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Abstract— There is much experimental evidence that net-
work traffic processes exhibit ubiquitous properties of self-
similarity and long range dependence (LRD), i.e., of corre-
lations over a wide range of time scales. However, there is
still considerable debate about how to model such processes
and about their impact on network and application perfor-
mance. In this paper, we argue that much recent modeling
work has failed to consider the impact of two important pa-
rameters, namely the finite range of time scales of interest
in performance evaluation and prediction problems, and the
first-order statistics such as the marginal distribution of the
process.

We introduce and evaluate a model in which these param-
eters can be controlled. Specifically, our model is a mod-
ulated fluid traffic model in which the correlation function
of the fluid rate matches that of an asymptotically second-
order self-similar process with given Hurst parameter up to
an arbitrary cutoff time lag, then drops to zero. We develop
a very efficient numerical procedure to evaluate the perfor-
mance of a single server queue fed with the above fluid input
process. We use this procedure to examine the fluid loss rate
for a wide range of marginal distributions, Hurst parameters,
cutoff lags, and buffer sizes.

Our main results are as follows. First, we find that the
amount of correlation that needs to be taken into account for
performance evaluation depends not only on the correlation
structure of the source traffic, but also on time scales specific
to the system under study. For example, the time scale asso-
ciated with a queueing system is a function of the maximum
buffer size. Thus for finite buffer queues, we find that the im-
pact on loss of the correlation in the arrival process becomes
nil beyond a time scale we refer to as the correlation horizon.
This means in particular that for performance modeling pur-
poses, we may choose any model among the panoply of avail-
able models (including Markovian and self-similar models) as
long as the chosen model captures the correlation structure
of the source traffic up to the correlation horizon. Second,
we find that loss can depend in a crucial way on the marginal
distribution of the fluid rate process. Third, our results sug-
gest that reducing loss by buffering is hard for traffic with
correlation over many time scales. We advocate the use of
source traffic control and statistical multiplexing instead.

I. INTRODUCTION

Experimental data obtained from the observation of sys-
tems 1s typically considered for modeling purposes as a re-
alization, or sample path, of an underlying stochastic pro-
cess. In practice, statistical analysis of the data proceeds
with the additional hypotheses that the process is station-
ary and ergodic. Such analysis has shown that many systems
of interest in the physical world exhibit a property of cor-
relation over many different time scales, often referred to
as long range dependence (LRD) or long memory. Some of
the better known examples of such systems are found in hy-
drology [19]. However, the phenomenon of LRD occurs in
many other systems including chemical, astronomical, and
biological systems (see [4] for references).

In spite of much statistical evidence, the existence of LRD
has often been met with resistance or at least puzzlement.
This was caused in large part by the absence of physical ex-
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planations for the observed phenomenon. Hydrologists for
example wondered “By what sort of physical mechanism can
the influence of, say, the mean temperature of this year at a
particular geographic location be transmitted over decades
and centuries?” [22]. Two approaches then are possible.
One approach is to argue that the LRD observed in the
measurement data is a consequence of inadequate hypothe-
ses, in particular the stationarity hypothesis, made about
the underlying process that (it is assumed) did generate
the data. For example, the superposition of a process with
short range dependence (SRD) and an appropriately chosen
on/off trend [22] or a hyperbolically decreasing trend [6] is
difficult to distinguish from a stationary process with LRD.
Another approach is to not worry about a physical explana-
tion and to develop and use models that do exhibit LRD, on
the grounds that a model is good not because it explains a
phenomenon correctly, but rather because it provides good
prediction ability and it is numerically and/or analytically
tractable.

Unfortunately, it is not possible to tell with certainty
whether or not a realization is stationary from its obser-
vation. Therefore, the jury is still out on which of the above
two approaches is “the right one”. Clearly, it is better for
a model to match more properties of the data. However, a
model is a tool for decision making. Thus, its quality de-
pends on the quality of the decisions it leads to rather than
on its closeness to physical reality.

The situation in the area of communication systems in
general, and computer networks in particular, is no excep-
tion to that described above. Careful statistical analysis
of data collected over a wide variety of networks has pro-
vided ample evidence that network traffic processes exhibit
properties of self-similarity and LRD [25], [23], [10], [29],
[5]. However, there is still considerable debate about how to
model such processes. Different approaches have been taken
that parallel those taken in other areas and described ear-
lier. One approach has been to argue that the observed LRD
may be due to non-stationarity in the data caused by the su-
perposition of level shifts [9] or Dirac pulses [15] with short
range dependent (SRD) stationary processes. Another ap-
proach has been to use stochastic models (such as fractional
Brownian motion [26], zero-rate renewal processes [35] and
various other point processes [32]) or deterministic models
(such as chaotic maps [13]) that exhibit the LRD observed
in the experimental data. However, these models are ana-
lytically difficult to handle. Furthermore, they do not pro-
vide much insight into why they are meaningful on physical
grounds. This explains in part why much modeling work
still relies on more traditional multi-state Markovian mod-
els (e.g., [24], [2]).

However, recent work has shown that the superposition of
many on/off sources with heavy-tailed on- and off-periods
results in aggregate traffic with LRD [36], [7]. Furthermore,
there is widespread evidence that human as well as computer
sources of traffic do tend to behave as heavy tailed on/off
sources [8], [36]. Thus, LRD in network traffic can be ex-
plained simply in terms of the nature of the traffic generated
by individual sources.

This intuitively appealing explanation suggests that LRD



will remain a salient feature of network traffic even as net-
work characteristics such as bandwidth and topology evolve
over time. Thus, the fundamental question for both current
and future networks is that of the practical impact of LRD
on network and application performance. Not surprisingly,
much effort has focused on trying to answer this question.
The main result is that the performance of queueing sys-
tems with infinite buffer size and LRD in the input or service
processes can be radically different from the performance of
usual Markovian systems [26], [12], [28].

