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Locating Mobile Nodes with EASE: Learning Efficient
Routes from Encounter Histories Alone
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Abstract— Routing in large-scale mobile ad hoc networks is chal-
lenging because all the nodes are potentially moving. Geographic
routing can partially alleviate this problem, as nodes can make
local routing decisions based solely on the destinations’ geographic
coordinates. However, geographic routing still requires an efficient
location service, i.e., a distributed database recording the location
of every destination node. Devising efficient, scalable, and robust
location services has received considerable attention in recent years.

The main purpose of this paper is to show thatnode mobility can
be exploited to disseminate destination location information without
incurring any communication overhead. We achieve this by letting
each node maintain a local database of the time and location of its
last encounter with every other node in the network. This database is
consulted by packets to obtain estimates of their destination’s current
location. As a packet travels towards its destination, it isable to
successively refine an estimate of the destination’s precise location,
because node mobility has “diffused” estimates of that location.

We define and analyze a very simple algorithm called EASE
(Exponential Age Search) and show that in a model whereΘ(n)
nodes perform independent random walks on a square lattice of size
n, the length of the routes computed by EASE are of the same order
as the distance between the source and destinationeven for very large
n. Therefore, without disseminating any explicit location information,
the length of EASE routes are within a constant factor of routes
obtained with perfect information. We discuss refinements of the
EASE algorithm and evaluate it through extensive simulations. We
discuss general conditions such that the mobility diffusion effect leads
to efficient routes without an explicit location service. In practical
settings, where these conditions may not always be met, we believe
that the mobility diffusion effect can complement existinglocation
services and enhance their robustness and scalability.

Index Terms— Mobile wireless networks, mobility, location service,
routing.

I. I NTRODUCTION

In large wireless ad hoc and sensor networks, some or all the
nodes may be moving. Therefore, the network topology changes
with time. Routing algorithms have to base routing decisions on at
least a partial knowledge of the network topology. The collection
and exchange of topology information (e.g., distance vectors or
link states) consumes valuable bandwidth and energy. A variety of
routing algorithms have been developed that trade off the quality
of routes, their computing and transmission overhead, and the
degree of permissible mobility [19].

Position-based (or geographic) routing exploits the fact that nodes
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usually live in the plane. This enables nodes to make local routing
decisions based solely on the destinations’ geographic coordinates
[15], [2], [16], [3], [13] (see [18] for an excellent review of po-
sition based routing). These coordinates can be obtained directly
by equipping nodes with GPS receivers, or indirectly by inferring
a coordinate system based on local measurements of connectivity,
such as signal strengths or run-time differences [5], [4]. For this
purpose, a mobile ad hoc network is regarded as a set of nodes
in the plane, with an associated mobility process. Connectivity is
achieved through wireless links, and is thus essentially local (see
[11] for an example of the model). While the set of nodes and
their connectivity defines a graph, this graph is not arbitrary but
instead closely related to the geometry of the plane. In general, a
node only needs to know its own location and that of its neighbors
to make a routing decision towards any destination node witha
known location.

However, geographic routing still requires an efficientlocation
service, i.e., a distributed database recording the location of every
destination node. Devising efficient, scalable, and robustlocation
services has received considerable attention in recent years [18],
[17], [12], [24]. Interestingly, location and routing havebeen
mostly considered in isolation so far: a source first looks upthe
current position of the destination through the location service,
and then routes a packet towards that position using a geographic
routing algorithm. This requires that the location servicehas
to be able to track all the nodes in the network, and maintain
a distributed database recording the locations of these nodes.
Every change in topology has to be reflected in this distributed
database, which inevitably involves some exchange of location
information between nodes, and hence incurs a transmissioncost.
This transmission cost to maintain location state therefore depends
directly on the amount of mobility, or the rate at which the
network topology changes.

An elegant way of reducing this cost is by exploiting thedistance
effect [2], which is basically the observation that the precision with
which the position of a destination has to be known to make a
good, but sometimes suboptimal, local routing decision at anode,
depends on the distance of that node from the destination. Ifthe
node is far away from the destination, an imprecise estimateis
sufficient, and vice versa. Routing schemes such as DREAM [2]
exploit this effect to develop more “lazy” approaches to main-
taining location information about all the nodes in the network.
This approach essentially amounts to trading off a smaller location
maintenance overhead, which is incurred continually with every
topology change, for a slightly larger routing cost, as routes are
in general suboptimal.

In this paper, we go a step further and try to completely eliminate
the cost to update location state. If nodes are not allowed



to exchange any explicit location updates, then the only local
information available to a node about the network topology is the
history of other nodes it has encountered in the past, i.e., that it
has been directly connected to. More specifically, we assumethat
every node remembers the time and location of its last encounter
with every other node (i.e., when these two nodes were directly
connected neighbors; cf. Fig. 1). We call a routing algorithm a
last encounter routing (LER) algorithm if at every node along a
packet’s route, the next hop decision depends only on (a) thetime
and location of that node’s last encounter with the destination,
and (b) auxiliary information carried by that packet. The main
question we ask in this paper is the following: if all the nodes
in the network are moving, is it possible for LER schemes to
compute efficient routes, despite the absence of a location service?
We show that, depending on the mobility processes, this is indeed
possible. This is quite remarkable, given that LER invests no
network capacity to track nodes, i.e., to maintain distributed
location information.
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Fig. 1. A last encounter table in every node remembers the location and time of
the last encounter with every other node in the network. In last encounter routing
(LER), this table is queried by a packet to improve, if possible, its estimate of the
location of its destination node.

The insight at the root of our investigation is the following. On
the one hand, mobility of the nodes creates uncertainty about their
location. On the other hand, consider some noded that is the
destination of a packet. Some other nodei that has encountered
d in the past remembers the location of that last encounter. Three
observations explain why LER can give rise to efficient routes:
(a) the location of the last encounter is still a reasonably good
estimate of the destination’s location after some time; (b)the time
of that encounter, or equivalently, the “age” of the estimator, is
a measure for the precision of that estimate; (c) nodei’s own
mobility means that a recent estimate ofd’s position is available
at some distance fromd; given thatd encounters other nodes all
the time due to mobility, this essentially leads to a diffusion effect
of noisy position estimates aroundd. The locality in the mobility
processes inherently leads to a distance effect, in that better
position estimates ford become available as a packet approaches
d’s current position.

