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Abstract—To quantify the randomness of Markov trajectories
with fixed initial and final states, Ekroot and Cover proposed
a closed-form expression for the entropy of trajectories of an
irreducible finite state Markov chain. Numerous applications,
including the study of random walks on graphs, require the
computation of the entropy of Markov trajectories conditional on
a set of intermediate states. However, the expression of Ekroot and
Cover does not allow for computing this quantity. In this paper, we
propose a method to compute the entropy of conditional Markov
trajectories through a transformation of the original Markov
chain into a Markov chain that exhibits the desired conditional
distribution of trajectories. Moreover, we express the entropy of
Markov trajectories—a global quantity—as a linear combination
of local entropies associated with the Markov chain states.

Index Terms—Entropy, Markov chains (MC), Markov
trajectories.

I. INTRODUCTION

Q UANTIFYING the randomness of Markov trajectories
has applications in graph theory [1] and in statistical
physics [2], as well as in the study of random walks on

graphs [3], [4]. The need to quantify the randomness of Markov
trajectories first arose when Lloyd and Pagels [2] defined a
measure of complexity for the macroscopic states of physical
systems. They examine some intuitive properties that a measure
of complexity should have and propose a universal measure
called depth. They suggest that the depth of a state should de-
pend on the complexity of the process by which that state arose,
and prove that it must be proportional to the Shannon entropy of
the set of trajectories leading to that state. Subsequently, Ekroot
and Cover [5] studied the computational aspect of the depth
measure. In order to quantify the number of bits of randomness
in a Markov trajectory, they propose a closed-form expression
for the entropy of trajectories of an irreducible finite state
Markov chain (MC). Their expression does not allow, however,
for computing the entropy of Markov trajectories conditional
on the realization of a set of intermediate states. Computing
the conditional entropy of Markov trajectories turns out to be
very challenging yet useful in numerous domains, including the
study of mobility predictability and its dependence on location
side information.
Consider a scenario where we are interested in quantifying

the predictability of route-choice behavior. We can model the
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mobility of a traveler as a weighted random walk on a graph
whose vertices represent locations and edges represent possible
transitions [6]. We can therefore model a route as a sample path
or trajectory in a MC. If we suppose that we know where the
traveler starts and ends her/his route, the randomness of the
route she/he would follow is represented by the distribution of
trajectories between the source and destination vertices. Con-
sequently, the predictability of her/his route is captured by the
entropy of Markov trajectories between these two states. Now,
if we obtain side information stating that the traveler went (or
has to go) through a set of intermediate vertices, quantifying the
evolution of her/his route predictability requires the computa-
tion of the trajectory entropy conditional on the set of known in-
termediate states. The conditional entropy is also a way to quan-
tify the informational value of the intermediate states revealed.
For example, if the entropy conditional on the set of known in-
termediate states is zero, then this set reveals the whole trajec-
tory of the traveler.
In our paper, we propose a method to compute the entropy of

Markov trajectories conditional on a set of intermediate states.
The method is based on a transformation of the original MC so
that the transformed MC exhibits the desired conditional distri-
bution of trajectories. We also derive an expression that enables
us to compute the entropy of Markov trajectories, under con-
ditions weaker than those assumed in [5]. Moreover, this ex-
pression links the entropy of Markov trajectories to the local
entropies at the MC states.

II. MODEL

Let be a finite state irreducible and aperiodic MC with
transition probability matrix whose elements are the transi-
tion probabilities

This MC admits a stationary distribution , which is the
unique solution of . The entropy rate is a mea-
sure of the average entropy growth of a sequence generated by
the process and is defined as

For the particular case of an irreducible and aperiodic MC, the
limit above is equal to [7, p. 77]

where denotes the th row of and where
is the local entropy of state . Note that,
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throughout this paper, we use MC as a shorthand for the MC
whose transition probability matrix is .

A. Entropy of Markov Trajectories

We follow the setting of [5] closely. We define a random tra-
jectory of a MC as a path with initial state , final state ,
and no intermediate state , i.e., the trajectory is terminated as
soon as it reaches state . Using the Markov property, we ex-
press the probability of a particular trajectory
given that as

Let be the set of all trajectories that start at state and end
as soon as they reach state . As the MC defined by the matrix
is finite and irreducible, we have

So the discrete random variable has as support the set ,
with the probability mass function . Subsequently, we use

as a shorthand for . We can now express the
entropy of the random trajectory as

We define the matrix of trajectory entropies where
. Ekroot and Cover [5] provide a general closed-form

expression for the matrix of an irreducible, aperiodic, and
finite state MC.
The entropy of a trajectory from to given that it

goes through is defined by

(1)

where is the set of all trajectories in with an intermediate
state

The major challenge is to compute efficiently the entropy .
Even the costly approach of computing all the terms of the sum
(1) is not always possible because the set has an infinite
number of members in the case, where after removing state ,
the transition graph of the MC is not a DAG. It is important
to emphasize that the entropy is not the entropy of the
random variable given another random variable—a quantity
which is easy to compute—but the entropy of conditional
on the realization of a dependent random variable.
In Fig. 1, we show an example of a finite-state irreducible

and aperiodic MC. Note that the presence of cycles implies that
the set of trajectories between some pair of states might have
infinite cardinality ( , for example). Therefore, in ad-
dition to being complex, the naive approach of enumerating all
trajectories is not always possible.