However, consider for example the asymptotic behavior
of an infinite queue fed with three different arrival processes
that all exhibit the LRD property: i) if the arrival process
is a fractional Brownian motion, then the queue length dis-
tribution is Weibullian, ii) if the arrival process is a single
on/off source with heavy-tailed on and off periods then the
queue length distribution is hyperbolic, iii) if the arrival pro-
cess is a single on/off source in which the off periods only are
heavy-tailed, then the queue length distribution decays ex-
ponentially [7], [28]. Thus, processes with the same correla-
tion structure can generate vastly different queueing behav-
ior. Therefore, it is important to consider parameters other
than the correlation of the input process for accurate per-
formance prediction, in particular low order statistics such
as the marginal distribution of the arrival process.

Another parameter stands out, namely the finite range of
time scales of interest in performance evaluation and predic-
tion problems. The main goal of this paper is to evaluate
the impact of these parameters, as well as the correlation
structure of traffic sources, on network and application per-
formance.

To achieve this goal, we develop a model in which all
three parameters can be controlled. Specifically, our model
is a modulated fluid traffic model in which the correlation
function of the fluid rate matches that of an asymptotically
second-order self-similar process with given Hurst parameter
up to an arbitrary cutoff time lag, then drops to zero. We
then consider the behavior of a finite-buffer queue fed with
the above fluid input process. We cannot describe this be-
havior with closed-form analytic expressions. However, we
develop a very efficient numerical procedure to evaluate var-
ious performance measures. In this paper, the measure of
interest 1s the fluid loss rate, i.e., the ratio of the amount of
work lost because of buffer overflow to the amount of work
arriving at the queue.

Our main results are as follows. First, we find that the
amount of correlation that needs to be taken into account
for performance evaluation depends not only on the corre-
lation structure of the source traffic, but also on time scales
specific to the system under study. For example, the time
scale associated with a queueing system is a function of the
maximum buffer size. Thus for finite buffer queues, we find
that the impact on performance of the correlation in the ar-
rival process becomes nil beyond a time scale we refer to as
the correlation horizon.

Second, we find that the loss rate depends in a crucial
way on the marginal distribution of the fluid arrival process.
An obvious but important consequence is that the marginal
distribution must be taken into account for accurate loss
prediction. Another consequence is that controlling the loss
rate by increasing the buffer size is much less efficient than
controlling the loss rate by adjusting the marginal distribu-
tion. Statistical multiplexing and source traffic control are
two efficient ways to do this, and to achieve high utilization
while keeping loss low.

The rest of the paper is organized as follows. In Section II,
we describe the model and the numerical solution procedure.
In Section III, we describe the behavior of the loss rate as as
function of system and traffic parameters. In Section IV, we
discuss the implications of our results. Section V concludes
the paper.

II. MoDEL DESCRIPTION

In this section, we describe our modulated fluid traffic
model and the numerical procedure we developed to evalu-
ate the behavior of a finite buffer queue fed with this input
traffic.

Recall that the goal of the model is to examine the impact
on the performance measure of interest of parameters such
as time scales and the marginal distribution of the traffic
process. Thus, we need a traffic model in which these pa-
rameters can be controlled easily.

Specifically, the source traffic model is described by a
random process {X;} which represents the fluid rate at
time £. We assume that X; takes on a finite set of possi-
ble rates {A1,...,An}. Furthermore, we assume that the
fluid rate process is piecewise constant. Thus, the rate re-
mains constant over intervals whose lengths are determined
by arrivals of a stationary point process {r,}. We denote
X: = A(n) for 7, < t < 741 The interarrival times
Th = Tnt1 — Tn are Lid. with ccdf Pr{T,, > t} = Fr(?).
Furthermore, the constant fluid rate A(n) is i.i.d. with dis-
tribution Pr{A(n) = A\;} = m;. For i.i.d. random variables,
we drop the subscript if this does not lead to confusion. Note
that this model can be specialized into the familiar on/off
source model with identically distributed on and off periods.

The rest of this section proceeds in three steps. In the first
step, we derive the covariance function of the fluid process
{ X3} in terms of the interarrival time distribution Fr(t), the
rate matrix A = diag(Aq, ..., Aar), and the marginal distri-
bution of the fluid rate IT = (my,...,7a7). In the second
step, we derive the occupancy distribution at time 7, of a
queue fed with {X;}. In the third step, we use this distri-
bution to derive the performance measure of interest here,
namely the stationary fluid loss rate.

The autocovariance function of X (¢) is defined by

o(t) = E[(Xo — p)(Xi — p)] (1)
where
p=TA1T (2)
is the mean rate, and where 1 = [1,1,...,1].

Let A; denote the event of an arrival occurring within
[0,¢]. Then, noting that conditional on A;, X, and X; are in-
dependent, and conditional on A§ (the complement of event
At), Xo = X¢, we obtain

o(t) = E[(Xo—p)(Xe — p)Ad] + E[(Xo — p)(Xe — p)|Af]
= o’p(t) (3)

where
o? = E[(Xo — p)?] = MAZ1T — (TA17)? (4)

1s the variance of X;.

Furthermore, it follows from renewal theory that the prob-
ability p(¢) is equal to the probability that the residual life
Tres Of the interarrival time 7T, exceeds ¢, which is given by
[21, p. 172]

o=tz = |5

dz. (5)



We now consider the special case when the interarrival
time distribution Fr(t) is a truncated Pareto distribution

defined by
{ (() )

where 1 < a < 2. We refer to this distribution as truncated
Pareto because Fr(t) is a Pareto distribution with parame-
ters # and « for 0 < t < T,. We refer to the parameter T,
as the cutoff lag.

