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Abstract— Measurement-based Admission Control (MBAC)
is an attractive mechanism to concurrently offer Quality of
Service (QoS) to users, without requiring a-priori traffic spec-
ification and on-line policing. However, several aspects of
such a system need to be clearly understood in order to de-
vise robust MBAC schemes, i.e., schemes that can match a
given QoS target despite the inherent measurement uncer-
tainty, and without the tuning of external system parameters.

We study the impact of measurement uncertainty, of flow
arrival and departure dynamics, and of estimation memory
on the performance of a generic MBAC system in a common
analytical framework. We show that a certainty equivalence as-
sumption, i.e., assuming that the measured parameters are
the real ones, can grossly compromise the target performance
of the system. We quantify the improvement in performance
as a function of the length of the estimation window and an
adjustment of the target QoS. We demonstrate the existence
of a critical time-scale over which the impact of admissin de-
cisions persists. Our results yield new insights into the per-
formance of MBAC schemes, and represent quantitative and
qualitative guidelines for the design of robust schemes.

I. INTRODUCTION

The traditional approach to admission control requires an
a priort traffic descriptor in terms of the parameters of a
deterministic or stochastic model. However, it is generally
hard or even impossible for the user or the application to
come up with a tight traffic descriptor before establishing a
flow. Measurement-based admission control (MBAC) avoids
this problem by shifting the task of traffic characterization
from the user to the network, so that admission decisions are
based on traffic measurements instead of an explicit speci-
fication (cf. Fig. 1). This approach has several important
advantages. First, the user-specified traffic descriptor can
be trivially simple (e.g. peak rate). Second, an overly con-
servative specification does not result in an overallocation
of resources for the entire duration of the session. Third,
when traffic from different flows are multiplexed, the QoS
experienced depends often on their aggregate behavior, the
statistics of which are easier to estimate than those of an
individual flow. This is a consequence of the law of the large
numbers. It is thus easier to predict aggregate behavior
rather than the behavior of an individual flow.

Relying on measured quantities for admission control
raises a number of issues that have to be understood in order
to develop robust schemes.

+ Estimation error. There is the possibility of making er-
rors assoclated with any estimation procedure. In the con-
text of MBAC, the estimation errors can translate into erro-
neous flow admission decisions. The effect of these decision
errors has to be carefully studied, because they add another
level of uncertainty to the system, the first level being the
stochastic nature of the traffic itself. Assuming certainty
equivalence up-front, 1.e. assuming that the estimated pa-
rameters are the real parameters, is dangerous, as we simply
ignore its impact on the quality of service.

¢ Dynamics and separation of time-scale. A MBAC
is a dynamical system, with flow arrivals and departures,
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Fig. 1: Traditional admission control makes decisions based on the a-
priori traffic descriptors of the existing and the new flow. Measurement-
based admission control (MBAC) only uses the new flow’s traffic de-
scriptor, but estimates the behavior of the existing flows.

and parameter estimates that vary with time. Since the es-
timation process measures the in-flow burst statistics, while
the admission decisions are made for each arriving flow,
MBAC inherently links the flow and burst time-scale dy-
namics. Thus, the question of impact of flow arrivals and
departures on QoS arises. Intuitively, each flow arrival car-
ries the potential of making a wrong decision. We therefore
expect a high flow arrival rate to have a negative effect on
performance. On the other hand, the impact of a wrong flow
admission decision on performance also depends on how long
it takes until this error can be corrected - that is, on flow
departure dynamics.

¢ Memory. The quality of the estimators can be improved
by using more past information about the flows present in
the system. However, memory in the estimation process
adds another component to the dynamics of a MBAC. For
example, it introduces more correlation between successive
flow admission decisions. Moreover, using too large a mem-
ory window will reduce the adaptability of MBAC to non-
stationarities in the statistics. A key issue is therefore to
determine an appropriate memory window size to use. For
this, a clear understanding of the impact of memory on both
estimation errors and flow dynamics is necessary.

Because of the complex interplay of all these aspects of
the MBAC problem, most of the past work has either been
analytical but focused on only one of the aspects, or relied
primarily on simulations to evaluate MBAC algorithms. In
this work, we take a different approach. Using a simple
model, we study all of the above issues in a unified analytical
framework. The goal is to shed insight on the design of
robust MBAC schemes which can make QoS guarantees in
the presence of measurement uncertainty, without requiring
the tuning of external system parameters.

Due to the complexity of the problem, approximations are
made in the performance analysis of the MBAC schemes.
These approximations are justified by limit theorems in the
heavy traffic regime, where the system size i1s large and
when scaling up the size of the system, we exploit the ad-
ditional statistical regularity by increasing the system uti-
lization while keeping the QoS constant. This is in contrast
to the large deviations regime, where the system utilization
is asymptotically constant, but where the QoS-requirement



is scaled with the system size'. The heavy traffic regime

allows us to use Gaussian approximations and to compute
the quantities of interest in terms of first and second-order
statistics of the traffic processes.

The rest of the paper is organized as follows. We analyze
the impulsive load model in Section Il and the continuous
load model in Section III. In Section 1V, we apply the in-
sights gained in the analysis to study the problem of choosing
the appropriate memory window size of the estimators. In
Section V, we comment on some of the assumptions made in
our analysis. In Section VI, we discuss how our results relate
to previous work in measurement-based admission control.
We conclude the paper in Section VII.

II. ImMPULSIVE LOAD MODEL

The network resource considered is a bufferless single link
with capacity c¢. Flows arrive over time and, if admitted,
stay for a random holding time (cf. Fig. 1). The band-
width requirements of a flow fluctuate over time while in
the system. We assume that the statistics of the bandwidth
fluctuations of each flow are identical, stationary and inde-
pendent of each other, with a mean bandwidth requirement
of ¢t and variance 2. An important system parameter is the
normalized capacity n := ﬁ, which measures the system size

in terms of the mean bandwidth of the flows. Resource over-
load occurs when the instantaneous aggregate bandwidth
demand exceeds the link capacity, and the quality of service
is measured by the steady-state overflow probability p;. See
Fig. 1.

To study the various issues outlined in the introduction,
we will first analyze a simpler variation of this model, in
which an infinite burst of flows arrives at time 0 and ad-
mission control decisions are made then, based on the initial
bandwidths of the flows. After time 0, no more flows are
accepted, and existing flows stay in the system forever. We
call this the impulsive load model. This model permits us to
study the impact of the measurement errors on the number
of admitted flows and on the overflow probability, without
the need to worry about flow dynamics. In the next section,
we will extend our analysis to the fully dynamical model,
where new flows arrive continuously.

The number of admissible flows m* is the largest integer
m such that

Pr {i X;(t) > c} < pg. (1)

where X;(t) is the bandwidth of the ith flow at time ¢. (Re-
call that ¢ := ny is the total capacity of the link.) For large
system size n, the number of admissible calls will be large,
and by the Central Limit Theorem,

[Z X;(t) — m,u] ~ N(0,1)

Thus, if the parameters p and o2 are known a priori, then

1
o/m

LA large deviations analysis of a related measurement-based admis-
sion control problem can be found in [21]. In general, one would expect
the large deviations approximations to be more accurate if the QoS tar-
get is very stringent (say 10~¢ to 10_9) and the utilization low, and the
heavy traffic regime to be reasonable when the QoS target is larger (say
102 to 10_4) and the utilization high. It is particularly appropriate
when the number of multiplexing flows is large.

the number of flows m* to accept should satisfy:
np—m*u
—| = pg- 2
Q|| -y, ©)

where Q(-) is the ccdf of a N(0,1) Gaussian random vari-
able?. Because the AC has perfect knowledge of the statis-
tics, the actual steady state overflow probability

pr = PI’{ZXi(t) > c}

satisfies the QoS requirement. For reasonably large capaci-
ties, it follows from solving (2) that m* is well approximated

by:
m*=n— %ﬁ + o(v/n) (3)

where aq := Q7 !(p,) and o(y/n) denotes a term which grows
slower than 1/n. Note that n is the number of flows that
can be carried on the link if each has constant bandwidth
p. Thus, the term Uzq\/ﬁ in the above expression can be

interpreted as the safety margin left to cater for the (known)
burstiness of the traffic.