Clearly, the feasibility of LER schemes will depend on the
mobility process. If at any point in time, a node can jump
uniformly over the entire surface of interest, an estimate based on
the previous location is of no help. However, in the more likely
scenario where the process has some locality, such as a random

walk, then aged location information is useful, and diffuses at the
same speed as the node moves itself. If the density of neighbors
is sufficient both along the path of the destination node (so as
to diffuse sufficiently) and along the path of a packet moving
towards the destination (to get enough new estimates), thenLER
can work well.

The outline of the paper is as follows. The next section discusses
related work, while Section III describes the model we are
considering in more detail, in particular the topology, themobility
model and the performance criterion. In Section IV, we define
the Exponential Age Search (EASE) routing algorithm, a LER
algorithm tailored to random walk mobility. In Section V, we
examine the asymptotic performance of EASE when the network
size grows large, using standard results from the theory of random
walks. We show that the expected route cost obtained with EASE
is of the same order as the optimal path length even in very
large networks. Section VI gives simulation results in fairly large
networks (1000 nodes); they confirm the good performance and
scalability of EASE. Finally, Section VII provides some further
insights and discussions.

II. RELATED WORK

Several position-based routing algorithms have been proposed in
the literature [15], [2], [16], [3], [13]. The principal goal of these
algorithms is to ensure that a short route can be found if one exists
between a source and a destination whose locations are known.
This is not trivial, because forwarding greedily in the direction of
a destination is not guaranteed to work, as there is no guarantee
that a node always has a neighbor closer to the destination than
itself.

Mobility management is a basic problem in standard mobile net-
works (see for example [24]). In ad hoc networks, the situation is
complicated by the absence of centralized servers (home location
registers). In an ad hoc network endowed with position-based
routing, mobility management amounts to tracking the location
of every potential destination through alocation service. This
location service has to be itself distributed across the ad hoc
network, and this can be achieved with various methods that trade-
off complexity, overhead, and robustness [18], [17], [8], [12], [24].
What is common to all these location services is that they incur
overhead by explicitly exchanging location information between
nodes, either to update location information in the distributed
database, to request the location of a destination node, or both.

Approximate location services have been proposed in various
forms. For example, in the grid location service (GLS) [17],
a quadtree based location service creates a hierarchy of square
regions. Updates of a node’s position are sent to a decreasing
number of nodes acting as location servers as the distance
increases. In the geographical region summary service (GRSS)
[12], a similar grid location service is proposed, with increased
efficiency due to forwarding location aggregation. For a more
complete overview of location services and their use in position-
based routing, we refer to [18] and references therein.

Our work is closest in spirit to the DREAM algorithm [2]. In
DREAM, every node maintains a position table for every other
node. DREAM consists of a position update algorithm and a
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routing algorithm. The position update algorithm ensures that all
the nodes in the network have a sufficiently accurate estimate
of a reference node’s position. This is achieved by the reference
node flooding a limited region around itself to install new position
estimates in the nodes in this region. The scope of this flooding
depends on the distance that the node has traveled since the last
such flooding. The routing algorithm ensures that a packet can
reach a destination efficiently and with high probability, using
restricted directional flooding based on the region where the
destination is expected to be located. The approximate location is
given by a circle around the last known location of the destination,
and the radius of this circle is given by(t1 − t0) · vmax, wheret1
is the current time,t0 the time when the location was registered,
andvmax the maximum speed.

III. M ODEL

We now describe the model used in the paper for analysis.
Although in reality, node positions are continuous processes in
continuous time, it is convenient for the analysis to use discrete
approximations. We therefore consider node mobility processes on
a square grid in slotted time. Our simulations show that our main
result on the efficiency of mobility diffusion routing carries over
to continuous settings with less regular topologies (cf. Section
VI).

Topology. For the sake of analysis, we make a discrete approxi-
mation of the continuous geometry of a region inR

2. That is,
nodes live on vertices of the

√
n × √

n square lattice. More
precisely, the topology is a two-dimensional square grid ofn
vertices(x, y) ∈ {1, . . . ,

√
n}2. We also assume that the border

vertices wrap around to form a torus. The distance metric is lattice
(Manhattan) distance (i.e.,(1, 1) and (

√
n,

√
n) are at distance

two, for example).

There arem = λn mobile nodes that move on this grid, whereλ
is the node density. LetXi(t) denote the lattice vertex where node
i is located at discrete timet. We assume that each node always
knows its current position on the grid as well as the identityand
positions of its neighbors. A nodej is a neighbor of nodei at
time t if ||Xi(t) − Xj(t)|| ≤ 1.

Note that this definition does not guarantee a connected node
topology. However, the importance of our definition of adjacency
lies in the encounters between nodes and the diffusion of this
encounter information through mobility. We will simply assume
that forwarding a packet from a nodei to another nodej that
are at Manhattan distanced of each other requires at mostd
transmissions (hops).

Time scales.In our analysis, we assume the realistic scenario
of nodes moving at “human” speeds, while packets move at
light speed. Thus, while topology changes occur at time-scales
of minutes or longer, packets can be expected to spend at most
tens of milliseconds (due to queueing and propagation delay) in
the network. This allows to decouple the time scales, such that
for the purpose of routing a packet, the nodes are frozen for the
time of the routing to conclude.

Routing. We now define the notion of alast-encounter routing
scheme. In such a scheme, the only information a node maintains

about the network topology is the last encounter table. In this
table, each nodei maintains an entry(Pij , Aij) for every other
node j, wherePij denotes the lattice position of nodej when
i and j were last neighbors, andAij measures the age of that
encounter, i.e., the time elapsed since the encounter.1 A packet
has to traverse a sequence of nodes from its source node to its
destination node. Each node along the way has to make a routing
decision for this packet, i.e., it has to decide which neighbor to
forward the packet to. In a LER scheme, this decision dependson
three things: (i) the identity of the destination node carried in the
packet, (ii) potentially some additional information carried in the
packet, which can be a function only of information in the nodes
that the packet has traversed so far, and (iii) the last encounter
table in the current node. In this paper, we describe specificLER
schemes where (ii) takes the form of the best, i.e., most recent,
last encounter entry the packet has seen for its destinationnode
so far.

