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Abstract

We propose a time-scale decomposition approach to measurement-based admission con-
trol (MBAC). We identify a critical time-scale Ty, such that: 1) aggregate traffic fluctuation
slower than T}, can be tracked by the admission controller and compensated for by flow
admissions and departures; 2) fluctuations faster than T}, have to be absorbed by reserving
spare bandwidth on the link. The critical time-scale is shown to scale as T}y, /+/n, where T},
is the average flow duration and n is the size of the link in terms of number of flows it can
carry. An MBAC design is presented which filters aggregate measurements into low and
high frequency components separated at the cutoff frequency 1/T}, using the low frequency
component to track slow time-scale traffic fluctuations and the high frequency component
to estimate the spare bandwidth needed. Our analysis shows that the scheme achieves
high utilization and is robust to traffic heterogeneity, multiple time-scale fluctuations and
measurement errors. The scheme uses only measurements of aggregate bandwidth and
does not need to keep track of per-flow information.

1 Introduction

In order to make quality of service (QoS) guarantees, a network must exercise flow admission
control. Admission decisions are based on some traffic characterization, such as effective
bandwidths [15, 7] or leaky bucket descriptors [18]. The traditional approach to admission
control assumes that a traffic descriptor is provided by the user or application for each flow
prior its establishment [19]. However, this approach suffers from several problems. Chief
among them is the inability of the user or application to come up with tight traffic descriptors
before establishing the flow. This is especially so when the bandwidth fluctuates over multiple
time-scales. Another problem is that this traffic descriptor and the associated quality of service
guarantee defines a contract between the application and the network, and therefore a need
to police this traffic specification. This is difficult for statistical traffic descriptors. Also, the
need for a policer makes the network architecturally more complex.

Measurement-based Admission Control (MBAC) avoids these problems by shifting the task of
traffic specification from the application to the network [14, 9, 11]. Instead of the application
explicitly specifying the traffic, the network attempts to “learn” the statistics of existing
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flows by making on-line measurements (cf. Fig. 1). This approach has several important
advantages. First, the application-specified traffic descriptor can be trivially simple (e.g., a
peak rate). Second, an overly conservative specification does not result in an overallocation
of resources for the entire duration of the session. Third, when traffic from different flows are
multiplexed, the QoS experienced depends often on their aggregate behavior, the statistics of
which are easier to estimate than those of an individual flow. This is a consequence of the law
of large numbers. It is thus easier to predict aggregate behavior rather than the behavior of
an individual flow.

estimates of target overflow
per-flow mean probability

Traditional and variance
A MBAC Pq

a-priori traffic
descriptors

'
1
measurement |
window 1

1

—_—
Tc (burst time-scale)

time
T,, (flow lifetime)

Figure 1: Traditional admission control makes decisions based on the a-priori traffic descriptors
of the existing and the new flow. Measurement-based admission control (MBAC) only uses
the new flow’s traffic descriptor, but estimates the behavior of the existing flows.

In order for an MBAC approach to be successful in practice, it has to fulfill several require-
ments.

e Robustness: An MBAC must be able to ensure a quality of service on behalf of ap-
plications in the same way as its a-priori descriptor based counterpart does. This is
not trivial, as measurement inevitably has some uncertainty to it, leading to admission
errors. The quality of service should also be robust to flow heterogeneity, to the fluctu-
ations on many time-scales that are a general property of network traffic [16, 17, 1, 6],
as well as to very heavy offered loads, e.g., due to “flash crowds”.

e Resource utilization: The quality of service of admitted flows could be improved by
being overly conservative in admission control, thereby allocating more resources per
flow than necessary. This is undesirable, because the secondary goal for the MBAC is
to maximize link utilization, subject to the QoS constraint for the admitted flows!.

e Implementation: The cost of deploying an MBAC system must be smaller than its
benefits cited above. For this, the MBAC should be modular, in the sense that adding
the measurement machinery to the existing infrastructure should be as nonintrusive as
possible. Also, the computational complexity of the algorithm used to make admission
decisions needs to be scalable in the flow arrival rate and in the link capacity.

Tt is important to note that we define QoS as the performance experienced by admitted flows; we do not
view link utilization as a QoS metric per se. The goal of the MBAC is to admit as many flows as possible,
subject to satisfying the QoS constraints.



In this paper, we propose an MBAC design that fulfills the above requirements. Our design
is robust to fluctuations on multiple time-scales in the traffic and to flow heterogeneity, and
achieves high link utilization despite the inherent measurement uncertainty. The scheme is
also easy to implement as it only relies on aggregate bandwidth information.

Our proposed design is based on a time-scale decomposition approach. Flow arrival and
departure dynamics are explicitly taken into account. The fact that flows only remain in
the system for a finite time gives admission decisions a certain time-horizon, which we call
the critical time-scale. This critical time-scale determines the fluctuations in the aggregate
bandwidth that can be compensated through flow admissions and departures. For example, a
slow increase in the aggregate bandwidth may be compensated simply by departing flows to
avoid resource overload. A slow decrease in the aggregate bandwidth may be compensated for
by admitting more flows to benefit from the released bandwidth. The MBAC design exploits
this by decomposing the aggregate bandwidth fluctuation into a fast time-scale and a slow
time-scale component with respect to the critical time-scale. The fast time-scale component
is used to estimate the spare bandwidth to be set aside to absorb short-term fluctuations
that cannot be “followed” by flow arrivals and departures. The slow time-scale component is
used to track fluctuations that do not need spare bandwidth, but are compensated by flow
arrivals and departures. This results in higher utilization than a scheme which sets aside
spare bandwidth for fluctuations at all time-scales. We will show that an appropriate critical
time-scale is T}, /4/n, where T}, is the average flow duration in the system and n is the size of
the system in terms of the number of flows it can carry.

In our earlier work on MBAC [11], the main issue we addressed was measurement uncertainty.
Using a simple, analytical model of an idealized MBAC, we studied the impact of measurement
errors on the quality of service. The main insight gained from that model was an understanding
of the complicated dynamics that arise as a result of bandwidth fluctuations, measurement
uncertainty, flow arrivals and departures, and estimation memory. These insights motivate
the MBAC design presented in this paper and the mathematical machinery developed in [11]
serves as a basis for its performance analysis.

In the performance analysis of our proposed MBAC, we relax two assumptions made in our
earlier work. First, we assume that the admission controller only has information about
the evolution of the aggregate bandwidth available to make admission decisions. This is in
contrast with our earlier work, where we assumed that the bandwidth of each individual flow
is known. Basing admission decisions only on aggregate information is appealing from an
implementation viewpoint, as we do not require the MBAC to gather and maintain per-flow
information. Therefore, we seek a clear understanding of the impact of errors associated with
aggregate measurements.

Second, we consider the situation when flows are heterogeneous. Flows may represent many
different types of media (e.g., audio or video), they may be encoded at different levels of quality,
and they may use different end-to-end control mechanisms. Therefore, we must expect that
flows are very heterogeneous in their statistical behavior. On the other hand, an individual
flow corresponds typically to a single instance of an application (such as a videoconference), of
an encoding method, and of a control mechanism. Therefore, we expect an individual flow to
be well modeled as a stationary and ergodic random process. We will show that the proposed
MBAC scheme performs well in the presence of heterogeneous flows, even without any a-priori
classification of flows.



Most MBAC schemes that have been proposed in the literature - including ours - are capable
of a broad range of operating points in terms of link utilization and quality of service. In
fact, it has recently been noted that most MBACs are essentially equivalent in terms of the
set of operating points that they admit, given identical traffic characteristics [5]. However,
MBAGs differ significantly in their ability to achieve a desired QoS robustly, i.e., with little
a-priori knowledge of traffic characteristics and without excessive tuning. A perfectly robust
MBAC would have the QoS target itself as the only parameter and would require no tuning at
all, because the actual QoS would be equal to this target regardless of traffic characteristics.
In practice, it is not possible to completely decouple performance from traffic characteristics,
and all MBACs possess additional tuning parameters. Tuning essentially amounts to searching
in a possibly multidimensional parameter space. Therefore, the main benefit of an analytic
model such as the one discussed in this paper is that it replaces this search with an explicit
relationship between traffic characteristics and tuning parameters.

