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Abstract— Routing in large-scale mobile ad hoc networks is chal-
lenging because all the nodes are potentially moving. Geagphic
routing can partially alleviate this problem, as nodes can make
local routing decisions based solely on the destinations’eggraphic
coordinates. However, geographic routing still requires a efficient
location service, i.e., a distributed database recording the location
of every destination node. Devising efficient, scalable, dnrobust
location services has received considerable attention irecent years.

The main purpose of this paper is to show thathode mobility can
be exploited to disseminate destination location informabn without
incurring any communication overhead. We achieve this by letting
each node maintain a local database of the time and locationf éts
last encounter with every other node in the network. This daabase is
consulted by packets to obtain estimates of their destinadin’s current
location. As a packet travels towards its destination, it isable to
successively refine an estimate of the destination’s preeidocation,
because node mobility has “diffused” estimates of that lod#on.

We define and analyze a very simple algorithm called EASE
(Exponential Age Search) and show that in a model whereé(n)
nodes perform independent random walks on a square latticefcsize
n, the length of the routes computed by EASE are of the same orde
as the distance between the source and destinati@uen for very large
n. Therefore, without disseminating any explicit location irformation,
the length of EASE routes are within a constant factor of roues
obtained with perfect information. We discuss refinements b the
EASE algorithm and evaluate it through extensive simulatims. We
discuss general conditions such that the mobility diffusio effect leads
to efficient routes without an explicit location service. In practical
settings, where these conditions may not always be met, we lizee
that the mobility diffusion effect can complement existinglocation
services and enhance their robustness and scalability.

Index Terms— Mobile wireless networks, mobility, location service,
routing.

I. INTRODUCTION

usually live in the plane. This enables nodes to make loaalrg
decisions based solely on the destinations’ geographicawates
[15], [2], [16], [3], [13] (see [18] for an excellent reviewf po-
sition based routing). These coordinates can be obtaimredthyi

by equipping nodes with GPS receivers, or indirectly by irfig

a coordinate system based on local measurements of corityecti
such as signal strengths or run-time differences [5], [4}. this
purpose, a mobile ad hoc network is regarded as a set of nod
in the plane, with an associated mobility process. Conviecis
achieved through wireless links, and is thus essentiatigll¢see
[11] for an example of the model). While the set of nodes anc
their connectivity defines a graph, this graph is not arbjtizut
instead closely related to the geometry of the plane. In géna
node only needs to know its own location and that of its neigbb
to make a routing decision towards any destination node with
known location.

However, geographic routing still requires an efficiéotation
service, i.e., a distributed database recording the location ofyeve
destination node. Devising efficient, scalable, and rolmgstion
services has received considerable attention in recems y&8],
[17], [12], [24]. Interestingly, location and routing haveeen
mostly considered in isolation so far: a source first lookshg
current position of the destination through the locatiorvise,
and then routes a packet towards that position using a geligra
routing algorithm. This requires that the location servitas
to be able to track all the nodes in the network, and maintail
a distributed database recording the locations of theseesiod
Every change in topology has to be reflected in this disteitbut
database, which inevitably involves some exchange of ilmcat
information between nodes, and hence incurs a transmissisin
This transmission cost to maintain location state theeefi®pends
directly on the amount of mobility, or the rate at which the
network topology changes.

In large wireless aq hoc and sensor networks, some or all thg elegant way of reducing this cost is by exploiting thetance
nodes may be moving. Therefore, the network topology ch&nggfect [2], which is basically the observation that the precisidthw

with time. Routing algorithms have to base routing decision at
least a partial knowledge of the network topology. The atiés
and exchange of topology information (e.g., distance vectwo
link states) consumes valuable bandwidth and energy. Atyeoif
routing algorithms have been developed that trade off thadityu

which the position of a destination has to be known to make
good, but sometimes suboptimal, local routing decision raide,
depends on the distance of that node from the destinatidhelf
node is far away from the destination, an imprecise estinsate
sufficient, and vice versa. Routing schemes such as DREAM [Z

of routes, their computing and transmission overhead, &ed kxploit this effect to develop more “lazy” approaches to maai

degree of permissible mobility [19].
Position-based (or geographic) routing exploits the faat hodes
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taining location information about all the nodes in the reatw
This approach essentially amounts to trading off a smadleation
maintenance overhead, which is incurred continually witarg
topology change, for a slightly larger routing cost, as esuare
in general suboptimal.

In this paper, we go a step further and try to completely elate
the cost to update location state. If nodes are not allowe



to exchange any explicit location updates, then the onlalloovalk, then aged location information is useful, and diffus¢ the
information available to a node about the network topolagthe same speed as the node moves itself. If the density of neighbc
history of other nodes it has encountered in the past, hat,it is sufficient both along the path of the destination node &0 a
has been directly connected to. More specifically, we asghate to diffuse sufficiently) and along the path of a packet moving
every node remembers the time and location of its last erieourtowards the destination (to get enough new estimates), ltEéh
with every other node (i.e., when these two nodes were dlirectan work well.
connected neighbors; cf. Fig. 1). We call a routing algonita _ _ ) )
last encounter routing (LER) algorithm if at every node along a The outline of the_paper is as follows. T_he next section dises
packet's route, the next hop decision depends only on (ajrthe related work, while Section Ill describes the model we are
and location of that node’s last encounter with the destnat Considering in more detail, in particular the topology, thebility
and (b) auxiliary information carried by that packet. Theima Model and the performance criterion. I_n Secnon IV, we define
question we ask in this paper is the following: if all the nedelh® Exponential Age Search (EASE) routing algorithm, a LER
in the network are moving, is it possible for LER schemes @J90rithm tailored to random walk mobility. In Section V, we
compute efficient routes, despite the absence of a locaginice? €xamine the asymptotic performance of EASE when the networ
We show that, depending on the mobility processes, thistiedd SiZ€ grows large, using standard results from the theoryru;lcum
possible. This is quite remarkable, given that LER invesis ryvalks. We show that the expected_ route cost obtained WlthEEAS
network capacity to track nodes, i.e., to maintain distedu 'S Of the same order as the optimal path length even in ver
location information. large networks. Section VI gives simulation results inlfaiarge
networks (1000 nodes); they confirm the good performance ar

scalability of EASE. Finally, Section VII provides some thuer
\' insights and discussions.

last encounter between 4,9
loc=P, time=10
II. RELATED WORK
LE table node 4
(—\/ Several position-based routing algorithms have been [segphmn