Without loss of generality, for the remainder of this paper,we rely
on the following simplifying assumptions. First, we will focus on
a single destination node with indexd, with all other nodes serving
as potential relays for packets destined for noded. As we focus
on a fixed destinationd, we write the last encounter entry of node
i for destinationd as(Pid, Aid) = (Pi, Ai). Second, we consider
the network at timet = 0.

Mobility. The positionXi(t) of nodei is a random process with
uniform stationary distribution over the lattice. The processes for
different nodes are independent. More specifically, we assume that
Xi(t) is a two-dimensional unbiased aperiodic random walk on
the square lattice, i.e.,

Xi(t + 1) = Xi(t) + ∆i(t), (1)

where the∆i(t) are i.i.d [22]. Moreover, we assume for simplicity
that both components of∆i(t) are i.i.d., with zero mean and finite
varianceσ2.

Cost metric. We let the random variableCn denote the total
number of transmissions (or hops) necessary to transmit a packet
from a sources to a destinationd at time t = 0. This cost
will include both transmissions of the actual packet between two
neighboring nodes to make progress towards its destination, as
well as transmissions necessary for a “search” packet to collect
information from surrounding nodes to make the next routing
decision. Note that because of symmetry, the cost between every
pair of nodes has identical distribution; also, the cost obviously
does not depend on time, assuming that the system has reached
steady state.

IV. T HE EXPONENTIAL AGE SEARCH (EASE) ALGORITHM

We now define the specific LER scheme examined in this paper,
which we refer to as theExponential Age Search (EASE) routing
algorithm. EASE is a LER algorithm, i.e., it computes routes
purely based on last encounters, which means that no transmission
capacity is sacrificed to explicitly diffuse location information
or to maintain a view of the current topology, other than local
“hello” packets for neighbor discovery. The goal of EASE is to

1The encounter can equivalently be recorded as thetime of the encounter; we
work with the age purely for simplicity of exposition.
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be so simple as to be amenable to analysis and to provide insight
into the conditions under which mobility diffusion provides good
routes. We will also discuss a slight modification of EASE that
improves performance, but is less amenable to analysis.

We fix three constantsα, β, andc such that0 < α < 1, c > 0,
andβ > 0.

Algorithm 1: The EASE algorithm

1 SetT0 := n
(cσ)2 , Y0 := Xs(0), k := 0.

2 Repeat
3 Search the nodes aroundYk in order of increasing

distance until a nodei is found such that either
4 (a) Ai ≤ αTk [age criterion] or
5 (b) Ai < Tk and |Pi − Yk| > βσ

√
Tk [distance

criterion].
6 Let Tk+1 = Ai be the new age, andYk+1 := Pi) be

the new anchor.
7 While not atYk+1

8 Route packet: find next hopj towardsYk+1 and
forward packet toj.

9 End while
10 k + +.
11 Until Yk = Xd(0).

−15 −10 −5 0 5

−15

−10

−5

0

5

Fig. 2. A sequence of anchors computed by the EASE algorithm,with parameter
α = 1/2; the search disksSk are also shown. The source node is to the left, the
destination to the right. A node in each search disk around anchor Yk provides
the next anchorYk+1, which corresponds to the point on the trajectory of the
destination of at most half the age (α = 1/2) of the current anchor.

Initially, the packet is at its source at positionXs(0). The basic
idea behind EASE is for a route to follow the trajectoryXd(.) of
the destination node betweent = −T0 and t = 0 in “jumps” of
decreasing length, until the packet arrives at the current position
Xd(0) of the destination node (cf. Fig. 3). We call the end-

points of such jumpsanchors. We do not prescribe a particular
routing algorithm for the packet to get from one anchor to the
next; any position-based routing algorithm could be used for this
purpose (cf. Section II). Note that according to our definition,
EASE is a last encounter routing (LER) algorithm, where the
auxiliary information carried with the packet consists of the age
and location of the last encounter with the destination by a node
in the vicinity of the previous anchor.

packet

last encounter = next anchor

search box
messenger node

destination

Xd(−αT )

Xd(0)

Xd(−Tk)

Fig. 3. At every anchorYk of ageTk, the EASE algorithm performs a search
until a new anchor of age at mostαTk is found.

The EASE algorithm operates in two alternating phases. In the
first phase, when a packet has reached an anchor, it performs
a local search around that anchor to find the next anchor. In the
second phase, an existing position-based routing algorithm is used
to route the packet towards the new anchor. We have made no
assumptions about the specific routing algorithm used for this
purpose.

The two-phased approach is useful to analyze the performance of
EASE and to develop an understanding of why it achieves low cost
routes. However, it is clear that EASE ignores a lot of potentially
useful information, as it does not consult the local LE databases
of the nodes it traverses in the second phase. Therefore, we
propose a modified algorithm called GREASE (GReedy EASE)
that checks the age of the last encounter with the destination at
each hop. If it encounters a node that has a more recent estimate
of the destination’s location than the anchor the packet is currently
headed to, then that estimate is assumed to be the new anchor.

Algorithm 2: The Greedy EASE algorithm

1 SetT0 := n
(cσ)2 , Y0 := Xs(0), k := 0.

2 Repeat
3 Search the nodes aroundYk in order of increasing

distance until a nodei is found such that either
4 (a) Ai ≤ αTk [age criterion] or
5 (b) Ai < Tk and |Pi − Yk| > βσ

√
Tk [distance

criterion].
6 Let Tk+1 = Ai, andYk+1 := Pi be the new anchor.
7 While not atYk+1

8 Route packet: find next hopj towardsYk+1 and
forward packet toj.

9 If Aj ≤ Tk+1, thenTk+1 := Aj , Yk+1 := Pj .
10 End while
11 k + +.
12 Until Yk = Xd(0).
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Note that it is entirely possible, and actually a frequent occurrence,
that GREASE finds the destination without leaving the inner loop,
if the packet always finds a more recent location estimate for
the destination before it reaches the current estimate (anchor). In
this case, a search is performed only once around the source.An
example of this case is provided in Figure 4.
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Fig. 4. A sample GREASE route. In this case, the greedy local improvement of
the packet’s anchor carries the packet all the way to the destination, without any
further searches after the initial search around the source.