The paper is structured as follows. In Section 2, the basic model is introduced. In the next
two sections, we focus on two issues that are central to understanding the proposed MBAC
design. In Section 3, we first study the impact on performance of admission decisions based
only on aggregate bandwidth information, as opposed to per-flow bandwidth information. In
Section 4, we identify the critical time-scale through a study of the dynamics of the system
that arise due to fluctuations of the aggregate bandwidth of flows in the system, and due to
flow arrivals and departures. Combining the insights obtained in these two sections, we present
our MBAC design in Section 5. In Section 6, we analyze the performance of the proposed
MBAC scheme under both homogeneous and heterogeneous traffic models, and provide some
simulation results. Section 7 discusses how the MBAC scheme can be modified for a distributed
implementation within the framework of Diffserv. Section 8 contains the conclusions.

2 Basic Model

We will first outline the basic model which we will use throughout the paper to study various
basic measurement-based admission control issues, to motivate our MBAC design and finally
to analyze its performance.

The network resource considered is a bufferless single link with capacity c¢. Flows arrive over
time, requesting service. Once flow 7 has been admitted, its bandwidth requirement {X;(-)}
fluctuates over time while in the system. We assume that the flow holding time in the system
is exponentially distributed with mean T} ; the departures of the flows are independent of each
other and independent of the bandwidth processes {X;(-)}.

An admission control scheme decides whether to accept or reject a new flow requesting service;
a measurement-based admission control (MBAC) scheme makes decisions based solely on ob-
servation of the past traffic flows.?2 Resource overload occurs when the instantaneous aggregate
bandwidth demand S; exceeds the link capacity, and the QoS is measured by the steady-state
overflow probability p; := Pr{S; > c}. The goal of an admission control scheme is to meet a
desired QoS objective p, (i.e. pf < py) while maintaining a high average utilization E [S;] of
the link.

2In practice, rough information such as the peak rate of the new flow is used as well. This can be incorporated
in an obvious way in our proposed scheme.




Several processes are of importance in this paper. We denote {M;} as the estimated number
of flows deemed admissible by an MBAC scheme at time ¢, and {N;} as the actual number
of flows in the system at time ¢. The interpretation of M; is that the MBAC will continue
admitting flows until NV, is greater than M;. Because M, is determined by past measurements,
{M,;} is a random process and so is {NN;}. Furthermore, F; denotes the set of flows in the
system at time ¢. Obviously, |F;| = N;.

Our design and analysis is based on the assumption of a large link in which many flows can
be accommodated and no single flow dominates. The performance analysis is asymptotic in
the link size c.

3 Aggregate versus Individual Flow Measurements

In [11], we have analyzed the impact of measurement errors for MBAC schemes which can
measure the individual flow rates {X;(-)}. In this paper, we would like to design a scheme
which only makes use of the past aggregate flow information, i.e. {S;}. This section focuses
on a simplified model to quantify the performance loss associated with this coarser granularity
of information. The insights gained here prepare us for the MBAC design in Section 5, and
are also interesting on their own right.

The analysis in this section does not deal directly with flow arrivals and departures. We
consider only the simple case of flows with homogeneous statistics. We focus on the effect of
measurement uncertainty on the number of admissible flows M;, and then study the resulting
impact on the QoS objective if M; flows were admitted onto the link and remained in the
system. A simple MBAC scheme is used as a vehicle for this purpose. Analysis of the
complete model with flow dynamics and heterogeneous flows will be done in Section 6 after
the full MBAC design is proposed in Section 5. This present section can be viewed as a parallel
to Section IT of [10].

Suppose the bandwidth processes of the flows are statistically independent and identical, and
the stationary bandwidth distribution of each flow has mean x and variance 0. The capacity
of the link is c. If we let n := ¢/u, then n can be thought of as the system size. When the
system size n is large, the number of flows m in the system will be large, and by the Central
Limit Theorem,

1 |« 5
ﬁ [;Xz(t) - mu] ~ N(0,07)
irrespective of the statistics of the individual flows.

Counsider then the following hypothetical admission control scheme with perfect knowledge of
the parameters u and o2 a priori: accept n* flows with n* satisfying the equation:

where Q(-) is the complementary cdf of a N(0,1) Gaussian random variable and p, is the QoS
objective®. For large capacities, it follows from solving (1) and substituting n = ¢/p that
Qg

n*=n— 07«/5+o(«/ﬁ) 2)

3Note that here, as in the sequel, we are ignoring the fact that n* is an integer and therefore eqn. (1) cannot
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where o, := Q7 '(p,) and o(y/n) denotes a term which grows slower than /n. Note that n is
the number of flows that can be carried on the link if each has constant bandwidth u. Thus,
7% ,/n is the (normalized) amount of spare bandwidth left to cater for the (known) burstiness.
We also observe that the number of flows admitted is deterministic in this perfect knowledge
scenario.

The above scheme motivates the following certainty-equivalent MBAC, when the statistics of
the flows are not known a priori but can only be estimated from aggregate flow information.
Based on estimates fi and 62 of the mean and variance, the MBAC scheme allows M, flows
in the system at time 0, with M satisfying:

np— Mo |
o] ¥

where the estimates are given by:

11 K1 2
L :EZESZZ 5° T K _ 12% Stk—n/l) (4)
k=1

and

n

St = Z Xi(tk)

i=1

is the aggregate load of flows in the system at time ¢, < 0. *

The estimates i and 62 are obtained by averaging over K samples of the aggregate load
(K > 2). Note that My is now a random quantity, being a function of the estimates ji and
&2. We are interested in the distribution of My for large n but fixed K. For ease of analysis,
let us assume that the sample times {t;} are spaced sufficiently far apart such that the loads
at distinct times are independent. For large n, by the Central Limit Theorem,

S =nu+Yiv/n+o(v/n) t<0 (5)
where Y; ~ N(0,02)°

. Substituting this into (4) yields the following expressions for the mean and variance estima-
tors:

) (6)

= 6% +o(1) (7)

po= u+—( Zm)

6’2

S\

be satisfied exactly in general. In the regime of large capacities, however, the approximation is good and the
discrepancy can be ignored.

4Observe here that the estimation is based on n flows. In the actual model with flow dynamics, this should
be the actual number of flows in the system which fluctuates around n. However, in a large system, this number
will be close to n and the discrepancy in replacing it by n in the estimators are of a negligible effect.

®The Central Limit Theorem states that (S} — nu)/+/n converges in distribution to a N(0,1) Gaussian
random variable Y;. By Skorohod’s theorem [3, p. 333, Theorem 25.6], one can in fact put the random
variables in the same probability space such that (Sf(w) — nu)/+/n — Yi(w) for every sample point w. Thus,
in (5), the o(y/n) term refers to a sequence of random variables {4, (w)}» such that A,(w)//n — 0 for all w
This is consistent with and in fact a generalization of our usage of the o(y/n) notation in (2)



where

For a fixed K, the variance estimate 62 approaches 6%( in distribution for large system size n.
Note however that this estimate remains random, unlike the mean estimate which approaches
1, the true mean.

The randomness in the estimators translates into the randomness in the number of flows
admitted, via eqn. (3). By performing a linearization around the nominal perfect-knowledge
operating point given by (1), it can be shown that,

K
My=n-— % (% SV, + aq&K> + (/). ®)

k=1

More formally:

Proposition 3.1 Asn — oo, M\O/%” converges in distribution to the random variable

11 & .
W \K Z Yy, + g0k (9)
K k=1

where Yy, , ..., Yy, are ii.d. N(0,02) random variables.