. the literature [15], [2], [16], [3], [13]. The principal gbaf these
ookl e N algorithms is to ensure that a short route can be found if mistse

between a source and a destination whose locations are know
® 4 P This is not trivial, because forwarding greedily in the diien of

a destination is not guaranteed to work, as there is no gtesran
that a node always has a neighbor closer to the destinatam th

itself.
Fig. 1. Alast encounter table in every node remembers the location and time of
the last encounter with every other node in the network. $h émcounter routing Mobility management is a basic problem in standard mobite ne

I%fa?d nthc')? itgbéi'ssﬁr?;t‘fgf%ggea packet to improve, if poissilis estimate of the ks (see for example [24]). In ad hoc networks, the situsis

' complicated by the absence of centralized servers (honagidoc

registers). In an ad hoc network endowed with position-thase

The insight at the root of our investigation is the followir@n routing, mobility management amounts to tracking the liocat
the one hand, mobility of the nodes creates uncertaintytaheir of every potential destination through lacation service. This
location. On the other hand, consider some nddihat is the location service has to be itself distributed across the ad h
destination of a packet. Some other nadiat has encounterednetwork, and this can be achieved with various methods thdét
d in the past remembers the location of that last encounteeerhoff complexity, overhead, and robustness [18], [17], [8R]} [24].
observations explain why LER can give rise to efficient reuteWhat is common to all these location services is that thewrinc
(a) the location of the last encounter is still a reasonalaigdy overhead by explicitly exchanging location informatiortvieeen
estimate of the destination’s location after some timetlige)time nodes, either to update location information in the distiol
of that encounter, or equivalently, the “age” of the estionais database, to request the location of a destination nodeptbr b
a measure for the precision of that estimate; (c) ndsleown ) ) ) . .
mobility means that a recent estimated¥ position is available APProximate location services have been proposed in varioL
at some distance frond; given thatd encounters other nodes allf'ms. For example, in the grid location service (GLS) [17],
the time due to mobility, this essentially leads to a difftuseffect 2 duadtree based location service creates a hierarchy afesqu
of noisy position estimates around The locality in the mobility "€9i0ns. Updates of a node’s position are sent to a dectpasi

processes inherently leads to a distance effect, in thaemef‘umber of nodes acting as location servers as the distan

position estimates fo# become available as a packet approachglcrease_s' _In the_ geogrgphical FegiF’” summary S‘?fViFe RS
d's current position. [12], a similar grid location service is proposed, with ieased

efficiency due to forwarding location aggregation. For a enor
Clearly, the feasibility of LER schemes will depend on theomplete overview of location services and their use intfmosi
mobility process. If at any point in time, a node can jumpased routing, we refer to [18] and references therein.
uniformly over the entire surface of interest, an estimatgelol on ) ) . .
the previous location is of no help. However, in the moreljike OUr WOrk is closest in spirit to the DREAM algorithm [2]. In

scenario where the process has some locality, such as amandREAM. every node maintains a position table for every othel
node. DREAM consists of a position update algorithm and &



routing algorithm. The position update algorithm ensutes &ll about the network topology is the last encounter table. Ia th
the nodes in the network have a sufficiently accurate estimaable, each nodé maintains an entryP;;, A;;) for every other
of a reference node’s position. This is achieved by the egfeg node j, where P;; denotes the lattice position of nogewhen
node flooding a limited region around itself to install nevspion < and j were last neighbors, and;; measures the age of that
estimates in the nodes in this region. The scope of this ftmpdiencounter, i.e., the time elapsed since the encotimepacket
depends on the distance that the node has traveled sincasthehas to traverse a sequence of nodes from its source node to
such flooding. The routing algorithm ensures that a packet cdestination node. Each node along the way has to make a gouti
reach a destination efficiently and with high probabilitging decision for this packet, i.e., it has to decide which neahto
restricted directional flooding based on the region where tforward the packet to. In a LER scheme, this decision depends
destination is expected to be located. The approximatditoces three things: (i) the identity of the destination node @atrin the
given by a circle around the last known location of the desiim, packet, (ii) potentially some additional information éad in the
and the radius of this circle is given ¥y — t) - vmaz, Wheret;  packet, which can be a function only of information in the esd
is the current time¢, the time when the location was registeredhat the packet has traversed so far, and (iii) the last erteou
and v,,., the maximum speed. table in the current node. In this paper, we describe spddiie
schemes where (ii) takes the form of the best, i.e., mosintece

last encounter entry the packet has seen for its destinatoe
I11. M ODEL so far.

We now describe the model used in the paper for analysWithout loss of generality, for the remainder of this papes,rely
Although in reality, node positions are continuous proesss 0n the following simplifying assumptions. First, we willdos on
continuous time, it is convenient for the analysis to userdi® a single destination node with indéxwith all other nodes serving
approximations. We therefore consider node mobility psses on as potential relays for packets destined for nddés we focus

a square grid in slotted time. Our simulations show that oainm on a fixed destinatiord, we write the last encounter entry of node
result on the efficiency of mobility diffusion routing caes over i for destinationd as (P;q, Aiq) = (P;, A;). Second, we consider
to continuous settings with less regular topologies (cfcti®a the network at time = 0.

VI).
) Mobility. The positionX;(¢) of nodei is a random process with

Topology. For the sake of analysis, we make a discrete approxiniform stationary distribution over the lattice. The pesses for
mation of the continuous geometry of a region®3. That is, differentnodes are independent. More specifically, werasstiat
nodes live on vertices of the/n x \/n square lattice. More X;(t) is a two-dimensional unbiased aperiodic random walk or
precisely, the topology is a two-dimensional square gridnof the square lattice, i.e.,

vertices(z,y) € {1,...,+/n}?. We also assume that the border _ — _

vertices wrap around to form a torus. The distance metratiscé Xt +1) = Xa(t) + Ail®), (1)
(Manhattan) distance (i.e(1,1) and (1/n,y/n) are at distance where theA,(¢) are i.i.d [22]. Moreover, we assume for simplicity
two, for example). that both components &;(¢) are i.i.d., with zero mean and finite

_ o variances?.
There aren = An mobile nodes that move on this grid, whexe

is the node density. LeX;(¢) denote the lattice vertex where nodéCost metric. We let the random variabl€’,, denote the total
1 is located at discrete time We assume that each node alwaysumber of transmissions (or hops) necessary to transmitlkepa
knows its current position on the grid as well as the iderditgl from a sources to a destinationd at time ¢ = 0. This cost
positions of its neighbors. A nodgis a neighbor of node at will include both transmissions of the actual packet betwie
time ¢ if || X;(¢) — X,;(t)|| < 1. neighboring nodes to make progress towards its destinatisn

_ o well as transmissions necessary for a “search” packet teatol
Note that this definition does not guarantee a connected NG§rmation from surrounding nodes to make the next routing
topology. However, the importance of our definition of aé@cy  gecision. Note that because of symmetry, the cost betweeny ev
lies in the encounters between nodes and the diffusion &f “E)'air of nodes has identical distribution; also, the costiabsty

encounter information through mobility. We will simply asse §ges not depend on time, assuming that the system has react
that forwarding a packet from a nodeto another nodg that gieaqy state.

are at Manhattan distancaé of each other requires at mosgt
transmissions (hops).