Now, consider the situation when a MBAC does not know
p and o a priort, but relies on an estimation of these param-
eters from the initial bandwidth of the flows and uses the
estimates in a certainty equivalent fashion. Invoking again
the central limit approximation for large systems, the num-
ber of flows My the MBAC admits should satisfy:

NI

.15 ~ 1 < -
p==> X;(0), o= l E(Xi(o) - H)2] (5)
n 4 n—1 Pt

The criterion (4) is the same as (2), but with the true mean
p and standard deviation ¢ replaced by the estimated mean
it and standard deviation & respectively.? Note that the
number of flows My admitted under the MBAC is now ran-
dom, depending on the random bandwidths of the flows at
time 0. This is a consequence of the fact that the admission
control decisions are made based on measurements rather
than known parameters. Also, the scheme considered here
is an example of a memoryless MBAC, since the admission
control decisions are made based on the current bandwidths
only.

We now want to approximate the average overflow prob-

ability
Mo
pr = Pr{ZXi(t) > c}
i=1

in steady state (i.e. for ¢ large) and compare it to the tar-
get py. To do this, we first find an approximation for the
distribution of My, the number of flows admitted.

2Note that here, as in the sequel, we are ignoring the fact that m* is
an integer and therefore eqn. (2) cannot be satisfied exactly in general.
In the regime of large capacities, however, the approximation is good
and the discrepancy can be ignored.

30bserve here that the estimation is based on n flows. In a more
precise model, the estimation should be based on My flows, the number
to be admitted. However, in a large system, My will be close to n and
the discrepancy in replacing My by 7 in the estimators are small.



For large capacities, by the law of large numbers, the es-
timated mean g will be close to the true mean g, and the
estimated variance &2 will be close to the true variance o2.
A more precise approximation of the deviation of these esti-
mated quantities from the true values is given by the Central
Limit Theorem:

X 1 & 1 1 |<&
ho= g;Xi(O):/l‘Fﬁ{ﬁ [;Xi(o)—”#]}

_ H"_\/}gﬂ(%) (6)

for large n. Here, Yy ~ N(0, 1), and can be interpreted as
the scaled aggregate bandwidth fluctuation at time 0 around
the mean. Similarly, the estimated standard deviation can
be written as:

. Zy 1
0'_0'—}—\/%—1—0(\/%) (7
where 7 1s Gaussian. These two approximations imply that
the deviation of the estimates from the respective true quan-
tities is of order 1/4/n. Now, as mentioned earlier, if the
estimates were ezactly equal to their true values, then the
number of flows admitted My would be precisely m*. This
suggests that we can approximate the distribution of Mj
by a linearization of the relationship (4) around a nominal
operating point (m*,u, o) (i.e. the operating point under
perfect knowledge):

i (4 M)+ 22)
0+ B+ au
Expanding the left hand side, using eqn. (2), we get
Ay

NG

o
+—Y0:Ol
y (1)

and hence

Mo =m*— %YO\/E—I— o(\v/n). (8)

Thus, we see that the effect of estimation error i1s an order
/n Gaussian fluctuation around m*, the number of sources
admitted under perfect knowledge (cf. top part of Fig 2).
Note also that the randomness in the number of flows admit-
ted is due mainly to the error in estimating the mean (Yp)
rather than the error in estimating the standard deviation

Zy).
( S?lbstituting eqn. (3) into (8), we get My in terms of the
system size n:

My = 1= 2 (Yo +ag) Vi + ofv/) (9)

A precise statement of the result 1s as follows. The proof
can be found in Appendix B (proof of Theorem III.1).

Proposition I11.1: Let Mén) be the random number of flows
admitted under the MBAC when the capacity is ng. Then
Mén)—n
tribution to the random variable —%(YO + o).

the sequence of random variables { } converges in dis-

We now proceed with an explicit approximation of the
overflow probability. The randomness in the aggregate traf-
fic load at some future time is due both to the randomness
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Fig. 2: Uncertainty due to fluctuation in the number of flows (top)

and in the aggregate bandwidth (bottom), for an admission controller

with perfect knowledge (left) and for an MBAC (right).

in the number of flows admitted as well as the randomness
in the bandwidth demands of those flows. This can be ap-
proximated with the help of the following lemma, which is
an extension of the Central Limit Theorem for a sum of a
random number of random variables:

Lemma IL.2: [3, p. 369, problem 27.14] Let X, X5,... be
independent, identically distributed random variables with
mean g and variance o2, and for each positive n, let Vj, be
a random variable assuming positive integers as values; it

need not be independent of the X,,’s. Let W,, = ZYI"I X;.
Suppose as n — o0, % converges to 1 almost surely. Then
as n — 00,
Wn - nﬂ
o\/n

converges in distribution to a N (0, 1) random variable.
Applying this lemma, the aggregate load at time ¢ can be
approximated by:

S; = ZD:Xi(t) = Mop + oY/ + o(y/n) (10)

Here Y; ~ N(0,1) and can be interpreted as an approxima-
tion for the scaled aggregate bandwidth fluctuation at time

t:
;W [E X;(t) — np]

Intuitively, eqn. (10) means that the fluctuation of the ag-
gregate load is approximately the linear superposition of two
effects: the random number of flows together with the ran-
dom bandwidth fluctuation around the mean. Substituting
eqn. (9) into (10), we get

(11)

St = np+ oYy — Yo — ag)V/n + o(v/n)
Thus, for large n, the overflow probability at time ¢ is:

Pr{S; > nu} ~ Pr{Y; — Yy > a4}



This expression gives us an interpretation of how overflow
occurs in a MBAC system: it is a combination of an aggre-
gate bandwidth estimation error at admission time (Yp) and
a fluctuation of the aggregate bandwidth (Y;) at time ¢ after
the flows have been accepted. Contrast this with the case
with perfect knowledge, where the overflow probability at
time ¢ is simply Pr{Y; > «,}, due to bandwidth fluctuation
at time ¢.