Proof. The details of the proof are similar to that of Prop. 3.1 in [10] for the case of
individual flow measurements. O

It can be seen that the fluctuation in My is due to both the randomness in the mean and
variance estimators, when they are based only on aggregate loads. Contrast this with the
case when individual flow measurements are available, when the uncertainty is due only to
the measurement error in the mean bandwidth estimator [10]. In that case,

K
My=n— % (% > Y, + aqa) + o(v/n). (10)

k=1

Comparing eqn. (10) with (8), we see that the uncertainty in the standard deviation o
disappears with individual flow measurements. This is because individual flow measurements
yield n samples per time instance for estimating the variance, while aggregate measurements
yield only one. For large n, the effect of error in the variance estimator vanishes in the former
case but not the latter.

It is also interesting to observe that M is much more sensitive to errors in the mean estimator
than in the variance estimator. The first term in eqn. (6), 1/K Z,ﬁil Y;,, is due to the
estimation error in the mean. From (6),

K
/K Y Yy, = va(i— p) +o(1)
k=1
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so we see that the effect of the mean estimation error on the variability of Mj is magnified by
a factor of v/n. On the other hand, the randomness in the variance estimator enters directly
in (9). This is not very surprising, considering that the mean is a first-order statistic and
the variance is second-order. Fortunately, the mean estimator is much more accurate than
the variance estimator when only aggregate flow information is available (the former of order
1/4/n and the latter of order 1), and this compensates exactly for the difference in order of
magnitude of the sensitivities.

We next investigate the effect of the variability in the number of admitted flows My on the
QoS performance of the system. To this end, consider the aggregate load at some future time
t > 0 after admitting My flows and without future admissions. This is a sum of a random
number of random variables, and using a version of Central Limit Theorem (Lemma II.2 in
[11]), we get the following asymptotic approximation®:

Si= Y Xilt) = Mo + Y + of /) (11)

Here again Y; ~ N(0,02) and can be interpreted as an approximation for the scaled aggregate
bandwidth fluctuation at time ¢:

1 n
— ST x,0) - 12
NG Lz_; (t) nu] (12)
Substituting eqn. (8), we get
K
1 .

S =+ (Y =YV - am) i+ o(v/m) (13)

k=1

Thus, for large n, the overflow probability at time ¢ is:

K
1 1
Pr{St>n,u}zPr{&K (Yt_EZYtk) >04q} (14)

k=1

Now since the Y;,’s are N(0,02), the random variables + S Vi, and 6% /0? can be inter-
preted as unbiased estimates of the mean and variance of a N(0,02) distribution based on
K independent observations. As is well-known (see for example [2]), the two estimates are

independent, and
K-1_
— 5 0K ~ XK-1,
o
a Chi-square distribution with K — 1 degrees of freedom. If we now make the further as-
sumption that the time ¢ is sufficiently large such that X;(¢) (and therefore Y;) is indepen-

dent of X;(t1),..., Xi(tk), then Y; — + Z,le Y}, is independent of 6k and is distributed as

N(0, £+6?) and hence
K
K 1 1
VET1s (Yt K ZY%) ~ Tic-1
K k=1

where Tx_1 is the student-t distribution with K — 1 degrees of freedom [2].

We summarize this formally in the following.

%Note that this holds even though My and the X;(t)’s are dependent.



Proposition 3.2 Suppose the target overflow probability QoS is pg. Then as the system size
grows:

nlgl{)lo Pr{S; > nu} = Fg 1 ( KL_HQ_I(Pq)) ) (15)

where F is the complementary cdf of the Tix_1 distribution.

Note that this limit does not depend on the true mean and variance, but only on the target
QoS pq.

It is interesting to compare with the corresponding result when individual flow measurements
are available. A simple generalization of Proposition II.3 in [11] says that with n indepen-
dent individual flow measurements at each of the K time instants, the asymptotic overflow
probability is given by

K —1
Q( K——HQ (pq)>- (16)

To appreciate the difference, it is instructive to examine the density of the 7x 1 distribution:

B

) Y
frae) = o (&) "

where I'(-) is the Gamma function. For small K, this distribution has a slow (polynomially)
decaying tail as compared to the doubly exponentially decaying tail of the Gaussian distribu-
tion. Thus, for small K, the target overflow probability is missed significantly more in the case
when only aggregate measurements are available; see Fig. 2. For K = 5, the actual overflow
probability p; is very far away from p, and decreases very slowly with the latter (the upper
curve), while py is quite close to the target with individual flow measurements. As expected,
as K — oo, py approaches p, under both aggregate and individual flow measurements.

The significant degradation observed above for small K under aggregate load measurements
can be attributed to errors in estimation of the variance. With non-negligible probability, the
variance can be significantly under-estimated. In that case, the certainty-equivalent admission
control scheme will be very aggressive in accepting flows, reserving very little bandwidth
margin to cater for the burstiness. This results in high overflow probability when the flows
are actually admitted.

To compensate for the measurement uncertainty for a fixed K, one way is to choose a more
conservative value p/, instead of p, in the admission rule (3) so that we can meet the desired
target py. The appropriate value of pﬁz can be calculated according to the expression on the
right hand side of eqn. (16). Fig. 3 compares the adjusted values of pf] needed in the aggregate
and individual flow measurement cases. We see that much more compensation is needed in
the former case, especially for small K. From eqn. (13), we see that this conservative choice
translates directly to a loss in average utilization E [S;] of

[Q7' (7)) — Q7' (py)] E[6k] V.

Interestingly, the difference between estimation using individual flows and aggregate flow mea-
surements is analogous to that between estimating the mean of a Gaussian distribution with
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Figure 2: The overflow probability ps as a function of the target overflow probability p,, for
various K (Student-t corresponds to aggregate measurements according to (15), Gaussian to
per-flow measurements according to (16)).
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Figure 3: The corrected overflow probability pg as a function of p,.

and without knowing the variance. Without knowing the variance, it has to be estimated from
the data as well and the resulting confidence intervals are much larger than when the variance
is known.
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4 The Critical Time-Scale T},

In the previous section, it was assumed that flows stay in the system for infinite duration, and
the goal of the MBAC is to determine the appropriate number of flows to admit on the basis of
measurements of the long-term mean and variance of their stationary bandwidth distribution.
If flow departure and arrival dynamics are taken into account, then a more basic question is:
what are the right statistics to measure? To address this question, we now take a step back
and look more carefully at the interplay between flow dynamics, traffic fluctuation dynamics
and the admission controller. We argue that one should still measure the mean and variance
of the traffic fluctuations, but on a certain critical time-scale dictated by how fast flows depart
from the system.

RN AN  Jeih
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for n flows Stn

Number of N e ’ N n*oo - = D RS et
flows in N n* -
system

AN I} il AM
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Overbooking regime: T, << T Tracking regime: T, >> T, Multiple time-scale regime: TCH << Ty << TCL

Figure 4: The tracking and the overbooking regime. In the tracking regime, bandwidth
fluctuation is absorbed by a corresponding fluctuation of the number of flows in the system;
in the overbooking regime, bandwidth fluctuation is absorbed by overbooking resources, i.e.,
setting spare bandwidth aside to accommodate the fluctuation of the aggregate load.

As before, let S7* be the aggregate bandwidth when there are n flows in the system, and suppose
that the flows are independent, identically distributed random processes with stationary mean
p and variance o2. As in eqn. (5), the Central Limit Theorem implies that for large n,

S = np+Y/n+o(v/n) (18)
with the fluctuation of S around ny on the order of y/n.