) ) o _IV. THE EXPONENTIAL AGE SEARCH (EASE) ALGORITHM
Time scales.In our analysis, we assume the realistic scenario

of nodes moving at “human” speeds, while packets move @k now define the specific LER scheme examined in this pape
light speed. Thus, while topology changes occur at timéesca,ynich we refer to as th&xponential Age Search (EASE) routing
of minutes or longer, packets can be expected to spend at maghyithm. EASE is a LER algorithm, i.e., it computes routes
tens of milliseconds (due to queueing and propagation Ji&Ry rely based on last encounters, which means that no trasismi
the network. This allows to decouple the time scales, sueh thanacity is sacrificed to explicitly diffuse location infoation
for the purpose of routing a packet, the nodes are frozen®r t; 15 maintain a view of the current topology, other than loca

time of the routing to conclude. “hello” packets for neighbor discovery. The goal of EASE ds t

Routing. We now define the notlon_ of EaSt'encounter routl n_g ~ 1The encounter can equivalently be recorded astitne of the encounter; we
scheme. In such a scheme, the only information a node maintaiasrk with the age purely for simplicity of exposition.



be so simple as to be amenable to analysis and to providéhinsigoints of such jumpsnchors. We do not prescribe a particular
into the conditions under which mobility diffusion provislgood
routes. We will also discuss a slight modification of EASEtthanext; any position-based routing algorithm could be usedHis
improves performance, but is less amenable to analysis.

We fix three constanta, 3, andc such thatd < o < 1, ¢ > 0,
andg > 0.

Algorithm 1: The EASE algorithm

1

N

N

~

10
11

SetTy = #, Yy := Xs(0), k:=0.
Repeat
Search the nodes arouq in order of increasing
distance until a nodé is found such that either
(a) A; < oT}, [age criterion] or
(b) A; < Ty, and |P; — Y| > Bo+/Ty [distance
criterion].
LetTy+1 = A; be the new age, ant, := P;) be
the new anchor.
While not atYy1
Route packet: find next hoptowardsY;; and
forward packet tgj.
End while

k4 +.
until Yy, = Xd(O)

-15 -10 -5 0 5

Fig. 2. A sequence of anchors computed by the EASE algorittith, parameter

o = 1/2; the search disks, are also shown. The source node is to the left, the

destination to the right. A node in each search disk arourghamy}, provides

the next anchofY 1, which corresponds to the point on the trajectory of the

destination of at most half the age & 1/2) of the current anchor.

Initially, the packet is at its source at positidf(0). The basic
idea behind EASE is for a route to follow the trajectaXy(.) of
the destination node between= —7, andt = 0 in “jumps” of
decreasing length, until the packet arrives at the curresitipn

X4(0) of the destination node (cf. Fig. 3). We call the end-12

routing algorithm for the packet to get from one anchor to the

purpose (cf. Section Il). Note that according to our defomiti
EASE is a last encounter routing (LER) algorithm, where the
auxiliary information carried with the packet consists bé tage
and location of the last encounter with the destination byden

in the vicinity of the previous anchor.

packet segrch box

messenger node

destination

AX(/ki( T)

[ast encounter = next anch

AX[/H |)

Fig. 3. At every anchoty;, of ageT}, the EASE algorithm performs a search
until a new anchor of age at mosf}, is found.

The EASE algorithm operates in two alternating phases. én th
first phase, when a packet has reached an anchor, it perforr
a local search around that anchor to find the next anchor.dn tf
second phase, an existing position-based routing algoigrused

to route the packet towards the new anchor. We have made |
assumptions about the specific routing algorithm used f@ th
purpose.

The two-phased approach is useful to analyze the perforenainc
EASE and to develop an understanding of why it achieves Iat co
routes. However, it is clear that EASE ignores a lot of paadiyt
useful information, as it does not consult the local LE datas

of the nodes it traverses in the second phase. Therefore, v
propose a modified algorithm called GREASE (GReedy EASE
that checks the age of the last encounter with the destimatio
each hop. If it encounters a node that has a more recent éstim:
of the destination’s location than the anchor the packatiirenitly
headed to, then that estimate is assumed to be the new ancho

Algorithm 2: The Greedy EASE algorithm

1 SetTy := #, Yy := X,(0), k:=0.

2 Repeat
3 Search the nodes around in order of increasing
distance until a nodé is found such that either

4 (a) A; < oT}, [age criterion] or
(b) A; < Ty and |P; — Y| > Bo/T}, [distance
criterion].

6 LetTy1 = A;, andYy, 1 := P; be the new anchor.

7 While not atYy 1

8 Route packet: find next hoptowardsY;; and
forward packet tgj.

9 If Aj < Tk+1, thenTk+1 = Aj, Yk+1 = Pj.

10 End while

11 k+ +.

until Y, = Xd(O)



We first provide an outline of the proof. The main idea is tovgho
o ) ) that theforwarding cost, i.e., the length of the route found by
Note that it is entirely possible, and actually a frequermiusrence, EASE, is of the same order as the shortest path, i.e., thendist
that GREASE finds the destination without leaving the inoepl  petween the source and the destination. Then, it is shown th

if the packet always finds a more recent location estimate f@{a search cost is asymptotically negligible with respecthe
the destination before it reaches the current estimaten@hdn  forwarding cost.

this case, a search is performed only once around the sofnce.
example of this case is provided in Figure 4. First, consider a route that has been found using only the ac
criterion (a) in EASE. The successive adgs found by EASE
« « x x decrease exponentially at a rate of at leastFor a random
x ) et <« walk, this implies that the length of the segments betweehan
P < ax x § decreases exponentially as well, which ensures that the su
X newy, }f‘ © x X converges and is of the same order as the shortest path.

x x x We then need to show that the search cost is at most of tt
-Ar morerecknt § ;¥ x o same order as the forwarding cost. In fact, we show that th
x estimate found'y : x search cost for a single iteration - or step - of EASE (i.eingo

x X x from an anchor of ag€; to an anchor of age at most7})
-6 x \ ’ becomes asymptotically very small relative to the expectee-
x X o x step forwarding cost. This is because the density of nodasar
an anchoty, that satisfy either the age criterion (a) or the distance
sk ) ‘. x y ..  criterion (b) is quite high. More precisely, we show that gbly

one inlog T} nodes in the vicinity oy}, satisfy one of the criteria,

X x requiring a search of expected cosg 7.