To get the overflow probability in steady state, we set
t = 00, in which case Y, is independent of Y. Therefore, the
difference Y., — Y} i1s a Gaussian random variable with mean
0 and variance 202. The overflow probability is therefore

ma(3)

We summarize this result more formally in the following
proposition:
Proposition I1.3: Suppose the target overflow probability

(12)

QoS is p,. Let p;n) be the actual average steady state over-

flow probability using the certainty equivalent MBAC for
capacity ny. Then as the system size grows:
lim p,"’ =@ (

Q_l(pq)

Note that for the AC with perfect knowledge, the over-
flow probability is exactly p,. This is because the aggregate
bandwidth fluctuation stems only from the fluctuation of the
individual flow bandwidths (cf. lower left part of Fig. 2). On
the other hand, in the measurement-based case, the variance
of the aggregate bandwidth is doubled because the number
of flows also fluctuates due to measurement error (cf. lower

right part of Fig. 2). The /2 factor is therefore the effect of
measurement error, and has quite a tremendous impact on
the overflow probability p;. For example, if p, = 1.0e — 5,
then the actual performance in the MBAC system would be
p; ~ 1.3e — 3, a difference of two orders of magnitude. In
other words, if we want to achieve p; = p, using a MBAC in
this impulsive load model, then we have to adjust the target
overflow probability under certainty equivalence.

p; =Q (\/iaq) or

(n) _

oy = QM pl) = V3ay. (13)

Using the approximation Q(z) ~ ﬂxﬂ for small Q(z), where
¢ is the pdf of N(0,1), we see that

®q 2
2ﬁp 1
Thus, we see that to achieve a target p, in this setting, we
need to set pf] roughly to be the square of the target proba-
bility. This conservatism leads to a loss in system utilization
compared to the scheme with perfect knowledge of the statis-

tics. The average utilization (in terms of bandwidth) for the

certainty equivalent scheme using parameter p; instead of p,
!

is given by E(Mo)u, or ¢ — cay+/n, as implied by eqn. (8).
The average utilization for the perfect knowledge scheme, on
the other hand, is given by m*pu, or ¢ — cag\/n, as inferred

from (3). Thus, if we pick a; to be ﬁaq, this translates to
a loss of utilization of (v/2 — 1)cag/n.

Proposition I1.3 has several surprising aspects. First, it
is a unwersal result in the sense that the performance of
the certainty equivalent scheme does not depend on the sta-
tionary distribution of the flow nor its mean and variance.

Py~

Second, although the estimators are unbiased, the net im-
pact on the performance of the system is negative. Thus
there 1s an inherent asymmetry between the effects of over-
estimation and under-estimation. Third, the impact of the
estimation error does not vanish as the system size becomes
large, even though the estimates become more and more ac-
curate. Fourth, for a large system, the degradation in per-
formance of the certainty equivalent scheme 1s due mainly
to the estimation error in the mean p of the bandwidth dis-
tribution and not to that in the standard deviation o.

To get more insights into the last two phenomena, let
us perform the following deterministic sensitivity analysis.
Define the following function:

o)

which is the overflow probability when there are m flows in
the system each with mean rate g and variance o?. Sup-
pose first that we measure only g, but that ¢ is known ex-
actly. The number of flows admitted m(j) depends on the
measured value ji and is given by the certainty-equivalent
admission criterion (compare with (4)):

e =0

py (i, 0. m(7)) = p. (14)
Note that the actual overflow probability p; for a given m(f)
is ps (1, 0, m(f)). The sensitivity of the overflow probability
with respect to the measured g is the deviation of p; from
its target value p, if i deviates slightly from its target value
p. For small deviations, we can simply use the derivative of
pr with respect to fi.

0 -
Sp 1= ﬁpf(/l’ff’m(/l)) .
fi=p

Using (14), this derivative can be computed as:

= ~ 0

Similarly, the sensitivity with respect to measured 7, assum-
ing p known, is given by:

agd(ag)

Sg = ———— 2~
o

Now observe that the sensitivity of the system perfor-
mance on the knowledge of the standard deviation, s, , does
not depend on the system size. Therefore, increasing the
system size - and therefore improving the quality of the esti-
mator o - results in a diminishing net impact on the overflow
probability. On the other hand, the sensitivity s, increases
with the system size, approximately as \/n, while the vari-
ance of the estimator ji decreases approximately as 1/y/n.
This suggests that the net impact of the uncertainty in the
mean bandwidth estimate does not diminish as the system
size grows, and also explains why the deviation from p; from
the target overflow probability p, is asymptotically indepen-
dent of n: both effects cancel out. The increased sensitivity
to the mean estimate arises because when there are more
flows in the system, and therefore more statistical regularity
in the aggregate bandwidth, the system is driven closer to
full utilization, which makes it more susceptible to admission
mistakes.



I1I. TuE CoNTINUOUS LOAD MODEL

In the impulsive load model, arrivals only occur at time 0
and admitted flows do not depart from the system. We shall
now consider a dynamical model, where flows arrive contin-
uously over time and stay for an exponentially distributed
holding time with mean 7T},. We assume a worst-case sce-
nario, where the effective arrival rate is infinite, i.e. there
are always flows waiting to be admitted into the network.
Thus, admission control decisions are made continuously at
all times. Clearly, the performance of any admission control
algorithm under finite arrival rate will be no worse than its
performance in this model. Another advantage of this model
is that we need not worry about the specific flow arrival pro-
cess which may be hard to model in practice. Furthermore,
we let p(t) denote a flow’s auto-correlation function, where

E[(X:(0) = p)(Xi(t) — )]

p(t) =

A. Memoryless MBAC

We first look at a memoryless scheme that only bases
admission decisions on estimates of the mean and variance
based on the current bandwidths of the flows. Assume that
the system starts at time 0. Our goal is to find the overflow
probability at an arbitrary time ¢, particularly at { = oo
which yields the steady-state overflow probability. We do
this by first analyzing the dynamics of the number of flows
in the system.

At any time ¢, the MBAC estimates the admissible number
of flows M;. As in (4), M; is given by:

0 [M] -

OV, (15)

W=

A= 2N, ) = [ LS () - )’
(16)

i=1
Observe that M; is random and depends only on the current
bandwidths X;(¢)’s of the flows. An approximation is given

by eqn. (8):

My = n = 2 (Vs + aq)v/it+ olv/) (17)

where {Y;} is a stationary zero-mean Gaussian process with
unit variance and auto-correlation function p(¢) (that of an
individual flow), and can be interpreted as the scaled aggre-
gate bandwidth fluctuation of the flows around the mean.

The actual number of flows N; in the system at time ¢ 1s
no less than M; since there are always flows waiting to be
admitted. On the other hand, N; can be strictly greater than
M, as flows that were admitted earlier stay for a certain
duration and thus N; cannot perfectly track the fluctuations
of M; (see Fig. 3). To compute N, first observe that if s*
is the last time at or before time ¢ that flows were admitted,
then the number of flows in the system at time s* is precisely
the same as number of flows admissible at time s*,1.e. Ng= =
Mg+. In between time s* and time ¢, no new flows were
admitted. Hence, if we let D[s, ] be the number of flows
departed in time interval [s,¢], then

Ny = N,» — D[s* {] = M,. — D[s*,1] (18)

On the other hand, for any s <'t,
N; = Ns+Als, t]—Dls,t] > N;—Dl[s,t] > M;—DJs,t] (19)

where A[s,t] is the number of flows admitted during [s,1].
Thus we conclude from (18) and (19) that

N: = sup {M, - D[s, 1]} (20)
0<s<t
too many flows in the system existing flows leaving
A new flows rejected
Nt : actual # of flows
o(n) | - e 1 m* target
# flows
Mt: estimated # of flows
flows admitted "repair’ complete
Critical time-scale T
*
s time
Fig. 3: The relationship between the current estimate of admissible

number of flows M; and the actual number of flows N;. The time-scale
Ty, is the typical time for the system to recover from admission errors.