Since the length T;, of an interval cannot exceed T, and
since the rates in consecutive intervals are independent, it
follows that there is no correlation in the fluid rate process
beyond lag T¢.

We now compute the covariance function ¢(¢) for the
above distribution. We have

ift < T,
otherwise

(6)

(t+6)" ot (T 49)" >+ .
Pr{Tres > t} — g=oFI_(T.+8)—oF1 ift < Tc (7)
0 otherwise
Therefore
(t+6) "o — (Tetp) ==+
o(t) = o2 x g=oFT (T, +0)~=+1 ift < rc (8)
0 otherwise

We observe that ¢(t) behaves asymptotically as ¢=*+1 when
T. — oo. Thus, when T, = oo, {X;} is asymptotically
second-order self-similar with Hurst parameter H such that
—a+1=—(2-2H),ie, H=25%[23]. When T, is finite,
the correlation drops to zero at lag T. and {X;} has no LRD.

In summary, our source model allows us to control the
marginal fluid distribution II, the time-scale T, over which
the correlation structure matches that of an asymptotic
second-order self-similar model, and the Hurst parameter
H. However, it is difficult in this model to control sepa-
rately the correlation structure of the source over short and
long time scales. Indeed, both parameters § and o (or H)
have an impact on the correlation structure at time scales
shorter than T,, and they cannot be cleanly separated into a
“short term parameter” and a “long term parameter”. This
means the model is not well-suited for sources with sepa-
rate structures for the short term and long term correlation,
for example VBR video sources typically characterized by
an exponential decrease in the short term followed by an
hyperbolic decrease in the long term [14], [33].

We next examine the performance of a queue with con-
stant service rate ¢ and a finite buffer B fed with our fluid
source model. The queueing model does not appear to be
analytically tractable. However, we have developed a very
efficient numerical procedure to determine the queue occu-
pancy at the arrival instants 7,,. Although that queue oc-
cupancy is not equal to the queue occupancy at a random
point in time, it is sufficient to derive our chosen performance
metric, namely the long-term loss rate.

Let @(n) be the continuous random variable describing
the queue occupancy at arrival instant 7,, and let W (n)
T, x (A(n) — ¢). The continuous random variable W(n) is
the difference between arriving and departing work in inter-
arrival interval n. Note that the {W(n)} are i.i.d. because
T, and A(n ) are 1.1.d. and jointly independent. The queue
occupancy is recursively given by

Q(n + 1) = max(0, min(B, Q(n) + W(n))). (9)

(W(n),Q(n)) is a two-dimensional Markov process be-
cause W(n) and W(n—1) are independent. Assuming ergod-
icity, (W(n),Q(n)) converges to (W (o0), Q(c0)) as n — oo.
Our goal is to derive the stationary density fo(z) of the
queue occupancy. For convenience of notation, we assume
that A\ < Ao < ... < AL < e < Apg1 < Apg2 < ... < Au.
We exclude the trivial case when one of the fluid rates is
equal to ¢, in which case the queue occupancy does not
change.

The probability density of W (n) is given by

- ) (10)

M w
= ;ﬂ'idFT <AZ

From (9), we can compute the density of Q(n + 1) given
the densities of @Q(n) and W(n). Let U(n) = Q(n) + W(n).

Then
Jum)(®) = fom)(®) * fw (x) (11)

where * denotes convolution. It follows that

fow (@) U fom) (v)dyé(z)
+[f5 fun) y) ylo(z —

an+1(I) = B)

if z € [0, B]

0 otherwise

12
where 6(.) is a Dirac impulse. In steady state, anJrl(:L‘() :)
fom)(2) = fo(z).

The random variable W; = (W — (B — Q))* represents
the amount of lost work in an interarrival interval. The
performance measure of interest in this paper, namely the
long-term stationary loss rate defined as the ratio of work
lost to work arriving, is then

— o (13)
NE[T]
with
E[Wi] = E[E[Wi|Q]] /’ﬁg EWIQ = 2)de  (14)
and
Rl =] = AmemeMy

2.

B _
i P (u
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0
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B_=« - Tc l1-o
Qw-a*q (9*0 ]

We now derive a numerical procedure to compute /. This
procedure relies on computing an approximation of the sta-
tionary queue occupancy distribution by discretizing (12).
We define two discretization operators ¢ and ¢¥ in the
following way. Let d = B/M be the quantization interval
size, where B is the buffer size and M a positive integer. We

define

71'2()\2 — C) X
B+x>0}

M
oL

o1 @ (15)

o



so that (b%:ﬂ <z< d)%:ﬂ
We then define two discretized queueing processes Qr(n)
and Qp(n) as follows

QY (n+1) = ¢7' max(0,min(B, Q7" (n) + W(n)))
QY (n+1) = ¢3 max(0, min(B, Q3 (n) + W (n))L6)
with
QY0 = 0
QK (0) = B. (17)

The goal of the processes Q¥ (n) and Q¥ (n) is to give
lower and upper bounds on the loss rate I. We formal-
ize the properties of these two processes below. Assuming

gb%HQ%H (n) = Q%H (n) (i.e., Q%H (n) are discrete) it fol-
lows that Q%H (n + 1) are discrete as well, such that

QY (n+1)
QY (n+1)

The above recursion, which is the discrete equivalent of (9),
can be computed using a discrete convolution:

= max(0, min(B, Q%J (n) + (/)LMW(n)))
= max(0, min(B, Q¥ (n) + ¢¥ W (n))) (18)

M

qu(l) = Z qﬁ,H(j)wL,H(i —J)

j=0

(19)

where q7 5 (j) = Pr{QLH( ) = jB/M}. The discrete ver-

sion of (12) becomes
1 Z?:—c?o UTE/,H(Z) J= 0
@) =q vigl) —  0<j<M (20)
Diem “E,H(Z) j=M

As the probability mass of u} 5 in (—o0, 0] and [B, co) is
concentrated in 0 and p of @y f (n +1) (corresponding to

the two terms involving §(z) and d(z — B) in (12)), we can
actually constrain the length of wr r and define

Pr{W € (—oo,(i+1)d)} i=—-M
wr (i) = { Pr{W € [id (2—1— 1)d)} —M <i< M21)
Pr{W € [Zd oo)} i=M
Pr{W € (—oo,id]} i=—-M
wy (i) = { Pr{W e ((i— 1)d,id]} —M <i< M (22)
Pr{W € ((i — 1)d. o)) s

Then, the convolution (19) is between a vector of length
M + 1 and a vector of length 2M + 1.