Suppose now at time ¢, there are N; flows in the system. This is random as a result of both the
admission control and the flow departure processes. Let S; denote the aggregate bandwidth
of these N; flows. As in eqn. (11), the fluctuation of S; around its mean has two components,
one due to the fluctuation of the number of flows in the system, and one due to the bandwidth
fluctuation,

St = Nep +Yiv/n + o(v/n) = np + Yiv/n — (n — Ni)p + o(v/n), (19)

Because flows cannot be preempted from the system once admitted, the number of flows
can only be lowered by letting flows depart from the system while rejecting new ones. The
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aggregate rate at which flows depart from the system in turn is approximately n/T}, where
T}, is the average flow holding time. This is the fastest rate at which Ny can decrease, and
corresponds to a “bandwidth departure rate” of nu/T}.

First, assume that the aggregate bandwidth S? fluctuates over a single time-scale 7,.”. This
means the rate of bandwidth fluctuation is of the order of ov/n/T,. If nu/T; < ov/n/Te,
or T, < %%, the rate of bandwidth fluctuation is much faster than the flow bandwidth
departure rate. As a result, spare bandwidth has to be set aside by the MBAC to cater for
the burstiness of the traffic, and full link utilization cannot be achieved. The amount of spare
bandwidth is given by u(n — E[N¢]) = p(n —n*). See the first column of Fig. 4. Let us call
this the overbooking regime.

o Tp

u/n?
slower than the flow departure rate. In this case, there is actually no need to set aside spare

bandwidth to cater for the fluctuations. Instead, the fluctuations can simply be compensated
for by controlling the number of flows in the system. This is possible since flows are departing
fast enough. When S7* happens to be larger than npu, i.e., exceeding the link capacity, the
number of flows can be lowered to N; < n such that the aggregate bandwidth does not exceed
the link capacity. This can be called the tracking regime. Provided that there are enough
flows requesting admission, full utilization can be achieved. See the second column of Fig 4.
The time-scale

Consider the other extreme, when T, > i.e. the bandwidth fluctation rate is much

Ty := T/

can now be thought of as a critical time-scale separating the tracking and the overbooking
regimes.

More generally, aggregate bandwidth fluctuates over multiple time-scales. The components
having time-scale TCL > T}, can be compensated for through flow admissions and departures,
while the components having time-scale T/ < T}, have to be absorbed through allocation of
spare bandwidth in the link (see the last column of Fig. 4.) The answer to the question of
“what to measure” is now obvious: the slow time-scale fluctuations should be tracked to allow
for compensation, while the variance of the fast time-scale fluctuations should be measured so
that the appropriate amount of spare bandwidth can be set aside. Note that the slow time-
scale fluctuation is essentially the aggregate bandwidth time-averaged over a sliding window
of length 7. Hence, this reasoning suggests that, as in the previous section, we should be
measuring the mean and variance of traffic fluctuations, but now over T}, rather than over the
infinite horizon.

That the critical time-scale ffh is proportional to the average flow duration 7}, is not surprising.
What is more subtle is the scaling of fh with 1/4/n. The reason for this is that the aggregate
flow departure rate grows linearly with n, while the fluctuations grow only like y/n. As a
result, as the system scales, there are more fluctuations that can be compensated for by flow
departures, manifesting in a short critical time-scale.

Although the discussion here is informal, the main point is to motivate the MBAC design to be
presented in the next section. The importance of the critical time-scale will be demonstrated
more precisely in the performance analysis of the proposed MBAC (Section 6).

"Informally, this means that the power of the process {Y;} is concentrated around 1/7 in its power spectral
density.
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5 The MBAC Design

5.1 Basic Architecture

low-pass
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Time-constant Tg

Figure 5: The decomposition of the measured aggregate bandwidth into a high-frequency
component for the variance estimator and a low-frequency component for the mean estimator.

Figure 5 shows the basic architecture of the proposed MBAC design that realizes the concep-
tual ideas developed in the last section. By means of a pair of low and high-pass filters, the
aggregate bandwidth process S; is decomposed into a high-frequency component S and a
low-frequency component S} such that S; = SH + SE, both with a cutoff frequency of 1 /fh
The high-frequency process S is used in order to estimate the amount of spare bandwidth
that has to be put aside in order to accommodate fast time-scale fluctuations through over-
booking. Hence, we wish to estimate the variance 0% of Sf/. The low-frequency process S{ is
used to estimate the “current mean” [i; of the flows. Together, these two estimates determine
the current number of flows that should be in the system in order to accommodate the slow
time-scale fluctuations through tracking.

5.2 Variance Estimator

How should we estimate the variance O'%I of the high-frequency component of the aggregate
traffic? Recall now the main insight we gained from Section 3:

e With only aggregate measurements, the performance of an MBAC can be quite poor if
there are only a small number K of independent load measurements. Either the target
is missed significantly, or a very conservative admission control scheme is needed to com-
pensate for the measurement errors. This effect is mainly due to estimation error in the
variance.

This suggests that a long measurement window for estimating the variance 0% is needed for

robust performance and high link utilization. Essentially, we need more measurements over
time to make up for the lack of measurements over individual flows. Since the fast fluctuations
by definition occur at time-scale 7} or shorter, one can expect to get roughly independent
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measurements of o2, spaced at fh apart. The above observation thus translates into the need
of a measurement window with length KT}, K > 1.

With this choice of measurement window size, a natural question is the robustness to non-
stationarities, especially due to heterogeneity of flows entering and leaving the network. We
will address this issue when we analyze the performance of the MBAC design under a hetero-
geneous traffic model.

5.3 Description of the Proposed MBAC

We now give a specific algorithm to make admission decisions based on the architecture just
described. We first specify the filters. For simplicity, the filters will be defined in continuous-
time, although in practice they will be implemented in discrete-time via sampling of the traffic.
While many low-pass filters can be used, for concreteness let us consider a simple first order
AR filter with impulse response given by:

1 t
gt ==exp|—= | u 20
' ( Th) ' (20)

where u; is the unit step function. Let

h 1 1

= — eXx _—

T A

be the low-pass filter for estimating the variance, where T, = K th is the window length for

the variance estimator. If S; is the aggregate load at time ¢, the estimated mean is then :

* St—r
0 Nt—T

fi = grdr, (21)

where N, is the number of flows in the system at time ¢. One can think of S;/N; as the
instantaneous average per-flow bandwidth. The high-pass component of the aggregate load is:

S == Sy — Niju,

which corresponds to filtering S; through a filter with impulse response d; — g;- The estimate
of the high-pass variance is given by

1/2
o) SH /oo SH :|2

~H t—T1 t—u
;0 = - hydu| h.dr . 22
t [/0 |:Nt’r 0 Ntfu “ ! ( )
The number of flows M; admissible by the MBAC at time ¢ is given by the solution to the

equation:
c— My

— .. 23
(et~ )

The MBAC therefore admits a new flow if My > Ny + 1, i.e., if
c— (Ny+ 1)y > a6/ Ny + 1, (24)
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and rejects it otherwise.

The left hand side of (24) can be interpreted as the estimated available spare bandwidth (after
acceptance of the new flow), and the right hand side as the estimated required spare bandwidth
to accommodate the fast time-scale fluctuations.

One observation is that although the algorithm uses aggregate rather than individual load
measurements, it still needs to keep track of the number of flows in the system (N;). In
Section 7, we discuss a relaxed version of the above admission criterion that does not even
require this knowledge. This is beneficial for distributed admission control.

6 Performance of MBAC Scheme

We now analyze the performance of the MBAC scheme proposed above in a fully dynamical
model with flow arrival and departures. We assume that the effective arrival rate is infinite,
i.e. there are always flows waiting to be admitted into the network. Thus, admission control
decisions are made continuously at all times. Clearly, the QoS performance (overflow proba-
bility) experienced by admitted flows of any admission control algorithm under finite arrival
rate will be no worse than its performance in this model . Another advantage of this model
is that we need not worry about the specific flow arrival process, which may be hard to model
in practice. From the analysis point of view, this model is convenient as the link is always
filled with at least the number of flows deemed admissible by the controller. The drawback
of this arrival model is that it only yields an upper bound on the utilization achieved under
finite arrival loads.