V. A SYMPTOTIC PERFORMANCE OFEASE

In this section, we analyze the asymptotic performance of EASE
when the network sizen becomes large. Recall that EASE incurs
no a-priori overhead to track topology changes, unlike traditional
location services. The main question we need to answer is then
how large the penalty will be when we route a packet from a
source to a destination using only last-encounter information. We
show that under the topology and mobility model described inthe
previous section, the mean route length between a source anda
destination is of the same order as shortest routes, even forvery
large networks. Our main result is as follows.

Theorem 5.1: For two arbitrary nodess andd, the route froms
to d calculated by the EASE algorithm satisfies

E [Cn] = O
(√

n
)

. (2)

Note that the expected distance between a randomly selectednode
pair is also on the order of

√
n. The result therefore implies that

LER is asymptotically efficient, in that routes obtained through
EASE are at most a constant factor longer than the distance
between source and destination nodes.

We first provide an outline of the proof. The main idea is to show
that the forwarding cost, i.e., the length of the route found by
EASE, is of the same order as the shortest path, i.e., the distance
between the source and the destination. Then, it is shown that
the search cost is asymptotically negligible with respect to the
forwarding cost.

First, consider a route that has been found using only the age
criterion (a) in EASE. The successive agesTk found by EASE
decrease exponentially at a rate of at leastα. For a random
walk, this implies that the length of the segments between anchor
decreases exponentially as well, which ensures that the sum
converges and is of the same order as the shortest path.

We then need to show that the search cost is at most of the
same order as the forwarding cost. In fact, we show that the
search cost for a single iteration - or step - of EASE (i.e., going
from an anchor of ageTk to an anchor of age at mostαTk)
becomes asymptotically very small relative to the expectedone-
step forwarding cost. This is because the density of nodes around
an anchorYk that satisfy either the age criterion (a) or the distance
criterion (b) is quite high. More precisely, we show that roughly
one inlog Tk nodes in the vicinity ofYk satisfy one of the criteria,
requiring a search of expected costlog Tk.

To show this, we focus in Theorem 5.1 only on nodes that
the destination encountered between−Tk and −α′Tk, where
0 < α′ < α is some constant. This ensures that these encountered
nodes have enough time to travel, on average, as far as the
destination. More precisely, assume the destination encounters a
node at some timet, with −Tk ≤ t ≤ α′Tk. Then the time the
destination took to travel fromYk to Xd(t) is at most(1−α′)Tk,
and of the same order as the length of time that the encountered
node travels between timet and time0, which is at leastα′Tk.

A complication arises because it is possible that the destination
travels atypically far in a step. This is why we also need the
distance criterion (b) in EASE. If the destination node has traveled
atypically far between time−Tk and time −α′Tk, then the
probability of finding a messenger nodei that satisfies (a) in an
iteration of the EASE algorithm can be very small. However,
in this case, it is easy to find a nodei satisfying (b), i.e., a
node providing a new anchor whose age is more thanαTk, but
still makes typical progress towards the destination in terms of
distance. Note that the distance criterion alone would not be
sufficient, as it would fail in the typical case where the destination
has not traveled far.

It is useful to make the following definition. We call a boxB(P, s)
centered at positionP of size s the smallest square region with
center atP that containss vertices. Note that the expected number
of nodes in a boxB(P, s) is λ||B(P, s)||.

Furthermore, we denote bySk the size of the smallest box
B(Yk, .) centered at anchorYk that contains the nodei providing
the next anchorYk+1. Note that the cost of searching this search
box is proportional toSk. In practice, this search could be
performed, for example, through a TTL-constrained (Time To
Live) local flooding, where the TTL is doubled every time the
search has been unsuccessful.
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We now give the proof of Theorem 5.1, where we only sketch
certain aspects of the argument for the sake of readability.We
also provide some intuition of why EASE succeeds in computing
asymptotically efficient routes, and crystallize out the salient
features of the node mobility processes that permit this efficiency.

Proof: Let us consider thekth iteration of EASE, and derive
its cost asn grows large. Suppose the packet is at positionYk, and
assume that the age of this estimate isTk, i.e., Yk = Xd(−Tk).

Now consider the trajectory of the destination node over the
interval [−αTk,−α′Tk]. The goal of thekth iteration of EASE
is to find a nodei close toYk at time t = 0 that provides a new
anchorYk+1 := Pi = Xd(−Tk+1), such thatTk+1 ≤ αTk. We
have to determine how many nodesSk have to be searched on
average until a new anchorYk+1 is found. We will show that the
cost of searching for this new anchor is small compared to the
cost of actually forwarding the packet toYk+1.

Typical excursion of destination node.We first condition on
the maximum excursion of the destination between timet = −Tk

and timet2 = −α′Tk. Assume a boxB = B(Yk, cσ
√

Tk), where
c > 0 is some constant (cf. Fig. 5). The probability that the
random walk starting atYk never leaves the box converges to
a nonzero constant. This can be seen by rescaling the random
walk asXi(tTk)/

√
Tk, which converges to a Brownian motion

for Tk → ∞. The probability of leaving the box is therefore
asymptotically equal to the probability of the Brownian motion
running for one time unit to hit a box of constant sidelength.From
now on, we condition on the eventF that the destination does
not leaveB.

Find a messenger node around current anchorYk. Consider
a nodei that is a neighbor of the destination node at some time
t betweent1 = −αTk and t2 = −α′Tk. We call such a node a
messenger node. The sizeSk of the search box will be determined
by the locations of the messenger nodes at time0 (cf. Fig. 5).

Note that we are conservative in only considering messenger
nodes encountered up to timet2 = −α′Tk. This assumption
ensures that the distance traveled by the destination between−Tk

and the time of encountert ∈ [t1, t2] is comparable to the distance
traveled by the messenger node betweent and0.

Consider the set of messenger nodesW = {i : ||Xi(t)−Xd(t)|| ≤
1, t1 ≤ t ≤ t2}, i.e., the set of nodes that are neighbors of the
destination node at some point betweent1 and t2. Let H denote
the event that one of these messenger nodes hits a search box
B(Yk, s) of given sizes, and let Hi = {Xi(0) ∈ B(Yk, s)}
denote the event that messenger nodei ∈ W hits this search
box. The{Hi} are dependent, but conditionally independent given
a destination trajectoryXd(−Tk,−α′Tk), because theXi(.) are
independent.