Tt is clear from Fig. 3 and eqn. (20) that flow departures
have a repair effect to past mistakes made by the MBAC.
Eqn. (17) tells us that the the fluctuations of the estimated
number of admissible flows M, around the perfect knowledge
operating point m* is of the order of y/n. Thus, it takes of
the order of y/n flows to depart to rectify past errors in
accepting too many flows. How much time on the average
is needed for this to occur? Since the flow departure rate
is of the order of n/T}, this “repair time” is on the order

of /n/(n/Ty) = Th//n. We call this the critical time-

scale Ty of the dynamical system: admission errors at time
s has little influence on the future much beyond s + ﬁ, as
many flows would have been departed by then to repair the
errors. Thus, ﬁ is the natural time-scale to analyse the
full dynamics of the system. To make such analysis more
convienent, let us scale the flow holding time 7} = ﬁ\/ﬁ,
so that the critical time-scale ﬁ can be viewed as fixed as

n grows large.* Under this scaling, the number of flows
departed in time D[s,t] can be approximated as:

Dls,1] = "= /n + o(/n).

Ty

(21)

Such linearization is valid for large n such that we are fo-
cusing on the time-scale during which only a small fraction
(order 1/+/n )of the flows depart from the system.

Combining (17), (20) and (21) yields an approximation for
the number of flows N; in the system at time¢. The following
limit theorem makes such an approximation precise.

Theorem II1.1: Let {Nt(n)} be the process describing the
evolution of the number of flows in the system. Assume

4Tt should be emphasized that in reality, the system size n and the
average flow holding time T}, are independent system parameters. The
scaling of T}, as /7 is done solely to enable us to study both the effect
of traffic fluctuation and flow departures in the asymptotic analysis.
For, if the holding time T}, were fixed as n grows, the critical time-
scale would approach zero, leading to an asymptotic model where any
admission errors can be immediately restored by flow departures.



condition B.6 is satisfied. As n — oo, for each #, Ny
converges 1n distribution to

— sup

t —
7 sup {-v. -2,
B oo<s<t ol

where {Y;} is defined as above.

The proof uses the machinery of weak convergence and 1is
given in Appendix B. Condition B.6 contains mild techni-
cal assumptions on the individual flow processes; these are
also stated in the appendix. These assumptions hold for a
very broad class of models. For example, they hold if each
individual flow 1s a Markov modulated fluid

Once we obtained an approximation for V;, we can imme-
diately deduce an approximation for the aggregate load S;
at time ¢ and hence the steady-state overflow probability p;,
using the same argument as for the impulsive load model.

Proposition I11.2: Let St(n) be the aggregate load at time ¢
(n)

and py (t) be the overflow probability at time ¢. As n — oo,
(n) _ e e -
Sy o converges in distribution to
o\/n
I
sup (Y —Y, — —=(t —s) —ay
0<s<t o’ly

and the overflow probability pg,n)

Pr{ sup {Yt Y, —L,v(t—s)} >aq}.
0<s<t oy,

For brevity, we will define the important parameter:

gi= A (22)

O'Th

(t) converges to:

The steady-state overflow probability can then be approxi-
mated by taking ¢ = co in Prop. II1.2 and using stationarity
of {V:} to get:

ps ~ Pr {sgp {Yo —Y; + Bs} > ozq} (23)
s<0
Interestingly, one can interpret the limiting overflow prob-
ability at time ¢ as that of the length of a certain queue at
time ¢ exceeding a4. The queue is one which has a constant
service rate of 3, with the amount of work arriving in time
interval [s,t] given by Y; — Y.

B. Analysis of Overflow Probability

Our next step is to analyze the approximation to the over-
flow probability given by eqn. (23). Since the process {Y;} is
stationary and symmetrically distributed around 0, we can
rewrite (23) as

p; ~ Pr {sup {Y_: — Yo — Bt} > ozq} )
>0

This can be interpreted as the hitting probability of a Gaus-
sian process {Y_, — Yy} on a moving boundary y = 7+ .
While there is no known closed-form solution to this prob-
lem, an approximation can be obtained by applying results
due to Braker [13], [14] on hitting probabilities of locally
stationary Gaussian processes, extending the results by [7]
for stationary processes. Define

o2 (1) = E[(V-y — Yo)*) = 201 - p(1)]

to be the variance of Y_; — Yy (recall that Y; has zero mean
and unit variance). Assume the single-sided derivatives of
p(t) at t = 0 exist and are finite, let v*(0) be the right
derivative of the function o?(t) at t = 0. ® Then an approx-
imation to the hitting probability is given by:

Pr {sup {Y_, — Yo — Bt} > aq}
>0

), o () o

where ¢(z) is the N (0, 1) probability density function. The
integrand above can be viewed as an approximation to the
first hitting time density at time ¢; integrating over all ¢
yields the probability that hitting occurs at all. This is an
approximation in the sense that as ay = o0, the ratio of the
left-hand and the right-hand sides approaches 1. Hence this
approximation is good when p, is small.

While this yields an approximation that can be computed
numerically for general auto-correlation functions, we would
like to get more analytical insights. To that end, consider
the specific auto-correlation function:

plt) = exp (—%) |

With this choice of the auto-correlation function, {Y;} is the
well-known Ornstein-Uhlenbeck process. The parameter T
governs the exponential drop-off rate of the correlation func-
tion, and is a natural correlation time-scale for the burst
dynamics of the traffic. Substituting this into the approxi-
mation (24) and rescaling the time variable, we get:

Q

(24)

(25)

~ ~ (aq+t) qu—‘rt d
pe | [2(1—eXP(—vt))]%¢( 2(1—eXP(—7t))> t
(26)
where .
. 1 _Th
VTR T W

One can think of v as the separation between the flow and

burst scales, although note that Ty, is the scaled holding
time. If we make a time-scale separation assumption, i.e.
~ > 1, then

*° +1 +t 1
e [0 (U7 = gl (~5e3)

Note that the first approximation is via exp(—vt) =
¥> 1

It is interesting to compare this overflow probability for
the continuous-load model with the corresponding result for
the impulsive load model under long flow durations, given in
Proposition I1.3. To do this, we first use the approximation

LICIIPY Q(z) and rewrite (27) in terms of the flow parameters
as .
Th oag
me g e ()
For the impulsive load model, the overflow probability
is approximately Q(%) Eqn. (28) tells us that in the

(28)

2 2
Sie. v1(0) := lim, o4 2 ()=o7(0)

t
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Fig. 4: For the memoryless estimator, the overflow probability de-

pends on the ratio of the correlation time-scale T; and of the critical

time-scale T} . An estimation memory window of length T, reduces the
variance of the bandwidth estimator, and also smoothes its fluctuation
to a time-scale of roughly T, + Th,.

regime of separation of time-scales, the corresponding over-
flow probability can be much worse in the continuous-load
model. This is because while in the impulsive load model
estimation errors can occur only at a single point in time
(time 0), whereas in the continuous-load model, estimation

errors can occur up to roughly 7} before time ¢ to have a
significant impact on the number of flows at time ¢. The
shorter the traffic correlation time-scale T, the faster the
memoryless mean bandwidth estimates fluctuates, and the
larger the probability of having an under-estimation at some
time in the interval. Hence, the overflow probability in the
continuous-load model increases with the separation of time-

scale g:’: For example, note the multiple peaks (underesti-
mations of ) within the interval of length T} in Fig. 4:
each of these peaks could potentially cause overload within

the critical time-scale ﬁ The lesson is that it’s not only
important to consider the estimation error at a single time-
instant, but also the chance of making error any time in the

interval defined by the effective flow holding time-scale T},.
Note also that since ﬁ decreases as %, where T}, 1s the ac-
tual mean holding time, the overflow probability decreases
roughly as ﬁ

We can also write the above approximation as (using again

£~ Q).