We first analyze the performance of the MBAC when the traffic is homogeneous. Then we will
extend the analysis to a heterogeneous traffic model. The main new ingredient here is that flow
heterogeneity leads to a time-varying flow mix in the system. Under a natural heterogeneous
traffic model, we show that the time-constants of the filters in the proposed MBAC scheme
are scaled appropriatly to track and compensate for this time variation.

Compared to the analysis in Section 3, the performance analysis in this section is more heuris-
tic in nature. Rigorous justifications will invoke the theory of weak convergence of random
processes. This was done in the related analysis in [10], and we expect that a similar treatment
can be done for this paper as well.

6.1 Homogeneous Flows

We first consider the homogeneous case when the bandwidth process {X;(-)} of each flow
is identically distributed, stationary and ergodic. The mean rate of each flow is y and the
covariance function is p(t) := E [(X;(0) — u)(Xi(t) — p)]. The capacity c is scaled as npu.

Our analysis is in the asymptotic regime where n, is large, i.e. n — oo. As we scale up the
system, we keep the critical time-scale T}, fixed, such that the average flow holding time scales

8However, the utilization would be slightly lower when the flow arrival rate is finite. The infinite arrival model
introduced in [10] reflects our belief that robustness to heavy offered load is more important than maximizing
utilization during periods of modest load.
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as Ty, = \/ﬁfh The earlier discussion on the fundamental nature of fh suggests why this
scaling makes sense, as it allows us to focus on the time-scale “where the action is”. The same
scaling is used in our earlier paper [11].

The key quantities to be analysed are M;, the number of flows the MBAC determines that
should be admissible at time ¢, and Ny, the number of flows that are actually in the system
at time ¢. In the asymptotic regime of large capacity (equivalent to large n), both of these
quantities are of order n, with random fluctuation of order y/n. This is due to the Central
Limit Theorem. The goal is to analyse the fluctuation to enable us to approximate the overflow
probability.

We can analyze the distribution of the process {M;} in a similar way as in Section 3. First,
let’s focus on the aggregate load S;. Write:

Sy = Nyp+ Y [Xi(t) — pl-
1€Ft

Recall that F; is the set of flows that are in the system at time {. By the Central Limit
Theorem for the sum of a random number of random variables (as in (11)),

% SO IXi(t) — ] = Vi (25)
1€F:

where {Y;} is a zero-mean Gaussian process. To compute the covariance function of {Y;},
consider for s < t:

B [% 3" [Xils) — 4 % S IXi() —u]]

’iefs ZE]:t

= E[% > [Xi(s)_ﬂ][Xi(t)_N]]-

iefs ﬁ]:t

Now, both Ns and N; are random variables of order n. Because the flow holding time is scaled
as /nTy, with T}, fixed, the number of flows that depart during the time interval [s, ] are of
the order of \/n. Hence, |Fs N Fy| is of the order of n. This implies that

E [% > [Xils) — HIXi(t) —u]] — p(t —s),

t€EFsNFy
where p(7) is the covariance function of an individual flow:
p(7) := B[[Xi(0) — p][Xi(7) — pl].-

Hence, one can take the covariance function of the approximating Gaussian process {Y;} to
be p(7).

We now have the approximation:

S = Nipt + /Y + o(V/n), (26)
Using eqn. (21), the low-pass mean estimator is asymptotically given by:
. 1 1
fir = p %Zt + 0(%)
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where Z; = (¢ *Y); is the Gaussian process after filtering {Y;} by the low-pass filter g defined
n (20).

By a linearization of the defining equation (23) for My, it can be shown that, analogous to
Proposition 3.1,

My =n— % (Zi + ag6f) + o(v/n). (27)

Hence, the number of admissible flows at time ¢ is a random quantity with fluctuations of
order y/n due to the randomness in the statistical estimators ji; and 6. The term —+/nZ;
represents the compensation for the slow time-scale fluctuations by the MBAC; the term
— naq&f] represents the spare bandwidth catered for the fast time-scale fluctuations.

If the measurement window size Ty = KT}, is chosen such that K > 1, we observe that ol is
approximately a constant og for any ¢, where

o = Var [X;(0) — (g * X;)(0)]

is the variance of the high-frequency component of a flow bandwidth process. This observation
can be understood intuitively as follows. The high-frequency component has fluctuations at
time-scale T}, or shorter, so roughly samples spaced at T}, apart are independent. If K > 1,
the estimate of the power in the high-frequency component will be very accurate. This is
analogous to taking a large number K of independent measurements of the aggregate load
in the simple model studied in Section 3. Substituting this into eqn. (27), we obtain the
following;:

My =n— % (Zy + OéqO'H) + O(\/ﬁ) (28)

The actual number of flows IV; in the system at time ¢ is no less than M; since there are
always flows waiting to be admitted and thus the system is always filled to the limit as
currently determined by the MBAC. On the other hand, N; can be strictly greater than M,
as flows that were admitted earlier stay for a certain duration and thus N; cannot perfectly
follow the fluctuations of M;. To compute Ny, first observe that if s* is the last time at or
before time ¢ that flows were admitted, then the number of flows in the system at time s* is
precisely the same as the number of flows admissible at time s*, i.e. Ng« = M«. In between
time s* and time ¢, no new flows were admitted. Hence, if we let D[s,t] be the number of
flows departed in time interval [s, ], then

N = Ng- _D[S*at] = M- _D[S*at] (29)
On the other hand, for any s <,
Ny = Ny + Als,t]| — D[s,t] > Ny — DI[s,t]| > Ms — D|s, ] (30)

where A[s,t] is the number of flows admitted during [s,t]. Thus we conclude from (29) and
(30) that

Ny = sup{M; — Ds, 1]} (31)
s<t

This relationship quantifies precisely how much control the admission scheme has on the

number of flows in the system. At time ¢, the ideal number of flows desired in the system is
M;. But N, is close to M; only if the flow departure rate is very high. For finite departure
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rates, Ny exceeds M; and to still provide the desirable level of QoS, spare bandwidth has to
be allocated in the admission scheme.

Under this scaling, the number of flows departed in [s, ] can be calculated to be:

D[s,t] = t%—hs\/ﬁ + o(V/n). (32)

Substituting eqns. (28) and (32) into (31), we obtain the following asymptotics for N; in the
regime of large n:

1 t—
Ni=n-++/n- —sup{—Zs — u —aan} + o(v/n).
bos<t Th

Thus, the actual number of flows in the network is a random process which fluctuates on the
order of y/n. Under the proposed MBAC, the randomness is due only to the randomness
in the low-pass mean bandwidth estimator fi; and not that of the variance estimator. This
is because the measurement window chosen has a much longer time-scale than that of the
high-frequency fluctuations we want to measure.

Once we obtain an approximation for N;, we can immediately deduce an approximation for
the aggregate load S; via eqn. (26) and hence the steady-state overflow probability p; =
Pr {St > C}.

St:n,u+\/ﬁ-sup{Yt—Zs—i(t—s)—aan}-l-o(n) (33)
s<t Th
Hence the overflow probability p; converges to:
I
Pr {sup {Yo —Zs+ zs} > aan}. (34)
s<0 Th

To repeat, {Y;} is a zero-mean Gaussian process with covariance function p(-), and Z; = (g+Y');
is the low-pass filtered version of {Y;}.

