additional results on the noisy deletion channel.

A Proof of Theorem 3.1

Proof: We first prove the result for the case without feedback. Since under the regularity

conditions for {Qi}, mutual information has an operational interpretation, the capacity C is given

by

C = lim
n→∞

1

n
max
p(Xn)

I(Xn; Y n).

Thus we can write,

Cn = I(Xn; Y n) = H(Y n)−H(Y n|Xn) =
n

∑

i=1

H(Yi|Y
i−1)−H(Yi|Y

i−1, Xi, X
i−1) (41)

The channel output Yi in turn is a function of the current channel state Qi and the current input
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symbol Xi. We can identify the following Markov chain.

X i−1 ↔ (Xi, Qi) ↔ Yi

Furthermore, conditional on Qi−1 or Y i−1 (or both), Qi is independent of X i−1, Xi, i.e.,

(X i−1, Xi) ↔ Y i−1 ↔ Qi (42)

This is because the channel state is independent of the channel input.

We can now compute the two entropies in (41). Recall that for a dropped packet (Qi = 1), the

decoder receives the special erasure symbol Yi = E, which embodies the assumption that the receiver

has side information about dropped packets.

H(Yi|Y
i−1) = E

[

− log
{

p
(

Yi|Qi = 0, Y i−1
)

p
(

Qi = 0|Y i−1
)

+ p
(

Yi|Qi = 1, Y i−1
)

p
(

Qi = 1|Y i−1
)}]

= E
[

− log
{

1{Yi 6=E}p
(

Yi|Qi = 0, Y i−1
)

p
(

Qi = 0|Y i−1
)

+ 1{Yi=E}p
(

Qi = 1|Y i−1
)}]

= E
[

−1{Yi 6=E} log
{

p
(

Yi|Qi = 0, Y i−1
)

p
(

Qi = 0|Y i−1
)}]

+ (43)

E
[

−1{Yi=E} log
{

p
(

Qi = 1|Y i−1
)}]

H(Yi|Y
i−1, Xi, X

i−1) = E
[

− log
{

p (Yi|Qi = 0, Xi) p
(

Qi = 0|Y i−1, Xi, X
i−1

)

(44)

+p
(

Yi|Qi = 1, Y i−1, Xi, X
i−1

)

p
(

Qi = 1|Y i−1, Xi, X
i−1

)}]

= E
[

− log
{

1{Yi 6=E}p(Yi|Qi = 0, Xi)p
(

Qi = 0|Y i−1
)

+ 1{Yi=E}p
(

Qi = 1|Y i−1
)}]

= E
[

−1{Yi 6=E} log
{

p(Yi|Qi = 0, Xi)p
(

Qi = 0|Y i−1
)}]

+

E
[

−1{Yi=E} log
{

p
(

Qi = 1|Y i−1
)}]

Putting together (41), (43) and (44), we get

Cn =

n
∑

i=1

P {Qi = 0}
[

H(Yi|Qi = 0, Y i−1)−H(Yi|Qi = 0, Xi)
]

(45)

Since for Qi = 1, we have H(Yi|Qi = 1, Y i−1) = H(Yi|Qi = 1, Xi) = 0, using this in (45) we have

therefore shown that

Cn = I(Xn; Y n) =
n

∑

i=1

[

H(Yi|Qi, Y
i−1)−H(Yi|Qi, Xi)

]

. (46)

For a given marginal distribution p(Xi), the first term of (46) is maximized for {Xi} i.i.d., because

conditioning reduces entropy. Therefore,
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C = lim
n→∞

1

n

n
∑

i=1

max
p(Xi)

I(Xi; Yi|Qi) (47)

= lim
n→∞

1

n

n
∑

i=1

P {Qi = 0}max
p(Xi)

I(Yi; Xi|Qi = 0)

= C0 lim
n→∞

1

n

n
∑

i=1

P {Qi = 0} = θC0

where C0 = max
p(X)

I(X; Y |Q = 0) is the capacity of the DMC,

and the existence of θ = lim
n→∞

1

n

n
∑

i=1

P {Qi = 0} is guaranteed because of the regularity conditions

on {Qi}. Therefore, the capacity is proportional to the fraction of time the channel is in the “good”

state, i.e., when there is no buffer overflow.

We now show that feedback does not increase the capacity of the channel. We assume that the en-

coder has access up to the previous received symbol, i.e., it knows Y i−1, and hence Xi = f(W, Y i−1).

I(W ; Y n)
(a)
= I(W ; Y n, Qn) (48)
(b)
= I(W ; Y n|Qn)

=
n

∑

i=1

H(Yi|Y
i−1, Qn)−

n
∑

i=1

H(Yi|Y
i−1, W, Qn)

(c)
=

n
∑

i=1

H(Yi|Y
i−1, Qn)−

n
∑

i=1

H(Yi|Y
i−1, W, Qn, Xi)

(d)
=

n
∑

i=1

H(Yi|Y
i−1, Qn)−

n
∑

i=1

H(Yi|Y
i−1, Qn, Xi)

(e)

≤
n

∑

i=1

H(Yi|Qi)−
n

∑

i=1

H(Yi|Y
i−1, Qn, Xi)

(f)
=

n
∑

i=1

H(Yi|Qi)−

n
∑

i=1

H(Yi|Qi, Xi)

=
n

∑

i=1

I(Xi; Yi|Qi), (49)

where (a) is because Qn is a function of Yn, (b) is because the message W is independent of Qn

(hence I(W ; Qn) = 0), (c) is because Xi = f(W, Y i−1), (d) follows from Yi conditional on Xi and