W=

Th o

\/_T \/ﬁﬂ (\/_ TQ qpq)

(29)

C. MBAC with Estimation Memory

We see that the memoryless scheme suffers from two prob-
lems . First, the estimation error at a specific admission time
instant is large, and in fact has impact which is of the same
order of magnitude as that due to the statistical fluctuations
of the bandwidths when the correct number of flows are ad-
mitted. Second, the correlation time-scale of the estimation
errors 1s the same as that of the traffic itself; thus, in the
regime when the flow holding time is much larger than the
traffic correlation time-scale (T}, > T¢), the probability of
having a large under-estimation of mean bandwidth at some
time during the time-scale Tj, 1s high. A strategy which, as
we will see, counters both these difficulties is to use more
memory in the mean and variance estimators.

To be more concrete, let us consider using the first-order

auto-regressive filter with impulse response:

= % exp (-%) u(t)

to estimate both the mean and the variances. (Here, u(t) is
the unit step function.) Thus, in place of the memoryless
estimators in eqn. (16), the MBAC would use:

h(t)

im(t) = /Ooo [%le(t_r) h(r)dr
Tm(t) = /OOO [nilz(&(t—r)—um(t))z] h(r)dr

Note that the estimates are obtained by an exponential
weighting of the past bandwidths of the flows. The param-
eter T,, governs how the past bandwidths are weighted; it
can be thought of as a measure of the estimation window
length. The relationship between [in, (t) and the memoryless
estimator ji(t) is simply i, = i x h, where # is the convolu-
tion operation.

Corresponding to Theorem III.1 and Prop.
memoryless case, we can show:

Theorem II1.3: For the system of size n, let {N } be
the process describing the evolution of the number of flows
in the system. Assume condition B.6 is satisfied. If we scale

the flow holding time as T}En) = ﬁ\/ﬁ, where ﬁ 1s a fixed

constant, then as n — oo, for each ¢,

II1.2 in the

—n .
converges 1n

N
vn

_ aq}

where 7 = (h*Y): and {Y;} is a zero-mean, unit-variance
stationary Gaussian process with autocorrelatlon function
identical to that of an individual flow. The overflow proba-

bility p™

distribution to

i —
g sup {—Zs —L,VS)

(30)
B oo<s<t o'y

() at time ¢ converges to:

Pr{ sup {Yt—Zs —L,v(t—s)} >aq}.
0<s<t o'ly

One can interpret Z; as the error in the filtered estimate
of the mean bandwidth of a flow at time ¢. The steady-
state overflow probability under the MBAC with memory
can therefore be approximated by:

ps ~ Pr {sup(Z_t -Yo—pt) > aq}

t>0

This is again a hitting probability of a Gaussian process
({Z-+ — Yu}) on a moving boundary, and an approximation
of such a probability is given by [13], [14]:

o AT [T (gt t) (et ( L
Ps Tc+Tm/0 {am(%)]?’d)(m(ﬁ)) Q T
(31)
where
2 (1) 9 2T+ T, 2T,
i (5) = Bz y-vo = T - B eyl




Now, under separation of time-scales, v > 1, we have the
t\ 2T+ T,

approximation that
(ﬂ) T T+ T

in which case the above integral can be explicitly computed
as:

2
m

vT:
V(Te + Tn) (2T + Ton)

ol F)

To compare this result to the memoryless case, let us first

T + T

1
L (L Tt T
N p< 22T, + Tpn)

~

ps

use the approximation Q(z) ~ ﬂxﬂ to rewrite (32) in terms
of py and also the flow parameters:

et Te+Tm
» - Th ) o2 < Gy, P )2Tc+Tm
! T + T) @Te + T)  27p e
Te
+Q <aq,/1+ 7 ) (33)

Comparing eqn. (32) to eqn. (27), we can see explicitly
the effect of memory. Let us look at the first term in (32),

which corresponds to (29). The exponent is % which

18 % when there is no memory (as we had in the memoryless
scheme), monotonically increases with T,,, and reaching a
value of 1 for infinite memory. This effect can be explained
by the fact that the variance of the mean bandwidth esti-
mate, E[Z2], is Tcich and decreases monotonically to zero
with more memory. Thus the inaccuracy in the estimates
and hence the inaccuracy in the number of flows accepted
decreases (cf. Fig. 4). Furthermore, increasing the amount
of memory has an additional effect of smoothing the mean
bandwidth estimates; thus, not only are the individual band-
width estimates more accurate, they also fluctuate less so
that the probability of having an under-estimation at some

time over an interval of length ﬁ is reduced. This is reflected
Th
V(TeATw) (2Te+Trm)

of (33) replacing the factor

in the smaller pre-factor in the first term

Th
V2T,

This can be interpreted as increasing the correlation time-
scale by T, , the estimation window length.

In the limit for large T, , we always have exactly the right
number of flows in the system and the overflow occurs due
only to the fluctuation of bandwidth requirements of flows
in the system, and not to the fluctuation of the number of
flows in the system. This is now given by the second term

in (33).

in the memoryless case.

IV. RoBUST MEASUREMENT-BASED ADMISSION
CONTROL

In this section, we discuss how our results can be used to
make MBAC robust. We use simulations with synthetic and
actual traffic sources to verify these insights. The details of
the simulation setup are described in Appendix A

A. Robust MBAC with Known T,

In this section, we assume that the correlation time-scale
T, is known to the MBAC. Our goal is to verify the validity

[0

of the formulas presented in the previous section. Formula
(33) can be used to choose the memory size and to adjust the
target overflow probability p; in the MBAC such that the
overflow probability meets the QoS requirement, i,e, choose
T and p such that ps(Tm, Tc, py) = pg. The shorter T,
the more conservative the choice of p; has to be, resulting
in a loss of bandwidth. This loss of utilization can be quan-
tified. The average utilization (in terms of bandwidth) of

e system is given by pFE[N], where N; is the (stationary)
y:lmber of flows in the system at time ¢. Eqn. (30) allows us
to approximate this when pg is used as the target overflow

(g)gfobability:

Since the other terms do not depend on p;, we see that the

2
q

L nlt=s)

pE[N;] = nu+o/nE [sup —
O'Th

s<t

}] AN

difference in utilization in using p; and p, is simply

ov/n [Q7(p)) — Q7" (pq)]

This allows us to quantify the impact on the utilization on
using a more conservative target overflow probability.

We now describe the simulations we have performed to
verify that our formulas can be used to perform robust
measurement-based admission control. We proceed in two
steps. First, we compare the overflow probability p; ob-
tained through simulation to the value predicted by theory.
Second, we invert (32) to obtain an adjusted target over-
flow probability p such that ps (T, Te, pj) = pq- We then
simulate the system with this adjusted target overflow prob-
ability in order to check if the overflow probability p; really
is close to the target overflow probability p, regardless of the
other parameters.

(34)

Py (simulation and theory) as a function of Tm (pce =1.0e-3, Th =1.0e3)
o
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Fig. 5: The overflow probability p; as predicated by theory (eqn.

(32)) and obtained by simulation (T}, = 1000, T, = 1.0, pfz = 1.0e — 3).