Fig. 1. Irreducible, 5-state, Markov chain annotated with the transition
probabilities.

Using the results of [5], we obtain the matrix of trajectory
entropies

The zero elements of the matrix correspond to deterministic
trajectories such as , which is equal to the path 25 with prob-
ability 1 since no other path allows a walk to go from 2 to 5. The
entropy of the random trajectory is 1.56 bits. Now imagine
that we have an additional piece of information stating that the
trajectory goes through state 4. Intuitively, we would be
tempted to argue that the entropy of the trajectory
conditional on going through state 4 is equal to , but
this additivity property does not hold. Indeed, the conditional
entropy is zero because the trajectory , conditional on
the intermediate state 4, can only be equal to the path 1345,
whereas bits, hence

bits.
In the next section, we study the entropy of Markov trajec-

tories conditional on multiple intermediate states and derive a
general expression for this entropy.

III. ENTROPY OF CONDITIONAL MARKOV TRAJECTORIES

Let denote the probability that the random trajectory
goes through the state at least once

This is also equal to the probability that a walk reaches the state
before the state , given that it started at . In order to compute
, the technique from [8], [9] is to make the states and

absorbing (a state is absorbing if and only if ) and
compute the probability to be absorbed by state given that the
trajectory has started at state .
Our first step toward computing is to express it as a

function of quantities that are much simpler to compute. The
idea is to relate the entropy of a trajectory conditional on a given
state to its entropy conditional on not going through that state.
Therefore, we define the entropy of a trajectory from to
given that it does not go through to be
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Using the chain rule for entropy, we can derive the following
equation which relates to and :

(2)

for all , where is the entropy of a Bernoulli random
variable with success probability .

Proof: First, we define the indicator variable by

if T
otherwise

Using the chain rule for entropy, we express the joint entropy
in two different ways

because is a deterministic function of . So the entropy of
the random trajectory can be expressed as

Since , we obtain

As we know from [5], [8], [9] how to compute and ,
if we are able to compute , we can use (2) to find .
However, generalizing (2) to trajectories conditional on passing
through multiple intermediate states turns out to be difficult,
hence we propose an approach that circumvents this problem.
As we will see, the difficulty of our approach also boils down to
computing the entropy of a trajectory conditional on not going
through a given state.
First, we define , the set of all trajectories in that ex-

hibit the sequence of intermediate states , i.e.,

For an arbitrary sequence of states , satisfying
, we prove the following lemma.

Lemma 1:

(3)

where .
Proof: First, given , the random trajectory
can be expressed as a sequence of random subtrajectories

. Therefore, the conditional

entropy , which we denote by ,
can be written as a joint subtrajectory entropy

Applying the chain rule for entropy, we obtain successively

...

The Markovian nature of the process generating the trajectory
implies that each of the subtrajectories is indepen-

dent of the preceding ones, given its starting point . Since the
sequence defines the starting point of each
subtrajectory, we can therefore write that

(4)

Using (4), the expression for the conditional entropy becomes

...

Note that for each trajectory , the only restriction
imposed by the event is that the final state
cannot be an intermediate state of any of the first trajectories

. As a result,

...

where
Now, if we are able to compute , we can use (3)

to derive . The following lemma shows how
the conditional entropy can be obtained by a simple
modification of the MC.
We consider a MC whose transition probability matrix is ,

and , , and three distinct states such that
. Let be the transition matrix of the same MC but

where both states and are made absorbing, and whose entries
are thus

if i u d and i
if i u d and i = j
otherwise

(5)



5580 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 9, SEPTEMBER 2013

Next, we define a second matrix , obtained by a transforma-
tion of the matrix

if

otherwise
(6)

Lemma 2: (i) The matrix is stochastic and (ii) If is a
random trajectory defined on the MC whose transition proba-
bility matrix is then

Proof: (i) The matrix is the transition probability ma-
trix of a MC where the states and are absorbing. We can
therefore introduce the vectors of absorption probability

and where
and are, respectively, the probability of being absorbed by
and , given that the trajectory starts at . These vectors are

eigenvectors of associated with the unit eigenvalue [8, p. 227]