We now examine how the discrete processes Q%H (n) re-
late to the queueing process @(n), and how they depend on
M and n. Recall that we introduced the discretized pro-
cesses QY (n) and Q¥ (n) as lower and upper bounds of
the process @Q(n). Denote by [(Q¥ (n)) and I(QH (n)) the
loss rates computed usmg the discretized recursions (19) and
(20) with Q¥ (n) and Q¥ (n), respectively. We next show
that i) the value we are looking for, namely [, is bounded
below and above by {(Q¥ (n)) and I(Q} (n)), respectively,
and ii) [(Q¥ (n)) is increasing in n and M and [(Q¥ (n))
is decreasing in n and M. Thus, in practice, we recursively
compute the loss bounds [(Q¥ (n)) and {(Q¥ (n)) using (19)
and (20); if the bounds do not get tight enough, we multiply

Start tjime = -n

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

d:BISI A v
/// \, v[‘(o)
d=B/4
;

0
-n iterations

Start t

“(n+1) iterations
Fig. 1: An illustration of the sample path arguments to show the
stochastic ordering relationships between Qp (n) and QJLVI (n) (resp.

their shifted version VLM
analogous.

(n)). The situation for the upper bound is

M by some integer value m and resume computation until
the desired accuracy is reached.
The main result is formalized in the following proposition.
Proposition I1.1: The loss rate [ is bounded by [(Q¥ (n))

and [(QY (n)), ie, QM (n) < I < U(Q¥ (n)). Further-
more, I(QL (n)) is increasing in n and M, and {(Q¥ (n) is
decreasmg in n and M.

Proof: We sketch the main points of the proof. Refer
to [3] and [31] for more details on sample path and Loynes
type arguments. For clarity, we break down the proof into
five steps. We denote stochastic order relations using the
superscript “st” as in [31]. We focus on the lower bound in
the proof; the corresponding results for the upper bound are
derived in the same way.

st
(i) @1 < Qg implies I; < ly: E[W;|Q] is by definition an
increasing function of @. The result then follows from (14)
and Proposition 9.1.2 in [31].

st st

(i) Qr(n) < Q < Qu(n): A Loynes’ type of argument shows
that Qr(00) = @ = Qu(o0) (a.s.). We do not go through the
details here (refer to [3] for details) but the argument goes
as follows. The distribution of @ (n) is equal to the distri-
bution V7, (0) of a process Vg (.) which is a shifted version of
Qr(n) starting at —n, i.e., Vo (—n) = 0. A straightforward
sample path argument illustrated in Figure 1 shows that the
value of every sample path at time 0 cannot decrease if the
start time of process V is changed from —n to —(n + 1).
Therefore, Q1 (n) is stochastically increasing in n. The fact
that @ is the limiting distribution of @ (n) as n — oo shows
the result.

M st M st - d
(i) @ () £ Qu(n). Q) (n) £ Qun): From (9) an
(18), it follows that if Q¥ (n) < Qr(n), then Q¥ (n +1) <
Qr(n+1). The result then follows by induction.

(iv) QL ( )<QL (n+1), QH( )>QH (n+1): We show

this agaln using Loynes’ argument The distribution of
Q¥ (n) is equal to the distribution VM (0) of a process V()



which is a shifted version of Q¥ (n) starting at —n, i..,
VM(—n) = 0. Then, changing the start time of process V¥
from —n to —(n + 1), it follows from (9) that each sample
path can only increase or remain constant

() QPM () > QY (n), @Y (n) £ QY (), where m is
an integer: A discretization with interval length d/m di-
vides the interval [0, B] in such a way that each inter-
val of length d/M is entirely contained in a interval of
length d corresponding to a coarser discretization. There-
fore, qSLM:E < ¢TM$, and qSJ‘HJ:L‘ > ¢ﬂMJ: Applying this ar-
gument to the sample paths of the shifted processes V(.
and VM () shows the result (cf. Fig. 1).

Now, (iv) and (v) imply that Q¥ (n) is stochastically in-
creasing in n and in M, and because of (i), {(Q¥ (n)) is
increasing in n and M. Similarly, Q¥ (n) is stochastically
decreasing in n and in M, and therefore {(Q¥ (n)) is de-
creasing in n and M. Finally, (i), (ii) and (inn) show that
these are lower and upper bounds of I = {(Q), respectively.
This completes the proof. |

Thus, we obtain a lower and an upper bound on the lim-
iting queue occupancy by initializing ¢% = [1,0,0,...,0,0]
and ¢% =[0,0,...,0,0, 1] which corresponds to starting the
recursion with an initially empty and with an initially full
queue, respectively, and by iterating (19). The lower and
upper bounds on [/ are then obtained as

Zz 0 41 (EW|Q = id]
NE[T]

> izo a5 () E[Wi|Q = id]
\E[T]

(QY (n)) = << (23)

QN (n) = (24)

We have found that in this approach, the lower and upper
bounds converge rapidly to the limiting occupancy'. This
is illustrated in Figure 2, which shows the upper and lower
bounds Q%H (n) for the queue occupancy after n = 5, 10,
and 30 iterations when the queue has been discretized using
M = 100 bins (i.e., d = B/100). Note that it is possible
to improve the efficiency of the discrete convolution (19) by
using a fast Fourier transform (FFT) with appropriate zero-
padding, which reduces the computational complexity from

O(M?) to O(M log M) [27].