Figure 5 shows the overflow probability p; as a function
of the memory window size T,,. The most striking aspect
of this figure is that for small memory window size T,,, the
overflow probability p; can be orders of magnitude larger
than the target overflow probability p,. This confirms that
the memory window size T, is a crucial parameter in achiev-
ing a desired QoS target. If it is chosen too small, then the
performance of the MBAC can degrade dramatically. We
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Fig. 6: The simulated overflow probability p; for the synthetic traffic
model using the adjusted target overflow probability p{z.

observe that the overflow probability predicted by theory is
slightly conservative with respect to the simulated value. We
attribute this offset to the assumptions in our model, such as
ignoring the discreteness of the number of flows. However,
the shape of the graphs correspond very well; in particular,
the knee, corresponding to the value of T,,, beyond which us-
ing a longer memory window size has little additional ben-
efit, is well matched. Figure 6 demonstrates that our for-
mulas can be used to perform robust measurement-based
admission control. We see that with an adjusted overflow
probability target, the actual overflow probability is slightly
smaller than p, over the whole range of parameters (cf. Fig.
6). Tt is important to note that for small T,,, the adjusted
target overflow probability p’q can be very small (< le — 10)
with respect to the target overflow probability p, of 1e — 3.

B. Robust MBAC with Unknown T,

So far, we have assumed that the correlation time-scale
parameter T, and the flow holding time T}, are known to
the MBAC algorithm so that an adjusted QoS parameter p’q
can be computed. In practice, 1t 1s not difficult to obtain
a good estimate of the average holding time T} of flows.
On the other hand, the correlation time-scale 7, and more
generally the correlation structure of the traffic is hard to
estimate reliably. Therefore, we would like to design the
MBAC such that its performance is good over a wide range
of values for T,. We claim that this can be accomplished
by choosing the memory window length 7, on the order of

the critical time-scale T} . For concreteness, let us pick the
window size T, to be Tj and examine the performance of
the system for a range of 7.

First, assume T, is small with respect to ﬁ This 1s the
separation of time-scale regime and formula (33) applies and

holds for all 7,,. Using the fact that 7,, = ﬁ > Te, we get
the further approximation:

[exe
= (%)

which is of the order of p,. In this regime, the effect of the
estimator memory effectively smoothes the fluctuations of
the traffic and obtain a reliable estimate of the mean traf-
fic rate. Although this result is derived using the simple

(35)

exponential auto-correlation function (25), it can be easily
shown that in this regime, the detailed correlation structure
is not relevant and a similar approximation holds for other
auto-correlation functions. We call this the masking regime
because the memory window size masks the impact of the
parameter T, on the overflow probability p;; the fluctuation
time-scale of the mean estimator is determined by T, alone
(cf. Fig. 4).

Next, let us consider the other extreme, when T¢ is much

longer than Tp. In this case, ¥ = TTl% < 1, and we have the
approximation:
2 Im

Substituting this into the general formula (31) and evaluat-
ing the integral, we get:
7.\
(%)
Ty

which definitely meets the target QoS since T, > T} in this
regime. In contrast to the masking regime, the time-scale of
the estimator fluctuation is dominated by T,.. The memory
window is effectively useless in this regime, as it does not
reduce estimation errors. However, the fluctuation of the
estimators around their mean is at a time-scale longer than
the critical time-scale. This is precisely the regime where
the repair effect makes overflow unlikely. Therefore, we call
this the repair regime.

For T, in between the two extremes, there i1s no closed-
form expression for the overflow probability, and we resort
to a numerical integration of the formula (31) to study the
performance of the MBAC. This is shown in Fig. 7, where

we plot the overflow probability as a function of T, /ﬁ and

T.. We see that while for small Tm/fh the performance
is not robust, the QoS is satisfied over a wide range of T¢
once the memory window size is chosen to be a significant

1 T. o
P " —F—=—¢€Xp
! v27TThN

fraction of ﬁ This is further corroborated by simulation
results shown in Fig. 8.

.

log10(p,

Ioglo(TC)

Tm/Th~

Fig. 7: The overflow probability p; obtained by numerical integration

of (31), as a function of the normalized memory window size Tm/ﬁ
and of the correlation time-scale T.

The above analysis and simulations are based on a traffic
model with correlation at a single time-scale. In practice,
traffic fluctuations may occur at multiple time-scales. In



p; as a function of T_and Tm/Th~

Ioglo(TC)
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Fig. 8: The simulated p; over the same parameter range as in Fig.
7.

particular, several studies of various types of network traffic
have found phenomenon of long-range dependence (LRD)
[18], [8], [1], [6]. However, based on the intuition gained
from the single time-scale model, we expect that a memory

window size on the order of T} is again appropriate here.

As before, flow departures dictate a critical time-scale T}
over which the statistics of the future behavior of the traffic
has to be predicted. A memory window of T} allows the

simultaneous smoothing of the fluctuations faster than fh
for reliable estimation and the tracking of fluctuations at

a time-scale larger than T,. The statistics of the long-term
fluctuations of long-range dependence is therefore irrelevant.

To provide some support for this hypothesis, we present
simulation results on an actual traffic trace. Figure 9 and
10 show the overflow probability when the flow is a piece-
wise CBR version of the MPEG-1 encoded Starwars movie
[10]. This particular trace has been shown to exhibit long-
range dependence [8]. We vary the average flow holding

time and plot the overflow probability as a function of 1/7}.
As with the synthetic traffic above, we see that the perfor-
mance is not robust under memoryless estimation. When
Ty, is large (corresponding to small T; in Fig. 7), the per-
formance misses the target by 1 or 2 orders of magnitude.
On the other hand, we note that with the choice of memory

window size T,, = ﬁ, the MBAC is robust (cf. Fig. 10).
Apparently, the strong long-term fluctuations of this traffic
do not degrade the performance of the MBAC.

V. DiscussioN
A. Critical Time-Scale

Our analysis has demonstrated the fundamental impor-

tance of the critical time-scale 7}, as the time-scale over
which the effect of admussion decisions persists. This insight
leads to two important principles for the design of robust
and efficient MBAC schemes. First, traffic fluctuations on
a time-scale longer than the critical time-scale fall into the
repair regime; these fluctuations should be tracked by the
MBAC so that they can be compensated for by flow admis-
sions and rejections. Second, spare link bandwidth should be
set aside to absorb fluctuations at a time-scale shorter than
T}, as these fluctuations are too fast to be compensated for
by the repair effect. A consequence is that a robust MBAC

10
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Fig. 9: The overflow probability for Starwars sources with memoryless
estimation (T, = 0).
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Fig. 10: The overflow probability for Starwars sources with Ty, = T;;

should predict the fluctuation statistics over a time-scale of

ﬁ, rather than estimate the long-term statistics of the traf-
fic. In this context, it does not matter whether or not the
traffic is stationary or not over a time-scale much longer than

Th, or if the traffic exhibits long-range dependence (LRD).

By setting the measurement window size to be T}, our
scheme 1mplicitly embodies the first principle: effective

tracking of traffic fluctuations slower than 7},. On the other
hand, the scheme sets aside spare bandwidth of the order
o+/n. Since o? is the long-term variance of a flow, this leads
to an over-conservative spare bandwidth allocation when

much of the fluctuation is actually slower than 7}. (This
can be seen in Fig. 7, where the actual overflow probability
pr drops rapidly with increasing traffic correlation time-scale
Te.) In asequel to this paper [12], we propose a novel MBAC
design which goes one step further. By appropriate filtering
of the traffic measurements, the MBAC scheme simultane-
ously tracks slow fluctuations and estimates the variance of
fast fluctuations, so that the appropriate amount of spare
bandwidth can be set aside.