(7)

Moreover, as MC has only two absorbing states and , for
all , . Recall that for all , hence (6)
can be written as

if
otherwise

Note that all transitions leading to state in MC will have zero
probability in MC . In fact, consider a state such that
and . In the new matrix , the probability of transition
from to will be , which is zero because

. Proving that is stochastic is now straightforward:
first, the entries of are positive. Second, they are properly
normalized and sum up to one. Indeed, if we consider a state
such that , we have that whereas
if , we have that

because of (7).
(ii) Let and be the probability measures defined, respec-

tively, for MC and MC on the same sample space . Any
trajectory from the set has the form .
If ,

(8)

since we have constructedMC such that all transitions leading
to state have zero probability.
If , we have

(9)

but as the probability to be absorbed by state , given
that we have started at the same state, is 1. Moreover, we know
from (5) that , for all . As we have sup-
posed that the trajectory does not admit either or as
intermediate states, .
Rewriting (9) yields

(10)

Combining (8) and (10), we have therefore proven, for all
, that

(11)

Consequently, if the random variable describes the trajec-
tory between and in MC , (11) implies that

For the particular case where , we still can use Lemma
2 to express the conditional entropy : we modify the MC
by removing the incoming transitions of and creating a new
state that will inherit them. The conditional entropy in
the original MC is equal to in the modified one and, since

, we can use Lemma 2 to express it.
Building on Lemmas 1 and 2, we can now state themain result

of this paper: a general expression for the entropy of Markov
trajectories conditional on multiple intermediate states.
Theorem 1: Let be the transition probability matrix of a

finite MC and a sequence of states such that
. Then, we have the following equality:

(12)

where and is a random trajectory defined on
the MC whose transition probability matrix is defined as
follows:

if and i
if and
if i and

if i and
(13)

Proof: The matrix is obtained from using (13), which
is equivalent to applying successively (5) and (6) where the
starting, intermediate, and ending states are, respectively, ,
, and . Therefore, using Lemma 2, we have

for all . Consequently, we can write that
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where . Using Lemma 1, we finally obtain

Now, that we have derived a general expression for the en-
tropy of Markov trajectories conditional on multiple states, we
introduce, in the next section, a method that allows us to com-
pute this expression.

IV. ENTROPY COMPUTATION

The closed-form expression for the entropy of Markov tra-
jectories proposed by Ekroot and Cover [5] is valid only if the
MC studied is irreducible. However, the Markov chain MC
obtained from MC after the transformations (5) and (6) is not
necessarily irreducible: all transitions leading to state have
zero probability, which implies that possibly many states do not
admit any path leading to . Therefore, we need an expression
for the entropy of Markov trajectories that is valid under milder
conditions. In order to identify these conditions, we study the
properties of MC . Let be the set of all states in MC and
let and be two subsets that partition in the following
manner:

The set is closed as no one-step transition is possible from
any state in to any state in . In fact, if and ,
(6) yields that Clearly, all trajectories
leading to state are composed of states belonging to . Now,
we propose a closed-form expression for the entropy of Markov
trajectories that is valid under the weaker condition that the des-
tination state can be reached from any other state of the MC.
Moreover, we prove that the trajectory entropy can be expressed
as a weighted sum of local entropies. We also provide an intu-
itive interpretation of the weights.
Lemma 3: Let be the transition probability matrix of a fi-

nite state MC such that there exists a path with positive proba-
bility from any state to a given state . Let be a submatrix
of obtained by removing the row and column of

Qd ...

For any state , the trajectory entropy can be expressed
as

(14)

where is the local entropy of state .
Proof: First, observe that the matrix is a submatrix of

corresponding to all states except state and that we use
to derive the entropy of all trajectories ending at . Applying the
chain rule for entropy, we express the entropy of a trajectory as

the entropy of the first step plus the conditional entropy of the
rest of the trajectory given this first step

We expand this equality further by recursively expanding the
entropy as follows:

(15)

with .
Observe that the matrix describes the MC as long as it

does not reach state . Moreover, the matrix has a finite
number of states and there is a path with positive probability
from each state to state . As a consequence, theMarkov process
will enter state with probability 1, i.e.,
(zero matrix). In addition, since

we can easily verify that

(16)

Replacing (16) in (15), we have

We have shown that the entropy of a family of trajectories can
be expressed as a weighted sum of the states’ local entropies.
The weights are given by the matrix . In the Mar-
kovian literature, the matrix is referred to as the
fundamental matrix [8], [9]. In fact, the element of the
fundamental matrix (defined with respect to the destination state
) can be seen as the expected number of visits to the state
before hitting the state , given that we started at state . As a
result, the entropy of the random trajectory is the sum over
the chain states of the expected number of visits to each state
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multiplied by its local entropy. This is a remarkable observation
since it links a global quantity, which is the trajectory entropy,
to the local entropy at each state.
Recall that in the example shown in Fig. 1, we found that

the entropy of the trajectory is equal to 1.56 bits. We can
retrieve this result by computing the fundamental matrix with
respect to state 5. The element of this matrix is equal
to the expected number of visits to state before hitting state
5, given that we started at state . Multiplying the first row of
the fundamental matrix by the column
vector of local entropies yields

bits.