I1I. NUMERICAL RESULTS

In this section, we present results of numerical experi-
ments we have conducted using the model and the analysis
technique described above. The goal of these experiments is
to evaluate the impact on performance of various parameters
of the model.

The performance metric we consider is the loss rate, i.e.,
the ratio of work lost due to buffer overflow to total work
arriving at the server. Other performance metrics would be
of interest as well. However, the loss rate is a very natural
metric for finite buffer queues. Furthermore, it relates to the
tail distribution of the queue occupancy, which is the met-
ric considered in most of the analyses pertaining to infinite
buffer queues?. We also note that the loss rate has tremen-

In our experiments, the typical runtime was less than a second on
a workstation; however, when the expected interarrival time FE[Ty] is
very small (i.e, a small T; and/or small ), B is very large, and the
utilization close to one, the runtime can be considerably longer.

2The overflow probability, i.e., the probability that the queue occu-
pancy exceeds some amount, in an infinite buffer queue is an upper
bound to the loss rate in the corresponding finite buffer queue.

o 5 iterations
10 T
1074 L L L L L i L L i
0 10 20 30 40 , .50 60 70 80 90 100
o 10 iterations
10 T T T
=) \\
10 °F
1074 L L L L L L L L L
0 10 20 30 40 .50, 60 70 80 90 100
30 iterations
0
10 )i T T T
X
107 1
1074 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

Fig. 2: An example of the discrete upper and lower bounds Q]LVI,H (n)

for n = 5,10,30 iterations and M = 100 (dark: upper bound; light:
lower bound).

dous impact on both application performance (e.g., on the
quality of the audio or video delivered from a source to a
destination) and network performance (e.g., on the number
of retransmissions required to achieve reliable communica-
tion).

T%le parameters of interest here are the buffer size B (or
rather the normalized buffer size, which is equal to the ac-
tual buffer size divided by the service rate c), the cutoff lag
T,, and the marginal fluid rate distribution II. We let these
parameters vary within ranges consistent with practical net-
working situations. We use normalized buffer sizes of up to
a few seconds. These values are typical of currently available
switches. For example, the Fore ATM 200BX/1000 switch
has a per-port buffer of 13312 cells. Since the slowest avail-
able link on this switch is a 1.5 Mb/s T1 link, the maximum
delay in the buffer is equal to 3.3 s. Higher link speeds would
yield correspondingly smaller delays.

We use marginal distributions of fluid rates obtained from
traces of various traffic sources. In this paper, we consider
two traces. The first trace has been generated by JPEG-
encoding an NTSC TV channel (MTV) for one hour. The
trace has been recorded on June 11, 1995, 14:59 EST. Tt
includes 107892 frames, with a mean rate of 9.5222 Mb/s.
The second trace is based on the August 1989 “purple-cable”
Ethernet trace collected at Bellcore [23]. Each trace element
is a rate averaged over a 10 ms interval.

Both traces exhibit long-range dependence. Using a Whit-
tle or wavelet based estimator [1], we obtained Hasry & 0.83
for the MTV trace and Hgc ~ 0.9 for the Bellcore trace.
This latter value is consistent with the findings in [23] (refer
to [23] for a detailed analysis of the Bellcore trace).

There still remains to match the marginal rate distribu-
tion of the traces to the fluid rate vector II. Figure 3 shows
the marginal fluid rate distributions for both traces. Recall
that the traces represent the amount of work arriving within
constant-length time intervals (33ms for the MTV trace,
10ms for the Bellcore trace). Thus, the marginal distribu-
tion vectors Il and the rate matrices A are simply obtained
from a constant bin-size histogram of the traces. We set the
number of bins to 50 in all experiments. We determine ¢
in (6) as follows. We first compute the average number of
consecutive samples in the trace that fall within the same
histogram bin. We then set § such that the mean interval
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duration, which is given by

0 Tc l-o
BT = — |1~ <7+1)

(25)
matches this empirical mean for T, = co. We find from the
trace data that the mean epoch durations are quite short,
specifically about 80ms for the MTV trace and 15ms for the
Bellcore trace.

All the numerical results reported in this section have been
obtained as follows. Recall that the numerical procedure de-
scribed in Section II provides an upper and a lower bound on
the loss rate. The numbers reported below are the average
of the upper and lower bounds. We require that the distance
between the upper and the lower bound be less than 20% of
the average of the two bounds. If the upper bound of the loss
rate falls below 107'%, we consider that the loss rate is sim-
ply below a value that is of practical importance, and report
zero loss. We perform iterations until either the above con-
fidence criterion is fulfilled, in which case we stop, or until
the convergence of the two bounds becomes too slow, which
means that the discretization step d is too large to achieve
sufficient accuracy. In this case, we double the number of
“bins” M, and resume iterating.’

We have now completed the description of the setup for
our numerical experiments. We next describe the experi-
ments proper.

We have carried out three sets of experiments. In each set,
we examine our chosen performance metric (namely the loss
rate) as a function of two of the four parameters B, TI, H,
and T.. In the first set, we consider the impact of the buffer
size and the cutoff lag on the loss rate. In the second set, we
consider the impact of the Hurst parameter and the marginal
distribution on the loss rate. In the third set, we consider
the impact of the buffer size and the marginal distribution
on the loss rate.