B. Heterogeneous Flows

Although the results in this paper are derived under the
ideal assumption of identical traffic statistics across flows,
many of the ideas are in fact extensible to a heterogeneous
environment. The key concept behind our approach is the
existence of an appropriate operating point about which the
load fluctuates. We express this operating point in terms
of the number of admissible flows m*. However, when flow
statistics are heterogeneous, the operating point should be
thought of as a target utilization level of m*y. This level
depends on the statistics of the individual flows only through
the statistics of the aggregate traffic (mean and variance in
the central-limit framework). Moreover, as long as there are
many independent flows in the system and no single flow
dominate the entire link, the traffic fluctuations can be well-
approximated as Gaussian even in the heterogeneous case.
In [12], we extend the framework developed here to analyze
the performance of the MBAC design under heterogeneous
flows.

VI. RELATED WORK

Past work on measurement-based admission control [5],
[19], [15] have either ignored measurement errors or assumed
a static situation where calls do not arrive or depart the
system and there is arbitrarily long time to make accurate
measurements. Here we discuss three more recent papers
which are closer in spirit to our work.

Jamin et al., in [16], presented a specific algorithm for
measurement-based admission control of predictive traffic,
and evaluated its performance through simulation. The al-
gorithm relies on measurements of the maximum delay and
maximum bandwidth over a measurement interval. There
are several tuning parameters in the algorithm (sampling
window size S, measurement window size T, utilization tar-
get, back-off factor A) that are found to have a significant
impact on performance. We believe that our work offers
some insight into the impact of these system parameters. In
particular, the measurement window size 7' is very similar
to our measurement time-scale T,,,. Also, A is a parameter
that controls an overestimation of the actual measured delay
- in other words, it controls conservativeness, which in our
work 1s represented through the parameter p;.

The MBAC algorithm proposed by Casetti, Kurose and
Towsley [4] recognizes the importance of the measurement
window size as a system parameter. The authors propose
an adaptive algorithm to determine an appropriate window
size. While this is an improvement over the fixed window
length parameter in [16], the adaptive algorithm itself has
external tuning parameters. It is not clear if the overall
system is easier to tune.

Gibbens et al. [9] studied memoryless measurement-based
admission control in a decision-theoretic framework. Their
work takes into account the impact of measurement errors on
performance and also considers the call dynamics. However,
there are some significant differences between their and our
work. First, a perfect time-scale separation is explicitly built
into their model by assuming that the network states seen by
successive call arrivals are independent. This makes it dif-
ficult to evaluate the performance of MBAC schemes with
memory and also the effect of traffic correlation on a system
with very high call arrival rates. Indeed they only focused
on memoryless schemes. Moreover, our results show that
the condition for time-scale separation is rather subtle, as it
depends, among others parameters, on the system size. Sec-
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ond, while they also observed that a memoryless certainty
equivalent scheme can perform poorly, their remedy is quite
different. They relied on essentially two mechanisms: the
use of a Bayesian prior on the call statistics and network
state-independent call rejection. The first mechanism serves
to smooth out the fluctuation in successive memoryless esti-
mates, as the observations are weighted by a fixed prior. The
second mechanism counters very high call arrival rates, by
not accepting calls until one has left the system. In contrast,
we propose the use of an appropriate amount of memory in
the estimator, which as we have seen deals with both these
problems. Our framework, without a prior: assuming time-
scale separation, allows us to evaluate the performance as a
function of the amount of memory used. We believe the ap-
propriate use of memory is a natural and effective strategy,
particularly when no reliable prior exists.

Our approach of abstracting away enough details of the
measurement and admission decision process in order to fo-
cus on the fundamental issues of measurement uncertainty
and system dynamics is corroborated by recent work by
Jamin and Shenker [17]. They simulate several specific
MBAC algorithms that have been proposed in the literature,
and find them to be essentially equivalent with appropriate
tuning of system parameters. In our work, we attempt to
study, in a sense, the common denominator of these pro-
posed schemes, and focus on how the “performance tuning
knobs”, such as memory window size and degree of conser-
vativeness, should be set to achieve robustness.

VII. CONCLUSION

In this paper, we have presented a framework for study-
ing the performance of admission control schemes under
measurement uncertainty and flow dynamics. Using heavy-
traffic approximations, the analysis of the resulting dynam-
ical system 1s simplified via linearization around a nomi-
nal operating point and by Gaussian approximations of the
statistics via central limit theorems. The insights gained
include:

o quantification of the impact of estimation errors on the
QoS performance of MBAC schemes;

o 1dentification of a critical tzme-scale for which the effect of
admission decisions persist;

¢ demonstration of precisely how the memory time-scale of
the estimators affects performance and what the appropri-
ate choice of memory time-scale is to achieve robust perfor-
mance.

These insights are directly applicable to the design of ro-
bust MBAC schemes. Such schemes do not have to rely
on external tuning parameters to achieve the desired perfor-
mance despite the inherent measurement uncertainty and
the complicated system dynamics.
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APPENDIX
I. SIMULATION SETUP

We simulate the admission controller under infinite load
and we measure the resulting overflow probability p; on a
bufferless link of capacity ¢. We describe the details of the
simulation setup.

We model traffic flows as fluid flows, i.e., we do not sim-
ulate individual packets. In particular, we use a piecewise
constant-rate traffic model, where the fluid rate only changes
at certain points in time, and remains constant between
these points [10]. The advantage of this traffic model is
that it lends itself to very efficient simulation.

We use two types of flows. The first type is based on a
stochastic model. Each flow is the realization of an indepen-
dent, identically distributed, stationary fluid process. This
fluid process is modulated by an underlying renewal pro-
cess; the fluid rate is constant on the time interval between
two consecutive renewals. The fluid rate in each interval
is chosen independently according to the marginal rate dis-
tribution, which in this case is Gaussian with o/u = 0.3.
The renewal time distribution is exponential with mean T,
which implies that the autocorrelation function of the traffic
rate process is precisely as in (25).

The second flow type is based on an actual video trace,
namely a two-hour MPEG-1 encoded version of the Starwars
movie [8]. We use the smoothing algorithm described in [10]

to transform this trace into a piecewise constant-rate flow.
For this flow model, o/u = 0.33. Each flow is a subsequence
of the trace (with wrap-around at the end of the trace) with
a randomly chosen starting point. Note that this trace ex-
hibits the LRD property, i.e., its autocorrelation function
decreases subexponentially [8]; also, its empirical marginal
rate distribution 1s not Gaussian. For both traffic models,
the flow holding time is exponentially distributed with mean
Th.
We periodically sample the empirical overflow probability
py over intervals of length 2 - max (7}, T, Tc). This sample
period is long enough to give approximately independent
samples, as the only “memory” in the system is due to flow
dynamics, estimation memory, and traffic correlation. By
chosing a multiple of the maximum of their respective time-
scales, we are assured that consecutive samples represent
essentially independent observations of the system.