101 < XX X To show this, we focus in Theorem 5.1 only on nodes tha
. ’ y the destination encountered betweeiT;, and —a'Ty, where
search disk at source L X 0 < o < « is some constant. This ensures that these encounter
Bl “ere N < - 5 nodes have enough time to travel, on average, as far as t
* . destination. More precisely, assume the destination eriecsia
‘ ‘ ‘ o ‘ o ‘ node at some time, with -7, < ¢t < o/T}%. Then the time the
-16 -14 -12 -10 -8 -6 -4 destination took to travel fror, to X,(¢) is at most(1 — /)T,
and of the same order as the length of time that the encouhter

node travels between timeand time0, which is at leasty'T},.

Fig. 4. A sample GREASE route. In this case, the greedy lonatévement of
the packet's anchor carries the packet all the way to thendgisin, without any

further searches after the initial search around the source . . . o . ..
A complication arises because it is possible that the dztsbim

travels atypically far in a step. This is why we also need the
distance criterion (b) in EASE. If the destination node masgedled
atypically far between time-T) and time —a/T}, then the
V. ASYMPTOTIC PERFORMANCE OFEASE probability of finding a messenger nodehat satisfies (a) in an
iteration of the EASE algorithm can be very small. However,
In this section, we analyze the asymptotic performance o8EA in this case, it is easy to find a nodesatisfying (b), i.e., a
when the network size becomes large. Recall that EASE incurg§ode providing a new anchor whose age is more thap, but
no a-priori overhead to track topology changes, unlikeitizmal ~Still makes typical progress towards the destination imgeof
location services. The main question we need to answer is ttlistance. Note that the distance criterion alone would r®t b
how large the penalty will be when we route a packet from stfficient, as it would fail in the typical case where the degton
source to a destination using only last-encounter infoionatVe has not traveled far.
show that under the topology and mobility model describetthén
previous section, the mean route length between a source a
destination is of the same order as shortest routes, everefgr
large networks. Our main result is as follows.

H&is useful to make the following definition. We call a b& P, s)
centered at positio® of size s the smallest square region with
center atP that containg vertices. Note that the expected number
of nodes in a boxB(P, s) is A||B(P, s)||.

Theorem 5.1: For two arbitrary nodes andd, the route froms

to d calculated by the EASE algorithm satisfies Furthermore, we denote by, the size of the smallest box

B(Y%,.) centered at anchdr;, that contains the nodeproviding

E[C,] =0 (\/ﬁ) . @) the n_ext anchoi_ika. Note that the c_ost of _searching this search
box is proportional toS;. In practice, this search could be

Note that the expected distance between a randomly seleotid performed, for example, through a TTL-constrained (Time Tc

pair is also on the order of/n. The result therefore implies thatLive) local flooding, where the TTL is doubled every time the

LER is asymptotically efficient, in that routes obtainedotigh search has been unsuccessful.

EASE are at most a constant factor longer than the distance

between source and destination nodes.



We now give the proof of Theorem 5.1, where we only sketqgrBounding boxB
certain aspects of the argument for the sake of readability.
also provide some intuition of why EASE succeeds in comutir
asymptotically efficient routes, and crystallize out thdiesa
features of the node mobility processes that permit thisieffcy.

Proof: Let us consider théth iteration of EASE, and derive
its cost as grows large. Suppose the packet is at positipnand
assume that the age of this estimatdjs i.e., Y, = Xq(—T%).

Now consider the trajectory of the destination node over the N
interval [—aTy, —a’T]. The goal of thekth iteration of EASE b: PR AN
is to find a node close toY;, at timet = 0 that provides a new ;
anchorYj 1 := P; = X4(—Tk+1), such thatTy 1 < oT). We _AZS 7
have to determine how many nodé&s have to be searched on AR V4
average until a new anchaf,; is found. We will show that the 71l VN
cost of searching for this new anchor is small compared to the S~

cost of actually forwarding the packet 3. ;. PP \

Typical excursion of destination node.We first condition on L o= Xa(t1)
the maximum excursion of the destination between tme—T N on(O)

and timet, = —a/T},. Assume a box3 = B(Y}, co/T}), where

¢ > 0 is some constant (cf. Fig. 5). The probability that th
random walk starting at}, never leaves the box converges to

a nonzero constant. This can be seen by rescaling the randcﬁ co/Tr
walk as X;(tTx)/+/Tk, which converges to a Brownian motion
for T, — oo. The probability of leaving the box is therefore
asymptotically equal to the probability of the Brownian mat | Bounding boxB
running for one time unit to hit a box of constant sidelengifom
now on, we condition on the evert that the destination does
not leaveB. X(0)

1%

Find a messenger node around current anchorY),. Consider X!(0)
a nodei that is a neighbor of the destination node at some time o)
t betweent; = —aT}), andty, = —a'T),. We call such a node a
messenger node. The sizeS), of the search box will be determined
by the locations of the messenger nodes at tin{ef. Fig. 5).

search box

Note that we are conservative in only considering messenger
nodes encountered up to time = —a'Ty. This assumption
ensures that the distance traveled by the destination batwej
and the time of encountere [t1, t5] is comparable to the distance
traveled by the messenger node betweamd 0.

Consider the set of messenger notdés= {i : || X;(t)—Xq4(t)|] <
1,t; <t < to}, i.e., the set of nodes that are neighbors of the
destination node at some point betwegerandt,. Let H denote
the event that one of these messenger nodes hits a search|box
B(Yy,s) of given sizes, and letH; = {X;(0) € B(Ys,s)}

denote the event that messenger néde W hits this search
box. The{ H;} are dependent, but conditionally independent giverin

. . . ’ g. 5. One EASE step. (a) Only the nodes that the destinatimcounters
a destination trajectory((—Ty, —a'T}), because the\;(.) are perveent; = —a7), andts = —a'T, are considered messenger nodes in the

independent. proof. (b) For a search to be successful, a messenger inedeountered by the
destination between-aT}, and —a'T}, must perform a random walk to end up

We find a stochastic upper bound 8 by making two conser- Wwithin the search box at time= 0.
vative assumptions about the messenger nodé§ inFirst, we
assume that each messenger nodes its encounter with the
destination (i) at the latest possible moment, i.etpatind (ii) as
far away fromY; as possible, i.e., at a corner &f (recall that \ve now compute an upper bound Bf{ [ ).
we condition on the everft' that the destination does not leaide

aftert = —T}). In other words, for each € W, we replace the

processX;(.) with another process/(.) that starts in a corner P{H} = P{ QVH‘}
S

Xa(0)

of B and runs only for’T}, time steps (cf. Fig. 5).