In the first set of experiments, we examine the impact of
buffer size, or rather normalized buffer size, and cutoff lag
on the loss rate. Figure 4 shows the loss rate for the MTV

3Note that when requantizing from M to mM = 2M, we do not have
to reset Qrﬁ% (n) to 0 and B (as at the very beginning), but instead
use the most recent values obtained with M bins, namely Q]I\,4H (n).

This considerably increases the efficiency of the procedure when the
discretization step is small.

trace with a utilization equal to 0.8. Figure 5 shows the
loss rate for the Bellcore trace with a utilization equal to
0.4. We have chosen different values for the utilization for
the different traces in order to be in a regime of practically
relevant loss rates (roughly between 10~! and 10719 for
both traces.

Loss rate as a function of normalized buffer size and cutoff time (MTV, util=0.8)
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Fig. 4: The loss rate predicted by the model for the MTV trace as a
function of normalized buffer size and cutoff lag, at utilization 0.8.

Loss rate as a function of normalized buffer size and cutoff time (BC, util=0.4)
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Fig. 5: The loss rate predicted by the model for the Bellcore trace as
a function of normalized buffer size and cutoff lag, at utilization 0.4.

The figures bring out two important results. First, we
observe that for each buffer size, the loss rate is not signifi-
cantly affected if the cutoff lag increases beyond some value.
We refer to this value as the correlation horizon (CH). An
important consequence of this is that it is sufficient for a
model to take into account correlation up to this correlation
horizon to accurately predict loss.

Second, we observe that the rate at which the loss rate de-
creases as the buffer size increases depends on the value of
the cutoff lag. For small cutoff lags, the decrease is approxi-
mately exponential. However, as the cutoff lag increases, the
rate of decrease actually decreases. This is an illustration of
the “buffer ineffectiveness” phenomenon also reported else-
where (e.g., [20]), whereby increasing buffer sizes beyond a
certain value only slightly decreases loss rates. This phe-
nomenon is not unexpected, since an input process with
non negligible correlation over long lags generates occasional



bursts of traffic that cannot be absorbed even by very large
buffers.

Recall that the cutoff lag T, eliminates correlation in the
input fluid process beyond a lag equal to 7. Thus, its im-
pact is similar to that of the “external shuffling” procedure
described in [12]. In this procedure, a time series represent-
ing a realization of a process is divided into blocks and the
blocks are shuffled (cf. Fig. 6). However, the structure of
the time series inside a block remains unchanged. Thus, ex-
ternal shuffling removes correlation from the series beyond
a lag equal to the length of a block*.

Initial trace

Shuffled trace

Fig. 6: Shuffling can be used to eliminate correlation beyond a given
cutoff lag in a trace.

Therefore, it is natural to compare the numerical results
above to a trace-driven simulation in which the input traffic
is obtained by external shuffling of the MTV and the Bellcore
traces. Figures 7 and 8 show the loss rate as a function
of buffer size for different values of the shuffle block size
(which is referred to as “cutoff” in the figures). Note that
the results in the figures have been obtained directly with the
shuffled data used as input to a simulated queue; thus, they
are completely independent of the stochastic traffic model
described in Section II. We observe that the loss predicted
by the model is very close to that obtained with shuffling and
simulation for the MTV trace. The agreement is not so good
with the Bellcore trace. The discrepancy is probably caused
by a poor match for the residence time distribution for the
fluid rates in our model for this trace. The main results,
however, namely the existence of a correlation horizon and
the buffer ineffectiveness phenomenon for large values of the
cutoff lag, can be observed in both figures.

In the second set of experiments, we examine the impact
of the marginal distribution and the Hurst parameter on the
loss rate. As an initial motivation for this set of experiments,
consider the result in Figure 9, which shows the loss rate as
a function of T, for two marginal distributions matching the
Bellcore and MTV distributions, all other parameters in the
model being equal (normalized buffer size = 1s, utilization
=2/3,60 = 20, and H=0.9).

We observe orders of magnitude differences in the loss
rate, clearly suggesting a large impact of the marginal dis-
tribution. To examine this impact further, we consider two
transformations of the marginal distribution, namely a scal-
ing and a convolution transformation. The first transfor-
mation scales the density of the marginal distribution by a

4In fact, our choice for the interarrival time distribution function
Fr(t) as being a truncated Pareto function was motivated in part by
the analogy with the shuffling procedure.

Shuffle loss rate as a function of normalized buffer size and cutoff time (MTV, util=0.8)
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Fig. 7: The loss rate obtained with shuffling for the MTV trace as a
function of normalized buffer size and cutoff lag, at utilization 0.8.

Shuffle loss rate as a function of normalized buffer size and cutoff time (BC, util=0.4)
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Fig. 8: The loss rate obtained with shuffling for the Bellcore trace as
a function of normalized buffer size and cutoff lag, at utilization 0.4.

constant factor a while keeping the mean A = ITA17 con-
stant. Thus, we simply replace A; with A} = A 4+ a(A; — A).
Figure 10 shows the loss rate for H in the range (0.55,0.95)
and « in the range (0.5,1.5). The normalized buffer size is
set to 1 s. The cutoff lag is set to infinity. Note that we
use the same # in the entire experiment, by matching the
average interval length for the nominal Hurst parameter.
We do so in order to avoid that a larger Hurst parameter
decreases short-range dependence, which would perturb the
assessment of the impact of the Hurst parameter.

The second transformation convolves the original distribu-
tion n times and renormalizes it to the original mean. Thus,
it amounts to considering the superposition of n of the orig-
inal streams, where the buffer size and the service rate per
stream are kept constant. Figure 11 shows the loss rate for
H in the range (0.55,0.95) and n in the range 1,..., 10.

