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Abstract

The capacity of ad-hoc wireless networks is constrained
by the mutual interference of concurrent transmissions be-
tween nodes. We study a model of an ad-hoc network
where n nodes communicate in random source-destination
pairs. These nodes are assumed to be mobile. We exam-
ine the per-session throughput for applications with loose
delay constraints, such that the topology changes over the
time-scale of packet delivery. Under this assumption, the
per-user throughput can increase dramatically when nodes
are mobile rather than fixed. This improvement can be
achieved by exploiting a form of multiuser diversity via
packet relaying.

I. INTRODUCTION

A fundamental characteristic of mobile wireless networks
is the time variation of the channel strength of the under-
lying communication links. Such time variation occurs at
multiple time-scales, and can be due to multipath fading,
path loss via distance attenuation, shadowing by obsta-
cles and interference from other users. The impact of such
time variation on the design of wireless networks permeates
throughout the layers, ranging from coding and power con-
trol at the physical layer to cellular handoff and coverage
planning at the networking layer.

An important means to cope with the time-variation of
the channel is the use of diversity. Diversity can be ob-
tained over time (interleaving of coded bits), frequency
(combining of multipaths in CDMA systems) and space
(multiple antennas or multiple basestations). The basic
idea is to improve performance by creating several indepen-
dent signal paths between the transmitter and the receiver.

These diversity modes pertain to a point-to-point link.
Recent results point to another form of diversity, inherent
in a wireless network with multiple users. This multiuser
diversity is best motivated by an information theoretic re-
sult of Knopp and Humblet [8]. They focused on the uplink
in the single cell, with multiple users communicating to the
basestation via time-varying fading channels. To maximize
the total information theoretic capacity, they showed that
the optimal strategy is to schedule at any one time only
the user with the best channel to transmit to the basesta-
tion. Diversity gain arises from the fact that in a system
with many users whose channels vary independently, there
is likely to be a user with a very good channel at any one
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time. Overall system throughput is maximized by allocat-
ing at any time the common channel resource to the user
that can best exploit it. Similar results can be obtained for
the downlink from the basestation to the mobile users [11],
[12].

Strategies of this type incur additional delay, because
packets have to be buffered until the channel becomes
strong relative to other users. Therefore, the time-scale
of channel fluctuations that can be exploited through mul-
tiuser diversity is limited by the delay tolerance of the user
or application. For example, for applications that can tol-
erate delays on the order of fractions of seconds to several
seconds, short time-scale fading due to constructive and de-
structive interference of multiple signal paths can be taken
advantage of. In this paper, the focus is on applications
that are so asynchronous in nature that they can tolerate
end-to-end delays of minutes or even hours. On such a long
time-scale, even more diversity gain can be obtained be-
cause the network topology changes significantly over time
due to user mobility. Examples of such applications in-
clude electronic mail, database synchronization between a
mobile terminal and a central database, and certain types
of event notification.

We demonstrate in this paper that these ideas have ram-
ifications to the design of wireless networks beyond classi-
cal cellular architectures. We will focus on mobile ad-hoc
networks which have no fixed basestations and with multi-
ple pairs of users wanting to communicate with each other.
Gupta and Kumar [6] proposed a model for studying the ca-
pacity of fized ad-hoc networks, where nodes are randomly
located but are immobile. Fach source node has a random
destination in the network to which it wants to communi-
cate. Every node in the network acts simultaneously as a
source, a destination for some other node, as well as relays
for others’ packets. The main result shows that as the num-
ber of nodes per unit area n increases, the throughput per
source-destination (S-D) pair decreases approximately like
1/+/n. This is the best performance achievable even allow-
ing for optimal scheduling, routing and relaying of packets
in the networks, and is a somewhat pessimistic result on
the scalability of such networks, as the traffic rate per S-D
pair actually goes to zero.

In this paper, we introduce mobility into the model
and consider the situation when users move independently
around the network. Our main result shows that the av-
erage long-term throughput per S-D pair can be kept con-
stant even as the number of nodes per unit area n increases.



This is in sharp contrast to the fixed network scenario,
and the dramatic performance improvement is obtained
through the exploitation of the time-variation of the users’
channels due to mobility. We observe that our result im-
plies that, at least in terms of growth rate as a function of
n, there is no significant loss in throughput per S-D pair
when there are many nodes in the network as compared
to having just a single S-D pair. A caveat of this result
is that the attained long-term throughput is averaged over
the time-scale of node mobility, and hence delays of that
order will be incurred.

In the fixed ad-hoc network model, the fundamental per-
formance limitation comes from the fact that long-range di-
rect communication between many user pairs is infeasible,
due to the excessive interference caused. As a result, most
communication has to occur between nearest neighbors, at
distances of order 1/4/n, with each packet going through
many other nodes (serving as relays) before reaching the
destination. The number of hops in a typical route is of
order y/n. Because much of the traffic carried by the nodes
are relayed traffic, the actual useful throughput per user
pair has to be small.

With mobility, a seemingly natural strategy to overcome
the above performance limitation is to transmit only when
the source and destination nodes are close together, at dis-
tances of order 1/4/n. This is reminiscent of the Infosta-
tion architecture [4], where users connect to the infostations
only when they are close by. However, this strategy turns
out to be too naive in the present situation. The problem
is that the fraction of time two nodes are nearest neighbors
is too small, of the order of 1/n. Instead, our strategy is for
each source node to split its packet stream to as many dif-
ferent nodes as possible. These nodes then serve as mobile
relays and whenever they get close to the final destination,
they hand the packets off to the final destination. The ba-
sic idea is that since there are many different relay nodes,
the probability that at least one is close to the destination
is significant. On the other hand, each packet goes through
at most one relay node, and hence the throughput can be
kept high. Although the basic communication problem is
point-to-point, this strategy effectively creates multiuser
diversity by distributing packets to many different interme-
diate nodes which have independent time-varying channels
to the final destination.