. a geometric random variablg} with parameterp = c3/logT,
Z P{ ﬂ {XL(O) ¢ B(kas)} |Xd(t17t2)} X which has mean = O(lOgT)z.

Xd(tl,tz) ieW

P{Xa(ti,t2)} As 3 .. Ei = E, and using the bounding variabldg/, the
(@) Renewal Theorem [20] asserts that fBr — oo, the number
= P{X; B(Yy, s) | Xq(t1,t o i

Z H {Xi(0) ¢ B{¥, 5] [ Xalt1,ta) } of nodesW encountered by node satlsfles@ — <, and

Xa(ts,t2) 1€W therefore !

P{Xa(t1,t2)} W] > e: 2 (6)
< I Pxio) ¢ B9 "ogT

A ) S . . .

C ew g with high probability, for some:; > 0.
. w .
(2) (1 3 2) Wil (3)Bound on the size of the search box),. We now upper-bound
- Tk ’ the size of the search ba. For this, we conservatively assume

wheree; > 0 is a constant that depends on the statistics §}at We Ury a sequence of search boxes with sizes that are

the random walk andv,o/, and where the sum is over allMmultiple of s = logTj.
trajectories that remain insidB. In (3), (a) is because th¥;(0)
are conditionally independent, (b) is becausgis independent
of X4, and by assumption starts at least as far away fiGnas

Consider first a search box of sizeThe probability that at least
one of the nodes in the sBf hits the search boRB (Y3, s) satisfies

X;, and travels for at most as long, and (c) is because for every cps @/ loe T

position P € B, the probabilityP {X/(0) = P} > ¢1/T. This P{H} = 1- (1 - T—k) —en (D)
follows because we scale both the surface area of thebard n

the runtime of the walkX!(t2,0) as©(Tj). combining (3) and (6)

Number of messenger noded|||. The sizeS, of the search We also need the following elementary property. Consider tw

box required to find the next anchor is the smallest box cedterS€arch boxes a; of size s ands’ > s. Condition on the event
at Y, that contains one of the positior (0),i € . that none of the messenger nodes hits the search box oksize

It should then be intuitively clear that the conditional ipability
Note that the absolute numbgrof encounters of the destinationof hitting the larger search box of sizé is slightly higher than

with other nodes in an interval of lengfh satisfies the unconditional probability, because the conditionaisity of
m—1 nodes outside the smaller box is higher than the uncondition
E[E] = 5TT — BT, (4) density.
which is a simple consequence of the law of large numberse N@onsider a sequence of search boxes of sjzeg = 1,..., and

that this is different from the number of encountered nd{iég|, consider the random variablg which is the first box for which a
because it is possible that the destination encounters@motde messenger node hits. By virtue of the above argument and) of (7
than once. J is stochastically upper bounded by a geometric randombiaria

. . ) with mean1/c4. This gives
We can determing|WW|| by noting that the difference between

X4(t) and X;(t),i # d is also a random walk. First condition E[Sk] < s/ca = O(log Tj). (8)
on the destination trajectory4(0,T'). Let E; denote the number
of encounters between nodeand the destination betweénand Atypically large excursion of destination. We have so far

T, andW the set of nodes that encounter the destination at legshditioned on the evenf that the destination stays inside
once in[0, 7. betweent = —T}, and timet = 0. If F does not occur, then it is
not conservative any longer to let messenger nodes start &o

Focus on a nodeé that encounters the destination, and assum . . L
w.l.g. that this happens at the orig(n, 0). Note that{E,,i ¢ ®rner of B. We briefly sketch how we can avoid this difficulty.

W} are conditionally independent, conditional on the desiima |f the random walkX,(.) leaves B at some point after-T,
trajectory X4(0,7"), becausel; is the number of returns to thethen an appropriate choice of ensures that there are sufficient
origin of the distance random walK4(t) — X;(t),i € W. NoW  nodes encountered outsid® but still close enough td7, that
P{E; > k|X4(0,T) = 24(0,T)} satisfy the distance criterion. Therefo_re, even thoughntimaber .
of messenger nodes is too low (possibly zero), we can sholw wit
< P{E>k[Xa(0) =...= Xa(T) = (0,0)},  (O) 4 similar argument as above that it is not too costly to find deno

for k > 1, which follows from the fact that the return time to@roundY}, that satisfies the distance criterion.
origin stochastically lower-bounds the time to reach anyeot

If we move to an anchor found through the distance criterior
state [22].

rather than the age criterion, then we reduce the age by arfact

The r(._:‘tums to the or_|g|n form a rene\.NaI process_. I_t is kn t 2strictly speaking, this only holds for a random walk on thénite lattice, not
the tail of the probability of not returning to the origin av@long 4 finite torus. However, the additional probability of retimg through a "wrap-
time-intervalT [23, Chapter 4, p. 125] behaves@sl/logT. We around” in the torus is negligibly small.