We find a stochastic upper bound forSk by making two conser-
vative assumptions about the messenger nodes inW . First, we
assume that each messenger nodei has its encounter with the
destination (i) at the latest possible moment, i.e., att2, and (ii) as
far away fromYk as possible, i.e., at a corner ofB (recall that
we condition on the eventF that the destination does not leaveB
after t = −Tk). In other words, for eachi ∈ W , we replace the
processXi(.) with another processX ′

i(.) that starts in a corner

Xd(0)

Bounding boxB

Yk = Xd(−Tk)

Xd(0)

cσ
√

Tk

Xd(t1)

Xd(t2)

Bounding boxB

encounter

Xi(0)

search box

X
′
i(0)

Fig. 5. One EASE step. (a) Only the nodes that the destinationencounters
betweent1 = −αTk and t2 = −α′Tk are considered messenger nodes in the
proof. (b) For a search to be successful, a messenger nodei encountered by the
destination between−αTk and−α′Tk must perform a random walk to end up
within the search box at timet = 0.

of B and runs only forα′Tk time steps (cf. Fig. 5).

We now compute an upper bound ofP
{

H̄
}

.

P
{

H̄
}

= P

{

⋂

i∈W

H̄i

}
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=
∑

Xd(t1,t2)

P

{

⋂

i∈W

{Xi(0) /∈ B(Yk, s)} |Xd(t1, t2)

}

×

P {Xd(t1, t2)}
(a)
=

∑

Xd(t1,t2)

∏

i∈W

P {Xi(0) /∈ B(Yk, s) |Xd(t1, t2)} ×

P {Xd(t1, t2)}
(b)

≤
∏

i∈W

P {X ′
i(0) /∈ B(Yk, s)}

(c)

≤
(

1 − c1s

Tk

)||W ||

, (3)

where c1 > 0 is a constant that depends on the statistics of
the random walk andα, α′, and where the sum is over all
trajectories that remain insideB. In (3), (a) is because theXi(0)
are conditionally independent, (b) is becauseX ′

i is independent
of Xd, and by assumption starts at least as far away fromYk as
Xi, and travels for at most as long, and (c) is because for every
position P ∈ B, the probabilityP {X ′

i(0) = P} ≥ c1/Tk. This
follows because we scale both the surface area of the boxB and
the runtime of the walkX ′

i(t2, 0) asΘ(Tk).

Number of messenger nodes||W ||. The sizeSk of the search
box required to find the next anchor is the smallest box centered
at Yk that contains one of the positionsXi(0), i ∈ W .

Note that the absolute numberE of encounters of the destination
with other nodes in an interval of lengthT satisfies

E [E] = 5
m− 1

n
T → 5λT, (4)

which is a simple consequence of the law of large numbers. Note
that this is different from the number of encountered nodes||W ||,
because it is possible that the destination encounters a node more
than once.

We can determine||W || by noting that the difference between
Xd(t) and Xi(t), i 6= d is also a random walk. First condition
on the destination trajectoryXd(0, T ). Let Ei denote the number
of encounters between nodei and the destination between0 and
T , andW the set of nodes that encounter the destination at least
once in[0, T ].

Focus on a nodei that encounters the destination, and assume
w.l.g. that this happens at the origin(0, 0). Note that{Ei, i ∈
W} are conditionally independent, conditional on the destination
trajectoryXd(0, T ), becauseEi is the number of returns to the
origin of the distance random walkXd(t) − Xi(t), i ∈ W . Now

P {Ei > k|Xd(0, T ) = xd(0, T )}
≤ P {Ei > k|Xd(0) = . . . = Xd(T ) = (0, 0)} , (5)

for k ≥ 1, which follows from the fact that the return time to
origin stochastically lower-bounds the time to reach any other
state [22].

The returns to the origin form a renewal process. It is known that
the tail of the probability of not returning to the origin over a long
time-intervalT [23, Chapter 4, p. 125] behaves as∝ 1/ logT . We
can upper-boundEi by conservatively assuming that every return
to origin is an independent Bernoulli trial with success probability
c2/ logT . This means we can stochastically upper-boundEi with

a geometric random variableE′
i with parameterp = c2/ logT ,

which has meanµ = O(log T )2.

As
∑

i∈W Ei = E, and using the bounding variablesE′
i, the

Renewal Theorem [20] asserts that forE → ∞, the number
of nodesW encountered by noded satisfies ||W ||

E → 1
µ , and

therefore
||W || > c3

T

log T
(6)

with high probability, for somec3 > 0.

Bound on the size of the search boxSk. We now upper-bound
the size of the search boxSk. For this, we conservatively assume
that we try a sequence of search boxes with sizes that are a
multiple of s = log Tk.

Consider first a search box of sizes. The probability that at least
one of the nodes in the setW hits the search boxB(Yk, s) satisfies

P {H} ≥ 1 −
(

1 − c1s

Tk

)c3Tk/ log Tk

→ c4, (7)

combining (3) and (6)3.

We also need the following elementary property. Consider two
search boxes atYk of size s and s′ > s. Condition on the event
that none of the messenger nodes hits the search box of sizes.
It should then be intuitively clear that the conditional probability
of hitting the larger search box of sizes′ is slightly higher than
the unconditional probability, because the conditional density of
nodes outside the smaller box is higher than the unconditional
density.

Consider a sequence of search boxes of sizesjs, j = 1, . . ., and
consider the random variableJ , which is the first box for which a
messenger node hits. By virtue of the above argument and of (7),
J is stochastically upper bounded by a geometric random variable
with mean1/c4. This gives

E [Sk] ≤ s/c4 = O(log Tk). (8)

Atypically large excursion of destination. We have so far
conditioned on the eventF that the destination stays insideB
betweent = −Tk and timet = 0. If F does not occur, then it is
not conservative any longer to let messenger nodes start from a
corner ofB. We briefly sketch how we can avoid this difficulty.

If the random walkXd(.) leavesB at some point after−Tk,
then an appropriate choice ofβ ensures that there are sufficient
nodes encountered outsideB, but still close enough toYk, that
satisfy the distance criterion. Therefore, even though thenumber
of messenger nodes is too low (possibly zero), we can show with
a similar argument as above that it is not too costly to find a node
aroundYk that satisfies the distance criterion.

If we move to an anchor found through the distance criterion
rather than the age criterion, then we reduce the age by a factor

2Strictly speaking, this only holds for a random walk on the infinite lattice, not
a finite torus. However, the additional probability of returning through a ”wrap-
around” in the torus is negligibly small.