A. Algorithm

The following algorithm defines the set of steps to compute
the entropy of Markov trajectories conditional on a set of inter-
mediate states:

Intput: Matrix of transition probability , source state
, destination state , sequence of intermediate states

Output:

1:

2: for to do

3: Compute from using (13)

4: Compute from using Lemma 3

5: {Lemma 2}

6: end for

7: Compute from using Lemma 3

8: {Lemma 1}

9: return

The worst-case running time for the algorithm is
where is the number of states of MC , and the length of the
sequence of intermediate states . This complexity is dominated
by the cost of computing the inverse of the matrix ,
which is needed to compute the entropy in (14). How-
ever, since we need only the row of the matrix
to compute the trajectory entropy , we can solve a system
of—potentially sparse—linear equations. Moreover, many iter-
ative methods [10, p. 508] take advantage of the structure of the
matrix representing the system of linear equations in order to
solve them efficiently.
Coming back to the example shown in Fig. 1, we use the

algorithm above to compute the conditional entropy
bit. We leave no ambiguity about the trajectory when we
condition on both states 3 and 2 and find that

bits.
Conditioning on a Set of States: In this paper, we focused

on computing the entropy of Markov trajectories conditional on
a sequence of states. A natural extension is the computation of
this entropy conditional on a non ordered set of states. Finding
a general expression for this conditional entropy appears very

Fig. 2. Markov chain annotated with the transition probabilities. The dashed
lines between states 4 and 2 represent the equiprobable paths leading from
state 4 to state 2.We choose and to guarantee that
and that .

hard and there is no simple relation linking it to the entropy con-
ditional on a sequence. We provide an example, shown in Fig. 2,
that illustrates an interesting and counter-intuitive result about
conditioning on a set of states. Intuitively, we would expect that
the entropy of a random trajectory conditional on a sequence
of states is always less than the entropy of the same trajectory
conditional on the set formed by these states. However, this is
not true. We take the MC shown in Fig. 2 as an example and we
compute, using Theorem 1, the entropy of the random trajectory

conditional on going through the sequence of intermediate
states

(17)

where is the entropy of a Bernoulli random variable with
success probability . To compute the entropy of the random
trajectory conditional on going through the set of states

, we apply the chain rule for entropy and express the en-
tropy of a trajectory as the entropy of the first two steps plus the
conditional entropy of the rest of the trajectory given these first
two steps

Since , we have that

(18)

Using (17) and (18), we can write
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This difference can therefore be lower bounded by

As a consequence, if , the entropy
of the random trajectory conditional on going through the
sequence is strictly greater than the entropy of the same
trajectory conditional on going through the set of states .
The reason is that conditioning on the sequence implies
that the random trajectory is composed of a random subtra-
jectory whose entropy can be made arbitrary large by in-
creasing the parameter . More generally, this example illus-
trates the absence of a simple relation between the entropy of
random trajectories conditional on a sequence of states and the
entropy of the same trajectory conditional on the set formed by
these states.

V. CONCLUSION

In this paper, we address the problem of computing the en-
tropy of conditional Markov trajectories. We propose a method
based on a transformation of the original Markov chain into a
Markov chain that yields the desired conditional entropy. We
also derive an expression that allows us to compute the entropy
of Markov trajectories, under conditions weaker than those as-
sumed in [5]. Furthermore, this expression links the entropy of
Markov trajectories—a global quantity—to the local entropy of
states.
These results have applications in various fields including

mobility privacy of the users of online services. In fact, using
our framework, we are able to quantify the predictability of a
user’s mobility and its evolution with locations updates: we rep-
resent a location as a state of a Markov chain. A sequence of
visited locations is therefore a Markovian trajectory, and loca-
tion-updates amount to conditioning this trajectory on a set of
intermediate states. In this setting, we can quantify the evolution
of the user’s mobility predictability as she/he discloses some of
the locations she/he visited by computing the entropy of condi-
tional Markov trajectories. Consequently, users are empowered
with an objective technique to protect their privacy: they are
able to anticipate the evolution of their mobility predictability
as they reveal a subset of the locations they visited.
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