. ) 3 ; - !
can upper-bounds; by conservatively assuming that every return “Note that we have omitted an additional error term due to tidual
pp i DY y 9 y probability of W being atypically small in (6); this can be shown to be neblegi

to origin is an independent Bernoulli trif’:ll with successmarbil_ity by considering the speed of convergence in (6) for l&fgéNe omit the details
¢2/logT. This means we can stochastically upper-bofiavith  here.



less thana. It remains to show that this does not change th@roperties of the node mobility processes that make LEResd:c

order of the forwarding cost. This follows from the fact that

the increments of the random walk over non-overlapping tinfd®m the above argument, we can identify two general camti
intervals are independent. Therefore, we can conclude theat that have to be satisfied. The first condition concerns tharmts

total cost to reduce the encounter age frémto at mostaT}, is (raveled by the messenger nodes. For messenger nodes to h

of orderO(v/Ty). a reasonable chance of hitting a given search box, the typic
distance traveled by a messenger node between the time

Total cost C,,. The total cost incurred by EASE to route a packetncounter with the destination and tiidas to be comparable to

from the sources to the destinationl is the distance traveled by the destination betweé&p and the time
K—2 of encounter. This requires a certain homogeneity in theilitpb
c, = Z Vi — Yig|| + Sk processes of the nodes. In Section VI, we will examine a cas
=0 where mobility processes are highly inhomogeneous; we fiad t

(9) itis very difficult to route towards destinations that moveah
more quickly than most other nodes.
where K = O(log n) is the number of steps required to reach the
destination. The second condition concerns the density of messengersnoc
within the span. In order for the probability to be reasogdtigh
Note that the initial agéy at the source i©)(n), and chosen to that at least one messenger node hits the search box, there sh
make the boxB = B(Yy, ca\/1p) equal to the entire torus. Thepe a sufficient number of such nodes, i.e., thelsehas to be
first EASE step is therefore of typical lengtlyo —Y1|| = O(v/n).  large enough. This is the case if the nodes’ mobility proeess
As EASE reduces the agg, of its anchor by a factor of at least are such that the total number of grid vertices visited over :
with every iteration, the sequence of distances betweeressive time intervalt is asymptotically much larger than the distance
anchor||Yy, — Yj1|| decreases geometrically. Its sum converggetween the start and end locations of a node for that irterva
and is therefore)(/n). B This is because the size of the 3t grows essentially with the
Hmber of grid vertices visited, while the probability otthig
node of the search box decreases roughly as the square of
Yistance (cf. (7). For random walks, this condition is sfad,
as the size of¥ grows almost linearly wittt, while the distance
grows only asv/t. In Section VI, we will examine a random

; . waypoint mobility model where this scaling between numbker o
there is a tradeoff between the forwarding and the seardh I(Eosencounters and distance is much less favorable than fordmman

the search criterion were more aggressive, thg S?ar.c“ oakd Cwalk; we find that the cost of routing is considerably higher i
become very large; an extreme example of this is if the source

searched for encounter a@g = 0, which would result in a single fris case.
flood of size©(n). On the other hand, if the search criterion were

less aggressive than a reduction by at least a fagtdhen the
forwarding cost could become very large. To see this, noa¢ th

the total length of the trajectory of a random walk observeero \ve have performed a range of simulations in order to evaluat
an interval of lengtft is of ordert; however, the distance betweeny,o quality of routes computed by EASE and GREASE. In
the start and end positions of the walk, and therefore thgthen ieqe simulations, we are interested in the relative cosbates

of the shortest path, is only of orderz. If the age criterion followed by EASE and GREASE as compared to the shortes
were chosen too loosely, then the algorithm would be allowed 41 petween the source and destination. We know from Sectic
compute routes whose length is close to the total lengtietsad, \; that for random walks, they are of the same order, but we
and therefore much longer than the shortest path. do not know the constants involved, and we do not know wha
performance to expect for other classes of mobility proegss
Thus, we investigate various scenarios with different Hikybi

it appears that the distance criterion is in fact not necgsaduich processes (small f\r/_ersus_Iarge_valrlances,d_ho_rgogene%gssver:
can be explained by the various conservative assumptions Q\%erogg?edous traffic, (;/arlous singie stebpl_ Istribut N9
make in the proof. Chief among them is the fact that we disrégat‘eavy tailed ones, random waypoint mobility).

messenger nodes of age less thfl;, and the conservative Nodes are constrained to move in a disk of surface areso

assumption that each messenger node starts in a cornBy Ofynat the average node density Iis The locationX;(t) of node
maximally far away fromy}. In our simulations of EASE below, ; q¢ giscrete timet is an independent constrained random walk,
we in fact do not use the distance criterion. where the disk boundary is reflectthgVe look at Gaussian and
heavy tailed single-step distributions. We also considexralom
waypoint model, which has frequently been used in simufatio
e§tudies of ad hoc networks, but which is not a random walk.[14]

We have thus shown that last encounter routing is asympt§
ically competitive when all the nodes perform random walk
because mobility diffuses estimates of the destinationsitipn
sufficiently quickly and densely. Note that the exponergedrch
criterion is important to achieve this performance. Thisésause

VI. SIMULATION RESULTS

Note that the distance criterion is a device to avoid conagibns
in the proof for atypical excursions of the destination. tagtice,

It is quite remarkable that efficient routes can be computed i
network where the only control traffic is for neighbor diseoy
However, the above result does not imply that the same prop

holds for other mobility models. In Section VI, we resort torhe node positions are initially uniformly distributed ovihe

extensive simulations to explore the robustness of the EAQKK \We then run the random walks for a sufficient warm-ug
algorithm under different assumptions. Here, we wish tovig®

insight on this question by discussing some of the qual#ati “Note that we go back to the Euclidean domain.



period so that a fair proportion of node pairs have met attled@aussian increments, homogeneous mobilit§irst, consider a
once. Note that the spread of a single random walk(is-1/T.,,) homogeneous population with i.i.d. Gaussian positionennts
after a warm up tim&,,,,. Recalling that the size of the domainof variances?. As o increases, we expect the entire process t
is O(y/n), the warm up time must be of ordéX(n/o0?). In most become noisier, resulting in less efficient routes. We floeee
simulations, we used a warmup period of 10’000 iteratioregpt expect the constants involved to be dependentsorThis is
for the heterogeneous case, where we used 40’000 iteratioresified empirically in Figure 6, which shows the empirical
This ensures that in all the simulations, the fraction of enodlistribution of relative cost for EASE and GREASE fer= 0.3
pairs that have met is at least 30%. Note that the performarared 0 = 1.0. As can be seen, approximatel9% of the routes

of EASE and GREASE is obviously monotonically improvingre less than 3 to 8 times longer than optimal, depending on
with the warmup time, as the fraction of node pairs that hae hand the chosen algorithm. Note that GREASE outperforms EAS]
encounters increases. by a factor of 2 or more in all cases of interest.