Qn is independent of W , inequality (e) is due to conditioning decreasing entropy, and (f) is because

we have a DMC and therefore conditioning on Qi, Xi makes Yi independent of Y i−1, Qi−1.
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The crucial thing to note in (49) is that I(Xi; Yi|Qi) depends on i because Xi is a function of Y i−1,

and hence this could be a non-stationary process. However, the mutual information is a concave

function in its input probability for a fixed channel. Hence by choosing an average distribution

averaged over the Y i−1, i.e.,

p̄(Xi|W ) =
∑

yi−1

p(Xi|y
i−1, W )p(yi−1|W ), (50)

the mutual information would increase. Hence if we define the stationary process {X̄i}, where the

Xi are i.i.d. with the above marginal distribution, and using the concavity of mutual information,

we obtain

I(Xi(y
i−1, W ); Yi|Qi) ≤ I(X̄i(W ); Yi|Qi) (51)

Now using (51) in (48) we obtain

1

n
I(W ; Y n) ≤

1

n

n
∑

i=1

I(X̄i(W ); Yi|Qi), (52)

and hence the feedback capacity Cfb is clearly lower bounded by the capacity Cnfb without feedback.

However, from the above argument we also have

Cnfb ≤ Cfb ≤ lim
n→∞

1

n

n
∑

i=1

max
p(X̄i)

I(X̄i; Yi|Qi) = Cnfb. (53)

Therefore, Cfb = Cnfb. �

B Proofs of (22) and (23)

In this section we provide the details of the proof for two results used in the proof of Theorem 4.3.

B.1 Proof of (22)

In order to prove (22), we need to look at the joint process of the i.i.d. binary deletion process

D and the first order Markov chain X generating the random codebook. This can be done by

extending the state space of the Markov process of Figure 2 to include the state of the deletion

process. This yields a 2K-state Markov process, (X, D), with each state being the concatenation of

the state of the Markov process and the deletion process. The process Y = D ◦X is generated by

observing only the states where the deletion process is 0, i.e., the sequence generated through the

deletion channel. These states constitute a subset of the extended Markov chain state space, and
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by the Strong Markov Property [22], this randomly sampled Markov chain is itself a Markov chain.

The transition probability P̄ of the Markov chain generated by the “watched” set is given by

P̄ = θP [I− (1− θ)P]−1 , (54)

where P is the transition matrix of the Markov chain shown in Figure 2. It can be easily shown that

the Markov chain corresponding to P̄ is also symmetric (just as the Markov chain in Figure 2) with

parameter q = 1
K

[

1 + θ(K−1)(pK−1)
(K−1)−(1−θ)(pK−1)

]

. Therefore, the subsequence Y is obtained by running this

Markov chain for m steps. This yields

P {Y with ∆Y of weight i} =
1

K

(

1− q

K − 1

)i

qm−1−i (55)

B.2 Proof of (23)

To obtain (23), we examine the probability of a sequence y of length m occurring in a K-state

Markov chain X of length n, given in Figure 2. We will consider the number of transitions N of

the Markov chain needed to sequentially match every symbol of y.

As X is symmetric, the stationary probabilities for both states are identical. Thus, we can assume

y1 = 0 w.l.g. We first compute N1, the number of transitions to match y1. Its distribution is given

by

P {N1 = i} =

{

1
K

i = 1

(1− 1
K

) 1−p

K−1

[

1− 1−p

K−1

]i−2
i ≥ 2

. (56)

Now assume we have matched yl−1 in X, and let us consider how many transitions are needed to

match yl. We have to distinguish two cases: (a) yl 6= yl−1, and (b) yl = yl−1. Let Na and Nb denote

the number of transitions up to the next match for case (a) and (b), respectively. To this end, note

that because of the symmetry of X, case (a) corresponds to the number of transitions to reach state

1 when we do not start from state 1 (cf. Fig. 2). For this we obtain

P {Na = i} =
1− p

K − 1

[

1−
1− p

K − 1

]i−1

i ≥ 1. (57)

Similarly, case (b) corresponds to the number of transitions to reach state 1 starting from state 1.

Therefore we obtain

P {Nb = i} =

{

p i = 1
(1−p)2

K−1

[

1− 1−p

K−1

]i−2
i ≥ 2

. (58)
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We calculate the moment generating functions for Na and Nb as

ΦNa
(γ)

def
= Ee−γNa = e−γ (1− p)

(K − 1)
[

1− e−γ
{

1− 1−p

K−1

}] , (59)

where it is inherently assumed that |e−γ
{

1− 1−p

K−1

}

| < 1, which is always true because,
{

1− 1−p

K−1

}

≤

1 < eγ for γ > 0. Similarly, we can calculate the following,

ΦNb
(γ)

def
= Ee−γNb = e−2γ (1− p)2

(K − 1)
[

1− e−γ
{

1− 1−p

K−1

}] + pe−γ . (60)

Let Nl denote the number of transitions to match yl. Then

Nl =







N1 l = 1

Na,l (∆y)l = 1

Nb,l (∆y)l = 0

, (61)

where Na,l and Nb,l are independent and distributed like Na and Nb. The total number of iterations

to match y is N =
∑m

l=1 Nl. Therefore we have

P {y with ∆y of weight i occurs in (X1, . . . , Xn)} = P {N ≤ n} . (62)

Using the Chernoff bound we can upper bound this probability as

P {N ≤ n} ≤ inf
γ>0

eγn
Ee−γ

Pm
l=1

Nl (63)

(a)
= inf

γ>0
eγn

E[e−γN1 ]{Ee−γNa}i{Ee−γNb}m−1−i,

where (a) is obtained by the definition of Nl in (61) and the fact that the Nl are independent of

each other, giving us the desired result.
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