The figures bring out an interesting result, namely that
the impact of the transformations on the loss rate for the
range of parameters considered above is much greater than
that of the Hurst parameter. For example, we observe in
Figures 10 and 11 that changing a from 1.0 to 0.5 or su-
perposing 5 streams decreases the loss rate by more than an
order of magnitude. In contrast, changing the value of H
has much less of an impact on the loss rate.
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Fig. 9: The loss rate for the MTV and Bellcore marginal distributions
as a function of T, all other parameters being equal (normalized buffer
size = 1s, utilization = 2/3, § = 20, H=0.9).

Loss rate as a function of Hurst parameter and marginal scaling factor
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Fig. 10: The loss rate predicted by the model for the MTV trace as
a function of the Hurst parameter and the marginal scaling factor, at
utilization 0.8.

This result is confirmed in our third set of experiments, in
which we examine the impact of the marginal distribution
and the normalized buffer size on the loss rate. Figures 12
and 13 show that small changes in the marginal scaling factor
again yield dramatic changes in the loss rate: For example,
reducing the width of the marginal distribution by a factor
of two (from a = 1 to a = 0.5) decreases the loss rate more
than increasing the buffer size even up to 5 s (which is an
extremely large value in practice).

The consequences of this are threefold. The first conse-
quence relates to modeling. Clearly, the marginal distribu-
tion is a crucial parameter and it must be taken into account
for accurate loss prediction. This is in agreement with re-
sults obtained by others using analytic approaches regard-
ing the impact of the marginal distribution on the tail of
the queue occupancy in infinite buffers (e.g [28]). The sec-
ond consequence relates to multiplexing. Our result above,
namely that superposing even a moderate number of streams
sharply decreases the loss rate, indicates that statistical mul-
tiplexing is an efficient mechanism (more so than buffering)
to achieve high utilization while keeping loss low [16]. The
third consequence relates to traffic control. The ability to

Loss rate as a function of Hurst parameter and number of superposed streams
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Number of streams

Fig. 11: The loss rate predicted by the model for the MTYV trace as a
function of the Hurst parameter and the marginal distribution obtained
by n convolutions of the original marginal distribution, at utilization
0.8.

Loss rate as a function of normalized buffer size and marginal scaling (MTV, util=0.8)
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Fig. 12: The loss rate for the MTV trace as a function of normalized
buffer size and marginal scaling factor for a utilization of 0.8.

change the marginal distribution and get very different loss
rates as a result suggests it would be useful to examine con-
trol mechanisms for LRD sources that modify the scaling of
the marginal distribution. One example of this would be a
feedback-based rate control mechanism.

IV. DiscussiON

We start this section by summarizing the key results from
Section III. These are

o There exists a correlation horizon (CH) such that the loss
rate is not affected if the cutoff lag increases beyond CH.
Thus, CH separates relevant and irrelevant correlation with
respect to the loss rate.

o Large buffers are helpful to significantly reduce the loss
rate only for short-range dependent traffic; for long-range
dependent traffic, increasing the buffer size has little impact.
¢ The marginal scaling factor has considerable impact on
the loss rate.

o Adjusting the marginal scaling factor by statistical mul-
tiplexing several streams or by using source traffic control
mechanisms 1s a very efficient way of reducing loss while
keeping utilization high.



Loss rate as a function of normalized buffer size and marginal scaling (Bellcore, util=0.4)

log10(loss rate)

marginal scaling factor

norm. buffer size [s]

Fig. 13: The loss rate for the Bellcore trace as a function of normalized
buffer size and marginal scaling factor for a utilization of 0.4.

Our observation of the existence of the correlation hori-
zon CH helps resolve the seemingly contradictory conclu-
sions that have been drawn in the literature from experi-
ments with long-range dependent traffic. Indeed, mathemat-
ical analysis and simulation of queueing systems with LRD
input shows that the queue occupancy exhibits an asymp-
totic behavior very much different from that observed with
Markov sources [26], [9], [12]. However, the literature on
Markov modeling reports good performance prediction for
finite buffer systems even when input traffic streams are cor-
related over many time-scales [11], [17], [34], [18]. We have
shown that there exists a correlation horizon which sepa-
rates relevant and irrelevant correlation with respect to the
performance measure of interest. Intuitively, the CH de-
pends on the correlation structure of the input traffic, and
on the system under study, namely the finite buffer queue.
Indeed, the finite buffer queue sets a limit on the memory
of the system since the the buffer “forgets” about the past
as soon as it is either empty or full (this is referred to as
the resetting effect in [17]). Therefore, we expect the CH
to depend on the maximum queue size (we provide evidence
for this below). Furthermore, while correlation on all time-
scales has an impact on performance for the infinite queue,
only the correlation up to the CH has an effect in the fi-
nite buffer queue. Ryu and Elwalid, in [33], independently
came to similar conclusions. They use large deviations the-
ory to derive an expression for the correlation horizon (called
Critical Time Scale). Their traffic process is the superpo-
sition of a LRD and a SRD process. While their approach
is computationally less demanding than ours, they do not
study the impact on the correlation horizon of the marginal
distribution and of different Hurst parameters. Also, their
performance metric is the buffer overflow probability for an
infinite queue, not the loss rate.

We next describe a simple way to estimate CH in terms of
the various system parameters. The estimation procedure is
based on the resetting argument mentioned earlier, i.e., we
assume that when the buffer becomes empty or full, infor-
mation about the past is lost. Then, we take the correlation
horizon estimate T- to be the time interval for which the
probability that the buffer empties or overflows at least once
is close to one.

We make the assumption that the correlation horizon is
much longer than the average interarrival time u. If the
converse were true, then the buffer would either empty or

overflow with very high probability within a single interar-
rival interval. This would mean that the utilization is close
to zero, or that the loss rate is extremely high.