3Note that we have omitted an additional error term due to the residual
probability ofW being atypically small in (6); this can be shown to be negligible,
by considering the speed of convergence in (6) for largeT . We omit the details
here.
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less thanα. It remains to show that this does not change the
order of the forwarding cost. This follows from the fact that
the increments of the random walk over non-overlapping time
intervals are independent. Therefore, we can conclude thatthe
total cost to reduce the encounter age fromTk to at mostαTk is
of orderO(

√
Tk).

Total cost Cn. The total cost incurred by EASE to route a packet
from the sources to the destinationd is

Cn =

K−2
∑

k=0

||Yk − Yk+1|| + Sk

(9)

whereK = O(log n) is the number of steps required to reach the
destination.

Note that the initial ageT0 at the source isO(n), and chosen to
make the boxB = B(Y0, cσ

√
T0) equal to the entire torus. The

first EASE step is therefore of typical length||Y0−Y1|| = O(
√

n).
As EASE reduces the ageTk of its anchor by a factor of at leastα
with every iteration, the sequence of distances between successive
anchor||Yk − Yk+1|| decreases geometrically. Its sum converges
and is thereforeO(

√
n).

We have thus shown that last encounter routing is asymptot-
ically competitive when all the nodes perform random walks,
because mobility diffuses estimates of the destination’s position
sufficiently quickly and densely. Note that the exponentialsearch
criterion is important to achieve this performance. This isbecause
there is a tradeoff between the forwarding and the search cost. If
the search criterion were more aggressive, the search cost could
become very large; an extreme example of this is if the source
searched for encounter ageT0 = 0, which would result in a single
flood of sizeΘ(n). On the other hand, if the search criterion were
less aggressive than a reduction by at least a factorα, then the
forwarding cost could become very large. To see this, note that
the total length of the trajectory of a random walk observed over
an interval of lengtht is of ordert; however, the distance between
the start and end positions of the walk, and therefore the length
of the shortest path, is only of order

√
t. If the age criterion

were chosen too loosely, then the algorithm would be allowedto
compute routes whose length is close to the total length traversed,
and therefore much longer than the shortest path.

Note that the distance criterion is a device to avoid complications
in the proof for atypical excursions of the destination. In practice,
it appears that the distance criterion is in fact not necessary, which
can be explained by the various conservative assumptions we
make in the proof. Chief among them is the fact that we disregard
messenger nodes of age less thanα′Tk, and the conservative
assumption that each messenger node starts in a corner ofB,
maximally far away fromYk. In our simulations of EASE below,
we in fact do not use the distance criterion.

It is quite remarkable that efficient routes can be computed in a
network where the only control traffic is for neighbor discovery.
However, the above result does not imply that the same property
holds for other mobility models. In Section VI, we resort to
extensive simulations to explore the robustness of the EASE
algorithm under different assumptions. Here, we wish to provide
insight on this question by discussing some of the qualitative

properties of the node mobility processes that make LER succeed.

From the above argument, we can identify two general conditions
that have to be satisfied. The first condition concerns the distance
traveled by the messenger nodes. For messenger nodes to have
a reasonable chance of hitting a given search box, the typical
distance traveled by a messenger node between the time of
encounter with the destination and time0 has to be comparable to
the distance traveled by the destination between−Tk and the time
of encounter. This requires a certain homogeneity in the mobility
processes of the nodes. In Section VI, we will examine a case
where mobility processes are highly inhomogeneous; we find that
it is very difficult to route towards destinations that move much
more quickly than most other nodes.

The second condition concerns the density of messenger nodes
within the span. In order for the probability to be reasonably high
that at least one messenger node hits the search box, there should
be a sufficient number of such nodes, i.e., the setW has to be
large enough. This is the case if the nodes’ mobility processes
are such that the total number of grid vertices visited over a
time interval t is asymptotically much larger than the distance
between the start and end locations of a node for that interval.
This is because the size of the setW grows essentially with the
number of grid vertices visited, while the probability of hitting
a node of the search box decreases roughly as the square of the
distance (cf. (7)). For random walks, this condition is satisfied,
as the size ofW grows almost linearly witht, while the distance
grows only as

√
t. In Section VI, we will examine a random

waypoint mobility model where this scaling between number of
encounters and distance is much less favorable than for a random
walk; we find that the cost of routing is considerably higher in
this case.

VI. SIMULATION RESULTS

We have performed a range of simulations in order to evaluate
the quality of routes computed by EASE and GREASE. In
these simulations, we are interested in the relative cost ofroutes
followed by EASE and GREASE as compared to the shortest
path between the source and destination. We know from Section
V that for random walks, they are of the same order, but we
do not know the constants involved, and we do not know what
performance to expect for other classes of mobility processes.
Thus, we investigate various scenarios with different mobility
processes (small versus large variances, homogeneous versus
heterogeneous traffic, various single step distributions including
heavy tailed ones, random waypoint mobility).

Nodes are constrained to move in a disk of surface arean, so
that the average node density is1. The locationXi(t) of node
i at discrete timet is an independent constrained random walk,
where the disk boundary is reflecting4. We look at Gaussian and
heavy tailed single-step distributions. We also consider arandom
waypoint model, which has frequently been used in simulation
studies of ad hoc networks, but which is not a random walk [14].

The node positions are initially uniformly distributed over the
disk. We then run the random walks for a sufficient warm-up

4Note that we go back to the Euclidean domain.
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period so that a fair proportion of node pairs have met at least
once. Note that the spread of a single random walk isO(σ·

√
Twu)

after a warm up timeTwu. Recalling that the size of the domain
is O(

√
n), the warm up time must be of orderO(n/σ2). In most

simulations, we used a warmup period of 10’000 iterations, except
for the heterogeneous case, where we used 40’000 iterations.
This ensures that in all the simulations, the fraction of node
pairs that have met is at least 30%. Note that the performance
of EASE and GREASE is obviously monotonically improving
with the warmup time, as the fraction of node pairs that have had
encounters increases.

At every time t, we assume that connectivity is given by the
Delaunay graph generated by the set of points{Xi(t)}. This is
equivalent to generating the Voronoi tessellation of the set of
points {Xi(t)}, such that every nodeXi(t) is the center of a
Voronoi cell, and is connected to the center nodes of its adjacent
cells. Each node updates the entries in its LE database for its
directly connected neighbors.