After each sample period, we compute the (two-sided)
95% confidence interval around the estimated value of py.
We terminate simulations when (a) the 95% confidence in-
terval is less than 20% of the estimated value (i.e., we are
confident that the estimated p; is close enough to the actual
pr), or (b) the estimated value plus the (one-sided) confi-
dence interval is at least two orders of magnitude below the
target overflow probability (i.e., we are confident that the
estimated p; is considerably lower than the target overflow
probability p,). We also discard all initial samples until the
simulated MBAC has reached steady state.

II. WEAK CONVERGENCE RESULTS FOR HEAVY-TRAFFIC
APPROXIMATION

In this appendix, we will prove Theorem III.1, giving a
rigorous justification of the heavy traffic approximations we
used.

Definition B.1: The space D[0, o0] is the space of all real-
valued functions on [0, co0) that are continuous from the right
and have limits from the left. There is a metric (Skorohod
metric) defined on D[0, oo] such that it is complete and sep-
arable. _

Definition B.2: Let {Zt(n)} be a sequence of processes
whose sample paths are in D[0, o] {Zt(n)} is said to
converges weakly to {Z;} if for every continuous function
/P[0, 00] = R, BF{Z" D] = Elf({Z]):

With a slight abuse of notation, we will use 2 to denote
weak convergence of processes as well as convergence in dis-
tribution for random variables. We shall use the following
theorem to verify weak convergence.

Theorem B.3: A sequence of processes {Zt(n)} converges
weakly to {Z;} if all finite-dimensional distributions con-
verge and {Zt(n)} is tight, i.e.

1) For every 1 > 0, there exists an @ > 0 such that

Pr{|Zén)| > a} <7 Vn.
2) For every T > 0, ¢,5 > 0, there exists a ¢ € (0,1) and
an integer ng such that

Pr sup |Zt(1n) - Zt(:)| >er <
[t1—t2|<8,0<¢t1,t2<T
We will use the following theorems [2].

Theorem B.4: (Continuous-Mapping Theorem for Pro-

Vn > ng.

cesses) Let {Zt(")} be a sequence of processes whose sample



paths are in D[0, co]. If h : D[0, 0] = P[0, oo] is continuous
wd{Tm}g{Z}thmgHZ”})ggHZJ)

Theorem B.5: Let {W } and {Z } s be processes de-
fined on the same probability space, and g : P[0, 00] x
1t {w™} B (W} and
{Z,"} converges Weakly to a deterministic process {Z;},

D
then g({W, "}, {2}) B g((W:}, {Z:)).

We need the following technical conditions on the flow

processes.

Assumptions B.6: 1) The sample paths of the individual
flow processes {X;(t)} are in D[0, c0].

D0, 0] = D[0, ] is continuous.

2) The mean bandwidth estimates {ﬂ&’”} converges
weakly to the constant process p.

3) The standard deviation estimates {&g”)} converges
weakly to the constant process o.

4) Tf we define

= gm0 -

to be the scaled and centered sum of the individual flows,

then as n — oo, {Y } converges weakly to {Y:}, which
is a stationary zero-mean Gaussian process with unit vari-
ance and auto-correlation function p(¢) (that of an individual
flow).

The fourth condition says that the aggregation of the in-
dividual flows satisfies a functional central limit theorem.
It holds for a very broad class of models for the individual
sources. For example, it can be shown [20] that the condition
holds if {X;(¢)} is a K-state continuous-time Markov fluid,
in which case the limiting process {Y;} is a linear functional
of a K — 1-dimensional diffusion process.

To prove the main theorem, we need the following lemma,
which can be viewed as a functional law of large number for
the process describing the evolution of the number of flows
in the system.

deterministic process taking on a constant value of 1 for all
t.
Proof: By solving (15), we get for each s,

1 - - )\
NRQIE (\/(0(”))20% + dnpp) — 6 )aq) (36)

Using assumptions (2) and (3) in B.6, together with Theo-

Mén) =

the process taking on a constant value. Now, for all ¢ > 0,

does the process {Supg<<; T}, by the continuous map-

constant process 1. |
Proof:  Proof of Theorem III.1

Using (36), we get for each s,

13

n) a.gn))
n

Qq

2(ji™)?

202 n
4 Appl”

(37)

¢<

By assumption B.6, we know that {\/n(p — /13 )} A
—oY;, where {Y;} is a zero mean Gauss1an process with

Ma
2(ji

auto-correlation function p. Also, {/15 } converges weakly

to the constant process p and {0'5 )} converges weakly to
the constant process . By Theorem B.5,

(n)
Mg —n, p
T

Next, we will show that for fixed t > 0, {D[s,t]} as a
process in s converges weakly to the deterministic process
{STN;t} on [0,#]. First, let us fix an s < t. Define now two

h

random variables D%[s,t] and D'[s,t]. D'[s, ] is the number
of flows departing from the system when there are N (s) flows
in the system at time s and no more flows enter the system
n [s,t]; D¥[s,t] is the number of flows departing from the
system when there are W := sup ¢, N(7) flows at time s

{ ;(Ys +ag)} (38)

and no more flows enter the system in [s,t]. Tt can be seen
that for every =z,

Pr{D'[s,t] > 2} < Pr{D[s,t] > z} < Pr{D"[s,#] > z}
(39)

D¥[s,¢] _
n
2

Using Chebyshev’s bound, we have for every € > 0,
D¥[s,t] s—t

ot

The expectation can be computed using the fact that the
flows have exponential holding time and depart from the
system independently:

Ty €

DU[s,t] s—t\"
EK wz"ﬁ)
1 O 10 T4 P .

n n

where ¢ 1s the probability that a given flow leaves the system
( —t
g =1—exp| =

some time in [s, ], and is given by
Th \/ﬁ)

By Lemma B.7 and the continuous mapping theorem, as
w

n — 0o,
[ ] !
n

Substituting this into (42) shows that

[CWhﬂ_

Vvn
converges in probability, and hence in distri-

(41)

W2
2]—)1

s—1

)

Ty

Iim E

n—0o0

=0

Hence %

bution, to ‘}~ Using a similar argument, one can show the
h



same thing for D'[s,t]. By (40), this imply that for fixed
D[st] D t

Vo ST% A standard argument in the the-
h

ory of convergence in distribution implies that for all £ and

ok € 00, (PR, By S (ast s,

NORERRERY e
i.e. finite-dimensional distributions converge. To show weak
convergence as a process, we need to verify tightness, accord-
ing to Theorem B.3. The first condition is trivially satisfied.

For the second condition,

s and ¢,

S1,..

D[Sl,SQ]
Pr sup — >c
[s1—52]<8,0<51,52<¢t vn
D[ké, (k + 1)4]
< Pr{ sup —————>¢€
0<k<t Vvn
t D[ké, (k + 1)d]
< z it B SO '
< <6+1)sgpPr{ Jr > €
< (L4 L supE l(D[ka (k + 1)4])?
< 3 sk | :
t 1 {E[U E[U?] -E[U
) €2 n n

where U := sup,¢[g 4 NT(n) and

p = Pr{a flow departs in time [kd, (k + 1)d]} = 1—exp
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By direct calculation, (45) is in turn equal to

()

where the o(1) term goes to zero as n — oo. Thus, by

appropriate choice of n and J, (44) can be made arbitrarily
Dls,t]
Vn

(52
—3 t o(1)
Ty

1

€2

t
- +1
5—1—

small. this verifies the tightness of { } and hence its
weak convergence.

Combining the weak convergence of {%} and

(n)
{%}, it follows that
n t—
Nt( )3 sup {—E (Ys—'u( ~S) —I-aq)}
0<s<t I o'y
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