At every timet, we assume that connectivity is given by théigure 7 shows the relative cost, conditioned on the source
Delaunay graph generated by the set of poim§(¢)}. This is destination distance being smaller thgri.e., | X,(0) — X4(0)] <
equivalent to generating the Voronoi tessellation of the afe z. That is, we look at increasingly large attempted source
points {X;(¢)}, such that every nod&;(¢) is the center of a destination distances, and see how the ratio between fondd a
\Voronoi cell, and is connected to the center nodes of itscadjn shortest routes evolves. Very interestingly, the ratioreases
cells. Each node updates the entries in its LE database dorritonotonically and stabilizes at some rather small valupe-es
directly connected neighbors. cially for GREASE. While these simulations do not go beyond

1000 nodes, they seem to indicate good scaling propertie® s

The advantage of this topology over other topologies we oylsiricting the distance to a certairapproximates a network with
have adopted (e.gk nearest neighbors) is that we are guarantegd nodes. At very smal, it seems some small scale discretization

that a node always has a neighbor that is closer to a destinaliffect hurts the behavior (going in the wrong direction in a
(except when that destination is already in the first nodei®NO0i very small network quickly decreases the performance)vBen

cell). Therefore, a packet can always make progress towesds; _ 1) andd = 32 (corresponding to a network of a 100 to a
anchor, and we do not have to deal with backtracking, avgidiq gog nodes, respectively) the performance of GREASE atdow

routing loops, etc. This allows us to focus on the main iSSU@ems to have stabilized, with routes abouttimes as long as
at hand, i.e., the quality of computed routes based on @ffus;,e minimal length.

information about last encounters.

The main metric we evaluate is the relative cost ¢ i Empirical codf of normalized cost (EASE and GREASH

EASE/GREASE routes compared with the cost of the shorte ﬁ%;\& O o3 GRease
path route. The relative cost metric therefore capturesdlative iy T oTLOEASE
penalty incurred for not having the exact position of thetides 3 -

tion available. More specifically, we generate a dedf random o)

source-destination pairgs, d). The empirical relative cosf is kS

then given by %%

I I o e (10

Prob{cost > x}

107F %% 4
4/|A]| X,(0) — Xq(0)’ %?%

(s,d)eA Q

where A is a random set of source-destination pairs, and whe K@\% \\\
C,, is the empirical cost, i.e., total number of transmissioms f -
both forwarding and searching, to get a packet from sourt® T
destinationd at time 0. The factorm/4 stems from the fact that

the expected length of the shortest path between two noded . ‘ S ‘ ‘
d in the Poisson-Delaunay graph is equalijor| X (0) — X4(0)| o 5 10 15 20 2

[1].
. . . . Fig. 6. The empirical complementary CDF (CCDF) of relativastcfor both
In the simulation results below, we actually give the relitost EASE and GREASE and various values for the single-step atdndeviationo.

conditional on the distance between the source and desfinat

This provides an indication on whether the relative quatify o -

EASE/GREASE routes increases or decreases as routes get.lof?aussian increments, heterogeneous mobilitfor the sake of

In all the simulations, we have chosen= 1/2, o/ = 1/4, and discussion, assume a static population and a single fasingiov
8 = oo, i.e., EASE operates without the distance criterion. Alsgestination node. Clearly, this is an unfavorable situatiohe
instead of using initial agdy := — as given in the definition SOurce node needs to find the trail of the destination node, ar

of EASE, we in fact usdy := T}(0), i.e., the encounter age ofthen the packet simply follows the trail. If source and desfon
the source (which is possibly infinite if the source has nemet Nave met at time-Tp, the expected distance between source an

the destination). This has the advantage that the algoritam destination isD(y/Tp), but the path length i€)(Ty). In this case,

operate without knowledge af? (but is more difficult to analyze the incurred cost i©)(v/Ty) larger than optimal.
analytically).




Empirical conditional mean of cost, conditional on |X5—Xd| <d Empirical conditional mean of cost, GREASE, conditional on |XS—Xd| <d
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T
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—6- 0=0.3, GREASE
0=1.0, EASE 5 q
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6 fast destinations

451 q

d
d

35 4

E[cost|distance <

E[cost|distance <:

Fig. 8. The empirical conditional mean of the normalizedtcosnditional on

Fig. 7. The empirical conditional mean of the normalizedtcosenditional on the initial source-destination distant (0) — X4(0)| < z, plotted as a function

the initial source-destination distanf&,(0) — X ;(0)| < z, plotted as a function

of d of d, for (1) slow destinations; (2) fast destinations.
3 3 . GREASE, heterogeneous, fast destination
Thus, consider the following scenario: a small humber ofesod x y

X
6 X X X X X

moves much faster than the other nodes. More specifically, « °| x
of the m = 1000 nodes,10 nodes haver¢,s; = 0.5, while the
remaining990 nodes have ., = 0.05. We are interested in this
experiment to evaluate the difficulty for a packet to find at fa
destination node, compared to a packet with a slow destimati
Figure 8 shows the result of this experiment with a heteregan
population. As expected, the performance of tracking fastes
based (mostly) on slow mobility diffusion is substantialiyprse
than tracking slow destinations.

It is instructive to watch the actual working of the algonitHor
fast and slow destinations, respectively. In Figure 9, aptamath
with GREASE shows that the algorithm needs to search aroL -
its current location at several points in order to route talsaone
of the fast destinations, leading to a costly route. In FegLe,

. N =
routing to a slow destination does not lead to any local $esmmc X *\\x . « x
at all, and a much better route. L x x S - x
<X X x },/x X x < x
.. . . . . . 12k e RN X - x x N
Infinite-variance increments. In this scenario, we consider x R <
heavy-tailed increment distributions, which allows nottesnake ‘ I T LE ‘
occasional large jumps. Specifically, we assume a Paretddaw  ~* 2 - &8 -6 -4 -2 0 2 4 6

the smgle-step distance, for which the Complementary CDF i Fig. 9. A sample route for a fast destination witty,,; = 0.5. Note that

"+ 9) —a GREASE invokes searches around its current anchor severas,tand that the
b

P{R>r}=( 7

with § = 0.2 and« = 2. For this choice of parameter§,[R] = . . .
8/(a—1) = 0.2. Note that VafR] = oo for a < 2. The angled is advantageous, since for a distan@év/T), a numberO(T')
of the single-step increment is uniform 0\/[6:_27r) encounters are made that then spread the information.

(11) route is relatively costly.