The expression (34) can be interpreted as a hitting probability of a Gaussian process ({Yo—Zs})
on a moving boundary, and an approximation of such a probability is given by [12, 13]:

1 oo agom + TLht QqoH + %t o
3], O ¢< =0 )d“Q (56) (%)

where 0?(t) := E [(Z_; — Yp)?], v*(0) is the right derivative of the function o?(t) at ¢ = 0, and
¢(-) is the N(0,1) probability density function. This expression can be numerically computed
given the covariance function p(-) of the individual flow process. It is an approximation in the
sense that as p; — 0, the ratio of the expression and the probability (34) approaches 1.

Let us apply the above results on two specific examples to obtain a better intuitive under-
standing of how the MBAC scheme functions. Under a separation of time-scale assumption,
we will see that the choice of the low-pass filter time-scale as T}, is the appropriate one. More
generally, expression (34) can be used to assess the impact of using a different low-pass filter
time-scale on the performance of the MBAC scheme®.

9The expression (34) depends on the low-pass filter time-scale through the second-order properties of {Z;}
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1) Single Time-Scale Traffic: Suppose now the individual flow has covariance function

o) = o exp(~ 1)

c

with correlation at a single time-scale T.. By straightforward calculations, the covariance
function of {Z;} is:

2

o Th t t
p(®) = —=—— | Paxp( ) exp(- L2
q(Byz-n [T T c
and the variance of the high-frequency component is:
T
o = —Th o2

T. + f‘h

Consider the regime when T, < fh; this can be considered as a separation between the burst
and flow time-scales, and corresponds to the overbooking regime discussed in Section 4.

1 TC) 2 ( It\>
)~ —-| =)o ex — = ~0
pz(t) 2<Th P{F,

and

so that

Pr {sup {Yo —Zs+ is} > aan} ~ Pr {sup {YO + is} > aqa} =Pr{Yy > a40} = p,.
s<0 Th s<0 Th

Thus the target QoS is met using our scheme. In this case, the traffic fluctuations are all of a

faster time-scale than T}, and resources have to be overbooked to absorb them. If we overbook

by any amount less than the full variance o2 of the fluctuation, the QoS target would not have

been met.

For general T,, we can use the formula (35) to compute the performance. This is plotted
in Fig. 6 for two values of p,. We see that the the actually achieved p; is close to the
target pq across the whole range of T.. As T, increases beyond the critical time-scale fh, the
spare bandwidth reserved to absorb the high-frequency burstiness is reduced accordingly, thus
maximizing utilization while still meeting the target QoS. Contrast this with the performance
of the per-flow scheme considered in [11], which always reserves spare bandwidth proportional
to o, where o2 is the total variance. The per-flow scheme is effectively using a low-pass filter
with a time scale much larger than T,. When T is of the order or larger than T}, this results
in over-allocation of resources, as seen in the drop in py.

2) Multiple Time-Scale Traffic: Let us now consider the situation when an individual flow
has correlation at two time-scales 77 and T5. More concretely, suppose

X(t)=p+ XY+ xO@),
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Figure 6: Overflow probability of the proposed aggregate scheme and a per-flow scheme which
always overbooks at o.

where {X(1)(-)} and {X @) (-)} are zero-mean independent stationary processes with covariance

functions " "
ﬂ(l)(t) = o} exp <_ﬁ> ) p(2) (t) = o3 exp (—E> .

Then we can decompose the scaled aggregate fluctuation Y; = Yt(l) + Yt(2) and the low-pass
output Z; = Zt(l) + Zt(Z) accordingly. The covariance functions of {Z()(-)} is given by

) -
(j)t:7~aj Ee —Lﬂ —ex —m 1 =1,2
J
and for s,t <0,
. . , . o2 t S ]
B (v - 20)(v? - 20| = 0* - [exp<f>+exp<f>] +pP(t—s)  (36)
1+ T? J J

Now consider the regime when 77 < Th and Tp > fh. By performing a rescaling of time, we
can write the overflow probability (34) as :

Pr {sup {YO — ths + us} > aqag}

s<0
_ 1) _ 1) 2 _ »©@
= Pr {ilﬁl%) {YO ths +Y, ths + ,us} > aqO'H} . (37)

Using eqn. (36), we see that for s,¢ < 0,

1 1 1 1 1
B - 20 - 20 | ~ B [(V)?] = oF (38)
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and
E [(Y0(2) - ZP)y® - Z<2>)] ~ 0. (39)
This means that the process {YO(I) -7 %1 )t} has variance o2 and is highly correlated over time
h
(with correlation coefficient close to 1 for all s,t), while the process {Y0(2) - Zg)t} is close
h

to zero. Thinking of IQ(I) as the fast time-scale fluctuation and 1’;(2) as the slow time-scale
fluctuation of the traffic, this means that the low-pass filter tracks the latter almost perfectly
(at the time-scale defined by fh) but leaves the former essentially unchanged. It can also be
verified that oy ~ o1. Using expression (37), the overflow probability can be seen to be close
to the target.

The choice of th as the memory time-scale of the low-pass filter is important to keep the
utilization high. Using eqn. (33) and again rescaling time, the average utilization is given by:

E[So] ~ np +v/nE [5213 {—ths + MS}] — ogogV/n
s_

Now, for the regime considered above and the memory time-scale equal to fh, one can calculate
that pz(Tht) = o9 so that

E [So] = np + VnE[Zy] — o1agv/n = np — o1a4v/n
The spare bandwidth a4/ is precisely left for catering for the fast time-scale fluctuation.

But suppose now the memory time-scale of the low-pass filter is chosen to be larger than th.
As the memory time-scale approaches T5, some of the slow fluctuations (at the time-scale
T5) are filtered into the high-frequency component, resulting in a larger than necessary spare
bandwidth. In the extreme case when Ty, > Tb, 0% = 0} + 03, resulting in a utilization of

np — /03 + odau/n.

Compared to the case when T, = T, h, this represents a loss of utilization of
(y/a% + 03 — 01) agV/n.

This calculation serves as a validation of the design choice of CZN“h as the low-pass filter time-
scale, and confirms our informal discussions on the importance of the critical time-scale T},.

6.2 Heterogeneous Flows

To study the robustness of the MBAC scheme to flow heterogeneity, consider the following
heterogeneous traffic model . The ith flow is given by

Xz(t) = U4 + O',‘U,‘(t),

where p; and o; are random variables, identically distributed and independent from flow
to flow. The processes {U;(+)} are independent, identically distributed with zero mean and
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unit variance, and are stationary and ergodic with covariance function py(t); they are also
independent of u;’s and o;’s. They represent the in-flow statistical fluctuations. The random
variables y; and o? represent the long-term mean and variance of the flow; they differ from
flow to flow but remain fixed once the flow is in progress. The processes {U;(-)} represent the
in-flow statistical fluctuations, which we model as statistically identical and independent of
pi’s and o;’s for simplicity. The random variables y; and o2 have the following statistics:

Elu]=p,  Varly]=v%  E[¢] =o%

One can think of the distribution of (y;,0?) as modeling the typical flow mix. At any time,

the composition of flows in the network may deviate from this typical mix. Also, we only
model heterogeneity in first and second order traffic statistics because our asymptotic analysis
only depends on them.

As in the homogeneous case, we are here interested in the regime where the capacity ¢ = ny
is large, T}, is fixed and the average flow duration T}, scales as y/nT},. The aggregate load in
the system is given by

Sp=Nip+ Y (i — )+ Y [Xi(t) — pi]

1€EF; 1€Ft

We decompose the load into three terms: 1) Ny, which can be thought of as the aggregate
load if all flows are transmitting at their average rate u; and the flow mix is exactly the same
as the typical mix; 2) > ;c ~ (i — p), where the sum is over the flows currently in the system,
is the deviation of the current mix of the flows from the typical mix; 3) > . [Xi(t) — pil,
which is the fluctuation of the flows from their long-term average rates.