The advantage of this topology over other topologies we could
have adopted (e.g.,k nearest neighbors) is that we are guaranteed
that a node always has a neighbor that is closer to a destination
(except when that destination is already in the first node’s Voronoi
cell). Therefore, a packet can always make progress towardsits
anchor, and we do not have to deal with backtracking, avoiding
routing loops, etc. This allows us to focus on the main issue
at hand, i.e., the quality of computed routes based on diffused
information about last encounters.

The main metric we evaluate is the relative cost of
EASE/GREASE routes compared with the cost of the shortest
path route. The relative cost metric therefore captures therelative
penalty incurred for not having the exact position of the destina-
tion available. More specifically, we generate a setA of random
source-destination pairs(s, d). The empirical relative cost̂β is
then given by

β̂ :=
π

4||A||
∑

(s,d)∈A

Ĉn

|Xs(0) − Xd(0)| , (10)

whereA is a random set of source-destination pairs, and where
Ĉn is the empirical cost, i.e., total number of transmissions for
both forwarding and searching, to get a packet from sources to
destinationd at time 0. The factorπ/4 stems from the fact that
the expected length of the shortest path between two nodess and
d in the Poisson-Delaunay graph is equal to4/π|Xs(0)−Xd(0)|
[1].

In the simulation results below, we actually give the relative cost
conditional on the distance between the source and destination.
This provides an indication on whether the relative qualityof
EASE/GREASE routes increases or decreases as routes get longer.
In all the simulations, we have chosenα = 1/2, α′ = 1/4, and
β = ∞, i.e., EASE operates without the distance criterion. Also,
instead of using initial ageT0 := n

(cσ)2 as given in the definition
of EASE, we in fact useT0 := Ts(0), i.e., the encounter age of
the source (which is possibly infinite if the source has nevermet
the destination). This has the advantage that the algorithmcan
operate without knowledge ofσ2 (but is more difficult to analyze
analytically).

Gaussian increments, homogeneous mobility.First, consider a
homogeneous population with i.i.d. Gaussian position increments
of varianceσ2. As σ increases, we expect the entire process to
become noisier, resulting in less efficient routes. We therefore
expect the constants involved to be dependent onσ. This is
verified empirically in Figure 6, which shows the empirical
distribution of relative cost for EASE and GREASE forσ = 0.3
and σ = 1.0. As can be seen, approximately90% of the routes
are less than 3 to 8 times longer than optimal, depending onσ
and the chosen algorithm. Note that GREASE outperforms EASE
by a factor of 2 or more in all cases of interest.

Figure 7 shows the relative cost, conditioned on the source-
destination distance being smaller thand, i.e., |Xs(0)−Xd(0)| ≤
x. That is, we look at increasingly large attempted source-
destination distances, and see how the ratio between found and
shortest routes evolves. Very interestingly, the ratio decreases
monotonically and stabilizes at some rather small value, espe-
cially for GREASE. While these simulations do not go beyond
1000 nodes, they seem to indicate good scaling properties, since
restricting the distance to a certaind approximates a network with
d2 nodes. At very smalld, it seems some small scale discretization
effect hurts the behavior (going in the wrong direction in a
very small network quickly decreases the performance). Between
d = 10 and d = 32 (corresponding to a network of a 100 to a
1000 nodes, respectively) the performance of GREASE at lowσ
seems to have stabilized, with routes about1.7 times as long as
the minimal length.
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 Empirical ccdf of normalized cost (EASE and GREASE)
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σ=1.0, GREASE

Fig. 6. The empirical complementary CDF (CCDF) of relative cost for both
EASE and GREASE and various values for the single-step standard deviationσ.

Gaussian increments, heterogeneous mobility.For the sake of
discussion, assume a static population and a single fast moving
destination node. Clearly, this is an unfavorable situation. The
source node needs to find the trail of the destination node, and
then the packet simply follows the trail. If source and destination
have met at time−T0, the expected distance between source and
destination isO(

√
T0), but the path length isO(T0). In this case,

the incurred cost isO(
√

T0) larger than optimal.
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Fig. 7. The empirical conditional mean of the normalized cost, conditional on
the initial source-destination distance|Xs(0)−Xd(0)| ≤ x, plotted as a function
of d.

Thus, consider the following scenario: a small number of nodes
moves much faster than the other nodes. More specifically, out
of the m = 1000 nodes,10 nodes haveσfast = 0.5, while the
remaining990 nodes haveσslow = 0.05. We are interested in this
experiment to evaluate the difficulty for a packet to find a fast
destination node, compared to a packet with a slow destination.
Figure 8 shows the result of this experiment with a heterogeneous
population. As expected, the performance of tracking fast nodes
based (mostly) on slow mobility diffusion is substantiallyworse
than tracking slow destinations.

It is instructive to watch the actual working of the algorithm for
fast and slow destinations, respectively. In Figure 9, a sample path
with GREASE shows that the algorithm needs to search around
its current location at several points in order to route towards one
of the fast destinations, leading to a costly route. In Figure 10,
routing to a slow destination does not lead to any local searches
at all, and a much better route.

Infinite-variance increments. In this scenario, we consider
heavy-tailed increment distributions, which allows nodesto make
occasional large jumps. Specifically, we assume a Pareto lawfor
the single-step distance, for which the complementary CDF is

P {R > r} =

(

r + θ

θ

)−α

, (11)

with θ = 0.2 andα = 2. For this choice of parameters,E [R] =
θ/(α− 1) = 0.2. Note that Var[R] = ∞ for α ≤ 2. The angleΦ
of the single-step increment is uniform over[0, 2π).

As to be expected, the performance of both EASE and GREASE
will degrade due to the unbounded variance of the steps. However,
Figure 11 still shows a decrease in the conditional relativecost
with distance.

Random waypoints.A principle at work in our analysis is that a
sufficient number of encounters need to be made as the destination
travels a given distance. In the random walk case, this number
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Fig. 8. The empirical conditional mean of the normalized cost, conditional on
the initial source-destination distance|Xs(0)−Xd(0)| ≤ x, plotted as a function
of d, for (1) slow destinations; (2) fast destinations.
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Fig. 9. A sample route for a fast destination withσfast = 0.5. Note that
GREASE invokes searches around its current anchor several times, and that the
route is relatively costly.

is advantageous, since for a distanceO(
√

T ), a numberO(T )
encounters are made that then spread the information.