As to be expected, the performance of both EASE and GREAéEt us consider a case where the numbe.r of enco.unters is of tl
will degrade due to the unbounded variance of the steps. ke same order as the distance traveled. In this scenario, mmdest
Figure 11 still shows a decrease in the conditional relativst perforr_n ra”dofn walks. Rather, eaph node has a randomly hos
with distance. waypoint that it moves towards with constant speed of Gep/st
Once a node reaches its waypoint, a new waypoint is chose
Random waypoints.A principle at work in our analysis is that auniformly on the disk, and the node immediately starts mgvin
sufficient number of encounters need to be made as the déstinalowards the new waypoint. As can be seen, while performance
travels a given distance. In the random walk case, this numiggraded quite a bit with respect to the best case (slowndistins
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GREASE, heterogeneous, slow destination domain. In other words, after the time it takes the destmati
to traverseO(1) segments, roughly one node ifin nodes has
encountered the destination; furthermore, these nodemaghly
distributed uniformly in the network. Therefore, it takesearch

of approximately,/n nodesanywhere in the network to find an
anchor on one of the last segments. Note that this is corditier
more costly than in the random walk case. On the other han
the random waypoint model, as many other mobility processe:
is predictable, i.e., the current location of the destoratis not

a sufficient statistic - contrary to the random walk - for aufet
location of the destination. In [21], we give an example hbvs t
observation can be used to improve the performance of LERmund
random waypoint mobility.

VIl. DISCcUSSION ANDCONCLUSION

This paper defines last-encounter routing, a scheme thatysol
relies on information carried by a packet (in the case of EASE
and GREASE, the age and location of the most recent encount
by any node on the packet's path so far) and on the currer
node’s last encounter with the destination. As such, LER use
network capacity to explicitly update location informatioWe
have shown that LE benefits fromobility diffusion, as nodes
Fig. 10. A sample route for a slow destination wiij;,,, = 0.05. Note that spread out estlmates (.)f the d.es.tmatlon,s posmon: A.S a<_enac
GREASE invokes no local searches beyond the initial searhna the source, travels towards its destination, it is able to successivefine its
and the route is very efficient. estimate of the destination’s precise location.

Intuitively, mobility diffusion exploits three salient &ures of

Empirical conditional mean of cost, GREASE, conditional on |XS—Xd|sd the nOde mOblllty processekocality miXing and homgene'ty

> ‘ ‘ ‘ ‘ Locality is a necessary ingredient to ensure that agedrimdtion
RO about the last encounter with a destination node is stilfulse

5T 1 to a packet that tries to find that destination. Mixing of node
trajectories (or at least the absence of complete synchation
a5 1 of movement processes) ensures that position informabontaa

destination node diffuses around this destination nodealre a
node continually encounters new neighbors. Homogeneithén
mobility processes ensure that the “speed of diffusion”fishe
same order as the movement of a destination, so that locatic
information spreads at least as fast as the destination snove

:d]
I
T
I

E[cost|distance <
w
o
T
L

The benefit of locality has been recognized and exploitedrieef
(e.0., [2], [17]). Specifically, the DREAM algorithm propesto
flood position information about a destination node in a taui
area, depending on how far this node has moved [2]. Also,én th
GLS system [17], the authors recommend that nearby locatio
2 I 5 2 P % s servers be updated more frequently than faraway ones, éor tt
same reason. However, the crucial novel observation inrdsept
Fig. 11. The empirical conditional mean of the normalizegtcoonditional on PaPer is that at least for certain classes of mobility preessthis
the initial source-destination distant® (0) — X4(0)| < , plotted as a function limited diffusion of position informatiortan be obtained for free:
of d, for (1) heavy tailed single step distributions; (2) randamypoints. the movements of other nodes that have recently encourtieeed
destination implicitly lead to the same effect, without ésting
. . . . . . any costly transmission resources. This is certainly cfriggt in
with SI.OW mobility), LER still appears to be feasible in thISad hoc networks, where communications costs represent@ ma
scenario. bottleneck. In fact, LER can be viewed as exploiting the tolaal

We give an intuitive explanation for the performance in thBansport capacity available in a network due to node migti
random waypoint case. Note that the length of a segment eetwéiSSéminate control information [9]; however, while [Sptothe
two waypoints isO(y/n). In this time, the destination node®xtreme view of ignoring delay, in LER there is a tight infegp
encounter)(,/n) other nodes. Within the time scale of a singi®etween the age of information and where it gets used. This |

segment, thes®(,/n) diffuse roughly throughout the networkth€ réason why the performance of LER depends on much fin
details of the mobility processes than does the mobilityacép

5
3

;
f
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as defined in [9].
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certain types of mobility models. We expect this observatio
have consequences beyond the one analyzed in this paper, i.e
routing in position-aware ad hoc networks. For exampleeent
work we have shown that in position-unaware networks, entasu
ages alone are valuable to improve the performance of flgedinlil
based node discovery, essentially by walking down a noigy ag
gradient in a sequence of constrained floods until the dsstim [2]
is found [6], [7].

In some contexts, it is more important for a network to be able 3]
locate information items rather than particular nodes. ddrecept

of LER can readily be applied to such a case, where the goal is
to locate, and learn a route to, a data item with some identifié*
i. In this case, neighboring nodes have to exchange the set of
data items that they handle, and update a LE table that nrasnta [5]
encounter entries for data items instead of for nodes. Theafo [6]
this will depend, of course, on the number of data items thahe
node has to maintain. -
We plan to investigate several ways to further improve the
performance of LER. First, besides the mobility diffusiomsbd g
on last encounters, we can use packet-based diffusion.llReca
that EASE/GREASE packets carry along the most recent lmtati

) : L [9]
information for the destination. If a packet passes throaiginde
that does not have a better (more recent) estimate, the rade ¢
update its own database for the destination locati&or heavy [1°]
traffic, this clearly can make a difference. This type of usfbn

depends on the traffic process, rather than node mobility. [11]

Second, the problem of destination location estimation ban [12]
posed as a general estimation problem, with two componéljts:
estimation based on a search around the current positioheof 3]
packet (but taking all the data into account) and (2) estonat
based on the whole path of the packet from the source to {hg
current position. In cases where mobility has more temporal
structure than a random walk, such estimators may be able[lt,ac]
improve performance.

[16]
Third, we have focused on the extreme scenario where last

encounter routing alone is used and no overhead is incuared f
a location service, and we have identified conditions on thien ;7
mobility processes under which LER provides efficient reuta
practical settings, mobility processes may possess feathat are
not captured in the stochastic models studied here. It isp@m o
guestion how LER performs with more realistic mobility gatts.
However, at the very least, we expect LER to have the poien%}
to improve the performance of existing location servicdsisTs
an interesting topic for future research.

(18]

[21]
[22]
[23]
[24]
50f course, the node can also trivially obtain tlect position of the source
from a packet. Note that when two nodes establish a two-wssi@® to exchange

multiple packets, both nodes would know their exact pasitfter one round of
packets. Therefore, suboptimal LER routes would be usedfonthis first round.

12
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