Similar to (25) in the homogeneous case, we can approximate the third term by 1/nV;, where
Vi is a zero-mean Gaussian process. The covariance function py () of V; can be calculated as
follows:

E [% Z [Xi(s) — pa] - % Z[Xi(t) — i

i€ Fs 1€eFy
E [% Z [Xi(s) — pa][Xi(2) — Ni]]
1€FsNFt

= E[(Xi(s) — pi) (Xi(t) — po)]
= E [U?Ui(s)Ui(t)]
= opy(t—s)
Hence, pv (1) = 0”py(t).
Using the Central Limit Theorem for a random number of summands, we can approximate

the second term by /nL; /T;,» Where {L;} is a zero mean Gaussian process. To compute the
covariance function of {L,}, consider

1 1
Bl =D lwi—ul-—= > a4l
\/ﬁ 1€Fo \/ﬁ jE]:Th.,-
1 2
= BE|- > [ui-4
1€FoNFry, -
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— e 7.

where v?> = E [[u; — u]?]. The convergence in the last line follows from the fact that No/n — 1
and that out of the Ny flows in the system at time 0, the expected number of flows still
remaining in the system at time 73,7 is Nge™”. Hence, we have

pr(1) = v2e™".

The process Ly, is the slow time-scale fluctuation in the aggregate load due to the change

in flow mix over time. The scaling by 7}, emphasizes the fact that this process is evolving at
the time-scale of the flow arrivals and departures.

Summarizing the above, we have:

Sy = Nypp+v/nLyg, +v/nVi +o(v/n). (40)

We note that the time fluctuation in the flow variances due to heterogeneity has disappeared
in the approximation (40) of the aggregate load; only the typical variance o? matters. On
the other hand, the fluctuation in the mean rates {y/nL;/q, } remains. The reason is that
the aggregate load is much more sensitive to the mean fluctuation, a first-order effect, than
variance fluctuation, a second order effect. We have in fact seen this phenomenon in Section
3, where we performed a measurement error analysis. This observation will have important
ramifications in the estimation of the high-pass variance.

Continuing on the performance analysis, the low-pass mean estimator is given by (via eqn.
(21)):
fy = p+ LLt/f_r + LZt + O(L)
Vo LN TSN
where Z; = (g * V);. We note that the filter can track the slow time-scale fluctuation {L;/r, }
perfectly; this is because the filter has a much shorter time-scale Th than Tj, = v/n Th

The number of admissible flows is given by:
My == Y (Lyn, + 2+ agol) + o) (41)

where 61 is the high-pass variance estimator given by eqn. (22). If the variance measurement
window Ts = KT}, is chosen to be much larger than 7}, then it can be shown that

61 =~ 0% == Var [Vh — (g% V)o] = 6*Var [U(0) — (g + U)(0)]. (42)

Although this statement is identical to the corresponding one for the homogeneous case, the
reason why it is true is more subtle. Recall that the memory time-scale for the high-pass
variance estimator is much larger than 7},. Hence, the heterogeneous mix of flows actually
changes significantly during this time. However, the low sensitivity of the aggregate load to
the fluctuation of the variances ensures that the variance estimator remains accurate.

We can now compute the asymptotic distribution of N;, the number of flows in the system.
Ni = sup {Ms - D[Sat]}
s<t

t—s

= sup{n—%(Ls/Th-l-Zs-l—aan)— = \/ﬁ}-l—o(\/ﬁ)

s<t h
t_
= n-— ﬂLt/Th + vn sup {—Zs - u - ozan} + o(v/n)
© Hoos<t Th,
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where the first equality follows from eqn. (31), the second equality from eqns. (41), (32)
and (42), and the third equality from the fact that 7), > 1 so that L; 7, remains essentially
constant in the maximization.

The aggregate load and the overflow probability can be similarly obtained:
St = Nip++nLyg, ++/nVi+o(v/n)
t —_
= nu++/nsup {Vt —Zs— u - aan} + o(y/n)

s<t Ty

and

Pr{Sy > nu} =Pr {sup {VO —Zs+ g} > aqag}
5<0 Ty,

Comparing these results with (33) and (34), we observe that the (asymptotic) utilization and
overflow probability for the heterogeneous model are the same as those for a homogeneous
model, where each flow has the same mean rate ;1 and the same variance 0. The reasons are
two-fold. First, the process {L;7, } describing the change of the mean rates of the flow mix in
the system is completely filtered into the low-frequency component and perfectly compensated
for by tracking. Second, the fluctuation due to change in flow variances o; has an insignificant
impact on the aggregate load and the overflow probability. This ensures that although the
memory time-scale for estimating the high-pass variance is much longer than 7}, the estimates
will not be significantly corrupted by outdated data.

The above performance analysis of the proposed scheme under a heterogeneous traffic model
gives further evidence to the efficiency and robustness of the design, particularly in the choice of
T}, as the filter time-scale for tracking the low-pass mean, and a much longer averaging interval
T; = KT}y, to estimate the high-pass variance U%{. For example, if the low-pass filter time-scale
were chosen to be of the order of 7j, and not Th, then unnecessary spare bandwidth will have
to be reserved for the slow time-scale fluctuations due to flow heterogeneity. In the extreme
case when the filter time-scale is much larger than 7}, an excess bandwidth proportional to v,
the standard deviation of y in the flow mix, is needed. This corresponds to the case when very
conservative admission control is performed, solely based on prior knowledge of flow statistics
and without benefiting from the on-line measurements.

6.3 Simulation Results

We have performed trace-based simulations of our MBAC to verify the results of the per-
formance analysis. The goal is to evaluate how well the MBAC performs with real network
traffic, in particular traffic that exhibits fluctuations on a wide range of time-scales.

The simulation is based on a compressed video trace of the Star Wars movie, which has
been extensively studied in the literature and been shown to exhibit fluctuations on all time
scales [8]!°. In Figure 7 and 8, we plot the measured overflow probability p ¢ as a function
of the critical time-scale, for different values of the high-pass variance estimation window
T, = KTp'.

0The details of the simulation setup are described in [11].
"1n contrast to the numerical results in Fig. 6, there is no notion of a time-scale separation paramter T /Th
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p, as a function of 1/T ; (Starwars, Tm=T;, pq:l.Oe—S, n=10000)
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Figure 7: Simulated overflow probability p for different values of K and n = 10000, based on
the Starwars trace; target overflow probability p, = 1073.
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Figure 8: Simulated overflow probability p; for different values of K and n = 100, based on
the Starwars trace; target overflow probability p, = 1073,

In Figure 7, we can clearly see that K > 1 is necessary to obtain a sufficiently reliable variance
estimation. Small values of K (K < 1) lead to system overload, with the overflow probability

here, as we make no assumptions about the correlation structure of the trace. We plot the x-axis of Fig. 7 and
8 as a function of 1/T}, in analogy with Fig. 6.



py exceeding the target by up to two orders of magnitude. If K is chosen large enough,
we observe that p; is within about a half order of magnitude of the target, depending on
the flow holding time T},. Note that in the numerical results of Figure 6, we have observed
a similar “bump” in the overflow probability for the regime where the correlation and the
criticial time-scales are close.

The results in Figure 8 look qualitatively very similar, but they are offset towards higher
overflow probabilities by about a half order of magnitude. The reason for this is as follows. The
amount of spare bandwidth is on the order of y/n flows, i.e., 10 flows in this simulation. The
discretization effect due to the fact that bandwidth does not depart the system continuously,
but in discrete steps at flow termination is not negligible, and increases the overflow probability.
However, this effect is O(1) and can easily be compensated for.