Let T, = >_1, W(n)—T(n)c denote the sum of the excess
work, assuming the server is always busy, in n consecutive
intervals. Now assume that we are looking at the queue at
an arrival instant 7, and that the queue occupancy at that
instant is equal to ). Note that the probability of either
emptying or overflowing the buffer at some point during the
next n intervals is bounded below by Pr{@ + T, < 0} +
Pr{@Q+T, > B}. Wewish to find n such that the probability
p=1-Pr{Q+T, <0} —Pr{Q + T, > B} of no reset
occurring during n intervals is very small.

Given our assumption that Tog > u, we look for n large.
Then, the central limit theorem says that for large values of
n, @+ ', is approximately normally distributed with mean
Q + np(X — ¢) and variance noZo?, where p is the average
interval length, X is the average rate, ¢2 is the variance of
the interarrival time, and o3 is the variance of the marginal
distribution.

As we do not explicitly know the distribution of @, we
find an upper bound on p by setting the mean of the normal
distribution @ + T',, to B/2. We obtain p < erf(w_%)’

noro

where erf(.) denotes the error function. Since we assume
that n is large, Te g can be well approximated by

_ By
= N 20y erf™! (p)

As suspected earlier, we find that Ty scales linearly with
the buffer size. Interestingly, it turns out that the trace-
based simulation results we described earlier (e.g., in Figure
7) do bring out this linear scaling quite clearly. For example,
Figure 14 shows the same results as Figure 7, namely the loss
rate for the MTV trace as a function of the normalized buffer
size and cutoff lag, but this time drawn with logarithmic
scales and a different point of view. We see that the surface
on the figure flattens out along a curve that parallels the
straight line B/T, = « on the floor of the figure (where 7 is
a constant), indicating a linear scaling between Tcp and B.

Te (26)
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shuffle norm 21d T
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Fig. 14: The loss rate obtained with shuffling for the MTYV trace as
a function of the normalized buffer size and cutoff lag. The line on the
(x,y)-plane (and all lines parallel to it) correspond to B/T. = const.

We have focussed in this paper on a particular instance
of performance prediction relying on traffic modeling, where
the performance metric has been defined as the long-term



loss rate. We have then shown that the relevant correlation
is limited to a time-scale smaller than the correlation hori-
zon. This might seem to support the claim that only models
with limited memory (up to CH) make sense, and hence that
self-similar models are not useful after all. But instead, this
means that for this type of performance problem, we may
choose any model among all the available models as long as
it captures the correlation structure up to CH. The choice
can be based on analytic tractability, on ease of parameter
identification from traces, etc. In this paper, we chose the
truncated Pareto model because it i1s self-similar when T,
is set to infinity, and because it is a parsimonious model
with a simple way to control its correlation structure (via
T.). However, Markov models could have been another pos-
sible choice since they can capture correlations up to a given
value CH (and since the numerical procedure developed in
Section TT can be used independent of the particular model).
Indeed, several studies have used an approach where
Markov models approximate traffic sources with long range
dependence. This approach can be used to obtain accu-
rate performance predictions since a power law decay can
be approximated arbitrarily closely by enough exponential
decay functions [24]. However, the resulting Markov models
typically are complex multi-state models that do not fol-
low the principle of parsimonious modeling because every
state added to such a model also adds several free parame-
ters. This presents two problems, namely that of identifying
the parameters (states and state transition rates) from ex-
perimental data, and that of obtaining closed-form analytic
expressions for performance measures. The first problem is
the more important one because it is often difficult and time
consuming in practice to collect the data required for param-
eter estimation. This problem is generally used to promote
instead parsimonious long-range dependent models.
However, parsimonious modeling and LRD are really or-
thogonal issues. Indeed, it is possible to reduce the impact
of the parameter-explosion problem with multi-state Markov
models, where each state models a different time scale [30].

V. CONCLUSION

We have focussed in this paper on a particular instance
of performance prediction relying on traffic modeling, where
the performance metric has been defined as the long-term
loss rate. We have then shown that the relevant correlation
is limited to a time-scale smaller than the correlation horizon
CH, meaning that for this type of performance problem, we
may choose any model among the panoply of available models
(including Markovian and self-similar models) as long as the
chosen model captures the correlation structure up to CH.

We would like to conclude by stressing that the amount of
correlation that must be taken into account in a model also
depends in general on the performance metric of interest.
We illustrate this with a simple example. Consider the prob-
lem of comparing the performance of closed-loop (ARQ) and
open-loop (FEC) error control schemes for reliable point-to-
point communications. Let us try to guess the relevant time-
scales of this problem. ARQ schemes perform well when
losses are bursty because they can accumulate information
about a loss burst and request retransmission of all pack-
ets lost in the burst in one go. FEC schemes perform well
when losses are spread out over time because they can cor-
rect errors of the type “among n packets, k < kpax < n have
been lost”. The probability that k exceeds kmax 1s smaller
for independent losses than for correlated losses. This sug-
gests that extending the time-scale of the correlation struc-
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ture of the packet arrival process in a model of error control
schemes amounts to increasing the advantage of ARQ over
FEC. Therefore, it seems necessary in this problem to ac-
curately model the arrival and loss processes over a wide
range of time-scales. Thus, a self-similar model would be
appropriate here.

In general, models of self-similar processes capture the be-
havior of these processes over all time-scales using a small
number of parameters. They are particularly well suited to
study systems which to not have a clearly bounded time
scale (such as in the evaluation of ARQ/FEC above) or to
generate very long traces that match LRD behavior observed
in actual networks. In this latter case, we do not want to re-
strict the use of these traces to a specific modeling task, and
thus we cannot make any assumptions about the relevance of
the model parameters. Therefore, traces should be derived
from a self-similar traffic model. Of course, our results in
Section ITT show that trace generation based on self-similar
models (or any other model for that matter) must also take
into account statistics such as the marginal distribution in
order to achieve accurate performance prediction.
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