Let us consider a case where the number of encounters is of the
same order as the distance traveled. In this scenario, nodesdo not
perform random walks. Rather, each node has a randomly chosen
waypoint that it moves towards with constant speed of 0.3/step.
Once a node reaches its waypoint, a new waypoint is chosen
uniformly on the disk, and the node immediately starts moving
towards the new waypoint. As can be seen, while performance is
degraded quite a bit with respect to the best case (slow destinations
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Fig. 10. A sample route for a slow destination withσslow = 0.05. Note that
GREASE invokes no local searches beyond the initial search around the source,
and the route is very efficient.
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Fig. 11. The empirical conditional mean of the normalized cost, conditional on
the initial source-destination distance|Xs(0)−Xd(0)| ≤ x, plotted as a function
of d, for (1) heavy tailed single step distributions; (2) randomwaypoints.

with slow mobility), LER still appears to be feasible in this
scenario.

We give an intuitive explanation for the performance in the
random waypoint case. Note that the length of a segment between
two waypoints isO(

√
n). In this time, the destination node

encountersO(
√

n) other nodes. Within the time scale of a single
segment, theseO(

√
n) diffuse roughly throughout the network

domain. In other words, after the time it takes the destination
to traverseO(1) segments, roughly one node in

√
n nodes has

encountered the destination; furthermore, these nodes areroughly
distributed uniformly in the network. Therefore, it takes asearch
of approximately

√
n nodesanywhere in the network to find an

anchor on one of the last segments. Note that this is considerably
more costly than in the random walk case. On the other hand,
the random waypoint model, as many other mobility processes,
is predictable, i.e., the current location of the destination is not
a sufficient statistic - contrary to the random walk - for a future
location of the destination. In [21], we give an example how this
observation can be used to improve the performance of LER under
random waypoint mobility.

VII. D ISCUSSION ANDCONCLUSION

This paper defines last-encounter routing, a scheme that solely
relies on information carried by a packet (in the case of EASE
and GREASE, the age and location of the most recent encounter
by any node on the packet’s path so far) and on the current
node’s last encounter with the destination. As such, LER uses no
network capacity to explicitly update location information. We
have shown that LE benefits frommobility diffusion, as nodes
spread out estimates of the destination’s position. As a packet
travels towards its destination, it is able to successivelyrefine its
estimate of the destination’s precise location.

Intuitively, mobility diffusion exploits three salient features of
the node mobility processes:locality, mixing, and homogeneity.
Locality is a necessary ingredient to ensure that aged information
about the last encounter with a destination node is still useful
to a packet that tries to find that destination. Mixing of node
trajectories (or at least the absence of complete synchronization
of movement processes) ensures that position information about a
destination node diffuses around this destination node, because a
node continually encounters new neighbors. Homogeneity inthe
mobility processes ensure that the “speed of diffusion” is of the
same order as the movement of a destination, so that location
information spreads at least as fast as the destination moves.

The benefit of locality has been recognized and exploited before
(e.g., [2], [17]). Specifically, the DREAM algorithm proposes to
flood position information about a destination node in a limited
area, depending on how far this node has moved [2]. Also, in the
GLS system [17], the authors recommend that nearby location
servers be updated more frequently than faraway ones, for the
same reason. However, the crucial novel observation in the present
paper is that at least for certain classes of mobility processes, this
limited diffusion of position informationcan be obtained for free:
the movements of other nodes that have recently encounteredthe
destination implicitly lead to the same effect, without investing
any costly transmission resources. This is certainly of interest in
ad hoc networks, where communications costs represent a major
bottleneck. In fact, LER can be viewed as exploiting the additional
transport capacity available in a network due to node mobility to
disseminate control information [9]; however, while [9] took the
extreme view of ignoring delay, in LER there is a tight interplay
between the age of information and where it gets used. This is
the reason why the performance of LER depends on much finer
details of the mobility processes than does the mobility capacity
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as defined in [9].

More generally, we recognize in this work that the collection of
the histories of the local connectivity at nodes contains valuable,
though noisy information about the current network topology for
certain types of mobility models. We expect this observation to
have consequences beyond the one analyzed in this paper, i.e.,
routing in position-aware ad hoc networks. For example, in recent
work we have shown that in position-unaware networks, encounter
ages alone are valuable to improve the performance of flooding-
based node discovery, essentially by walking down a noisy age
gradient in a sequence of constrained floods until the destination
is found [6], [7].

In some contexts, it is more important for a network to be ableto
locate information items rather than particular nodes. Theconcept
of LER can readily be applied to such a case, where the goal is
to locate, and learn a route to, a data item with some identifier
i. In this case, neighboring nodes have to exchange the set of
data items that they handle, and update a LE table that maintains
encounter entries for data items instead of for nodes. The cost of
this will depend, of course, on the number of data items that each
node has to maintain.

We plan to investigate several ways to further improve the
performance of LER. First, besides the mobility diffusion based
on last encounters, we can use packet-based diffusion. Recall
that EASE/GREASE packets carry along the most recent location
information for the destination. If a packet passes througha node
that does not have a better (more recent) estimate, the node can
update its own database for the destination location5. For heavy
traffic, this clearly can make a difference. This type of diffusion
depends on the traffic process, rather than node mobility.

Second, the problem of destination location estimation canbe
posed as a general estimation problem, with two components:(1)
estimation based on a search around the current position of the
packet (but taking all the data into account) and (2) estimation
based on the whole path of the packet from the source to the
current position. In cases where mobility has more temporal
structure than a random walk, such estimators may be able to
improve performance.

Third, we have focused on the extreme scenario where last
encounter routing alone is used and no overhead is incurred for
a location service, and we have identified conditions on the node
mobility processes under which LER provides efficient routes. In
practical settings, mobility processes may possess features that are
not captured in the stochastic models studied here. It is an open
question how LER performs with more realistic mobility patterns.
However, at the very least, we expect LER to have the potential
to improve the performance of existing location services. This is
an interesting topic for future research.

5Of course, the node can also trivially obtain theexact position of the source
from a packet. Note that when two nodes establish a two-way session to exchange
multiple packets, both nodes would know their exact position after one round of
packets. Therefore, suboptimal LER routes would be used only for this first round.
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