7 Implementation of MBAC within the Differentiated Services
Architecture

The Internet research community has been grappling for a long time with the conflicting
goals of scalability and guaranteeing quality of service (QoS). Currently, the differentiated
services architecture (diffserv) being defined within the IETF is the most promising solution
to this problem [4]. Diffserv is capable of offering a reasonable set of QoS guarantees while
maintaining one of the basic tenets of the Internet architecture: a stateless core. In the diffserv
framework, only edge routers are aware of and manipulate individual flows; core routers only
handle traffic aggregates through a small set of per-hop behaviors (PHBs).

In this section, we discuss a variant of our MBAC that can be implemented in such an ar-
chitecture. For this, we have to relax the assumptions about what information an MBAC
has available to make admission decisions. We have assumed throughout this work that the
MBAC does not collect any per-flow measurements or maintain any per-flow state. But we
did assume that the MBAC knows the exact number of flows in the system. Specifically, in
order to compute (24), the MBAC has to precisely know the current number of flows N; in
the system at time ¢. In the diffserv architecture, this is undesirable due to the distributed
nature of flow admission. Core routers can only be expected to collect and process aggregate
traffic measurements. An ingress router would use either in-band (e.g., using probe packets)
or out-of-band signalling (e.g., RSVP [20]) to query core routers along the path of the new
flow'2. A core router then performs a local admission test, and updates the in-band probe
packet or the out-of-band signalling message accordingly. However, the core router does not
keep track of ongoing flows, and therefore the admission test cannot rely on knowledge of
N3

We now discuss a conservative approximation to the admission criterion (24) that does not rely
on the number of flows. In section 5.3, exact knowledge of N; is necessary in the computation
of the estimated per-flow statistics fi; and 6. Let us try to forgo computing these per-

'2The admission decision could also be made by a centralized bandwidth broker, which collects traffic mea-
surements from the entire network. However, for scalability, the bandwidth broker is unlikely to maintain
records for individual flows as well.

131n principle, a core router could keep track of the number of flows without identifying individual flows by
tracking flow admissions and departures; however, it is obvious that this is not robust to problems such as loss
of a signalling message or to a node failure.
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flow statistics and instead use the corresponding aggregate variables. The goal is to develop
an admission criterion analogous to (24), but that does not explicitly depend on N;. It is
convenient to repeat (24) here in a slightly modified form:

¢ — Nifiy — fu > g6 /Ny + 1 (43)

Recall that the left-hand side estimates the spare capacity after admitting the new flow; ji,
estimates the average rate of the new flow, i.e., we have implicitly assumed that the new flow
is statistically identical to the existing flows.

Without knowledge of the number of flows N;, we cannot compute an estimator of the per-flow
mean rate fi;. This has two consequences. First, we have to replace the estimate ji; for the
new flow, e.g., with a peak-rate constraint r. Fortunately, for large n, replacing f; with r
in (43) does not affect performance. The reason for this is that even though the peak rate
assumption is conservative, as soon as a flow is admitted, the dependence of future admission
decisions on this flow is only through its contribution to the measured aggregate bandwidth.
Therefore, a conservative choice of r only affects one flow at a time. This effect is O(1), and
therefore negligible in a large system.

Second, we have to define approximations to the high and low-pass filtered aggregate band-
width, SH and SF, that are independent of the number of flows N;.

o
Af ::/ St_79-dT = njiy (44)
0

Al =8, — Al =~ SF (45)

The estimated variance 61 of the aggregate fast time-scale component A¥ can be computed
from Af:

© o 9 1/2
GAH — l /0 [Aff_ ;= /0 AR uhudu] thT] ~/nog (46)

It is tempting to use the following admission criterion:
c— Al —r > a6, (47)

where, analogous to (24), the left-hand side of (47) is an estimation of the available spare
bandwidth after admission of the new flow, and the right-hand side is the estimated required
spare bandwidth to accommodate fast-time scale fluctuations of the aggregate bandwidth.

However, this does not work. The problem is that the bandwidth of a new admitted flow is
not immediately reflected in AF. This is in contrast to the term N;/i; in (24), which reacts to
a flow admission immediately through the increment of N;. Now suppose that the flow arrival
rate is very high. Using (47), the MBAC could admit a potentially large number of flows in a
very short period of time and overload the system. This point is illustrated in Figure 9: the
three flows (a,b,c) to the right arriving in rapid succession increase the aggregate bandwidth
S, in dicontinuous steps; the low pass-filtered process AL in (47) increases too slowly to avoid
that too many flows get admitted; in this example, only flow (a) should have been admitted.

Specifically, suppose a new flow is admitted at time ¢3. Then the mean of the low-pass filtered
aggregate bandwidth S = Ny increases instantaneously by the mean rate u of the new
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Figure 9: An illustration of the uncorrected low-pass filtered aggregate bandwidth process AF
and the corrected process A}. A new flow should be admitted only if A} is below the threshold

given by ¢ —r — aq&f‘H : Al reacts too slowly to new flows, leading to possible overload (by
admitting flows b and c).

flow. However, the mean of Al only converges to S} exponentially with time-constant fh,
because the increase in the aggregate bandwidth due to the new flow is low-pass filtered.
The difference between the means of the two processes after ¢y is therefore approximately
E [SE — AF] = pexp (t"f—;t) To correct for new flows, we have to add this term to the low-
pass estimate A} for each admitted flow. We obtain a corrected low-pass estimate A}, which
is given by

A} = (AL 4+ X) * g1 (48)

where * is the convolution operation. The function A; contains a Dirac pulse for each arriving
flow.
A= it —t), (49)
i

where t; is the arrival time of flow 4, and r is its peak rate.

Suppose that the aggregate bandwidth only changes at discrete time instants. Then A} can
be computed recursively as follows. Let ¢; denote the time instants where the aggregate
bandwidth Sy changes or where a new flow is admitted.

AL A
Ap = didy  + (1= ¢i)Sy_, +7- 1{ﬂow admission at ¢;} (50)

o ti-1 —t;
$i = exp (T ) . (51)

h
The admission criterion with the correction term becomes

where

c— A} — 1 > a0 (52)

We have seen that replacing fi; with r in (43) did not in itself affect the performance, because
it affects only the new flow demanding admission. Nevertheless, for the criterion (52) without

28



knowledge of N; above, the peak-rate assumption does incur a penalty in utilization propor-
tional to (r — u)y/n. The reason is that the correction terms added to A in (50) persist over
a time-scale of T},. This effect is O(y/n), because the MBAC admits on the order of O(/n)
new flows per critical time-scale T}, each of which results in a conservative correction. Thus,
A} overestimates Nyi; on average by an amount proportional to (r — pu)/n. This utiliza-
tion penalty is the price for the limited information available to the MBAC to make robust

admission decisions.

8 Conclusion

Previous approaches to the admission control problem generally make a time-scale separa-
tion assumption between the burst time-scale and the flow arrival and departure time-scale.
Under this assumption, admission control only relies on burst time-scale statistics, and a
measurement-based scheme estimates these statistics to compute the number of admissible
flows. For real-world traffic exhibiting multiple time-scale dynamics and flow heterogeneity,
the time-scale separation assumption is questionable and the notion of ”burst time-scale” ill-
defined. By explicitly incorporating flow dynamics into the picture, we have shown that there
is a critical time-scale T}, = T}j,/+/n on which the traffic statistics is relevant for admission
control purpose. This time-scale depends only on flow dynamics and is decoupled from the
traffic statistics of the flows, thus allowing us to bypass the difficult question of defining a
burst time-scale. The MBAC scheme proposed in this paper tracks the mean and estimates
the variance of the traffic fluctuations at this time-scale and makes admission control decisions
accordingly. The measurement windows for these statistics are sized to make the estimation
errors negligible. We have shown that the scheme is robust with respect to flow heterogeneity
and bandwidth fluctuations on multiple time scales, achieves high resource utilization, and
is amenable to an efficient implementation using only aggregate bandwidth information and
without maintaining per-flow information.
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