II. MODEL

The ad-hoc network consists of n nodes all lying in the
disk of unit area (of radius 1/4/7). The location of the
ith user at time t is given by X;(¢). Nodes are mobile,
and we assume that the process {X;(-)} is stationary and
ergodic with stationary distribution uniform on the disk;
moreover the trajectories of different users are independent
and identically distributed.

We now describe the session model. We assume that each
of the n nodes is a source node for one session, and a desti-
nation node for another session. Let us stipulate that the
source node 4 has data intended for destination node d(3).
We assume that each source node has an infinite stream of

packets to send to its destination. The source-destination
association does not change with time, although the nodes
themselves move.

We next describe the transmission model. At (slotted)
time ¢, let P;(t) be the transmit power of node ¢, and 7;;(t)
be the channel gain from node ¢ to node j, such that the
received power at node j is P;(t)y;;. At time ¢, node i
transmits data at rate R packets/sec to node j if

Pi(t)7i; (¢)
Ny + % Ek;éz' P (t)’YkJ' (t)

> B, (1)

where (3 is the signal-to-interference ratio (SIR) require-
ment for successful communication, Ny is the background
noise power, and L is the processing gain of the system. For
a narrowband system, L = 1, while for a spread-spectrum
CDMA system, L is larger than 1. In this paper, we only
consider large-scale path loss characteristics in the fading
channel model. The channel gain is given by
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where « is a parameter greater than 2.

Packets can be transmitted directly from a source to its
destination, or they can go through one or more other nodes
serving as relays. We assume each node has an infinite
buffer to store relayed packets. At any time ¢, a scheduler
chooses which nodes will transmit packets, which packets
they will transmit and the power levels P;(t) at which the
packets are transmitted from node i. Note that the sched-
uler implicitly specifies a relay policy, as the scheduled
transmissions can be from source to destination, source to
relay, relay to relay, or relay to destination.

The objective of the scheduler is to ensure a high long-
term throughput for each S-D pair. More precisely, con-
sider a scheduling and relay policy w. Let M (t) be the
number of source node i packets that destination d(i) re-
ceives at time ¢t under policy . Given the random trajec-
tories of the users, we shall say a long term throughput of
A(n) is feasible if there is a policy 7 such that for every
S-D pair 1,

T
1
im inf — T(t) > .
11Tni>10réf T ;:1 MT(t) > A(n) (2)

We note that the throughput A(n) is a random quantity
as it depends on the random locations of the users. The
performance criterion is in terms of a throughput level com-
mon to all S-D pairs. The indexing by the system size n
emphasizes that we are interested in studying the asymp-
totic behavior as n becomes large.

Our model basically follows the one used in [6], except
that nodes are mobile as opposed to fixed.

III. RESULTS
A. Fized Nodes

First we review results of Gupta and Kumar [6]. The
node positions {X;} are i.i.d. and uniformly distributed



in the disk of unit area, but fixed over time. The destina-
tion for each source node is a randomly chosen node in the
network, and the destinations are all chosen independently.
The following results yield upper and lower bounds on the
asymptotically feasible throughput.

Theorem III.1: (Main result 4 in [6]) There exists con-
stants ¢ and ¢ such that

nlgréo Pr {)\(n) = \/%gn is feasible} =1,

and /
lim Pr {)\(n) = ¢
n—oo —\/ﬁ

Thus, within a factor of v/logn, the throughput per S-D
pair goes to zero like R/4/n in the case when the nodes are
fixed.

This result can be intuitively understood as follows. Ev-
ery bit has to travel at least the distance that separates
its source from its destination. It may travel this distance
either through a single direct transmission, or through mul-
tiple transmissions via relay nodes.

Assume for simplicity that all transmitting nodes trans-
mit at the same power P. Let us focus on the transmission
from a node i to a node j. From (1), it is can be seen
that transmission from ¢ to j will be unsuccessful when-
ever there is another transmitting interferer k with distance
| X% — X;| < (B/L)Y*|X; — X;|. In other words, there can-
not be another sender in a disk of radius proportional to
the transmission distance | X; — X;|. Hence, a (successful)
transmission over a distance d incurs a cost proportional
to d? by excluding other transmissions in the vicinity of
the sender 7. In order to maximize the transport capacity
of the network, i.e., the total number of meters traveled
by all the bits per time unit, it is therefore beneficial to
schedule a large number of short transmissions. The best
we can do is to restrict transmissions to neighbors, which
are at a typical distance of 1/4/n. The transport capacity
is then at most 4/n bit-meters/sec. As there are n sessions,
each with an expected distance of ©(1), it follows that the
throughput per session can at best be O(1/4/n).

is feasible} =0,

B. Mobile Nodes Without Relaying

The reason why the throughput for fixed nodes goes to
zero is that the number of relay nodes a packet has to go
through scales as y/n. However, in our model of mobile
nodes, any two nodes can be expected to be close to each
other every from time to time. This suggests that we may
be able to improve the capacity by not relaying at all, and
only letting sources transmit directly to destinations. We
now show that without relaying, there is no way to achieve
an 0(1) throughput per O-D pair.

We first need the following Lemma. This fact is already
established in the proof of Theorem 2.1(ii) in [6], but we
include the proof here for completeness.

Lemma II1.2: Consider a scheduling policy that sched-
ules direct transmissions only. Fix an arbitrary time ¢. Let

S(t) be the set of source nodes that are scheduled successful
transmission to their respective destinations. Then
D IX(t) = X (0)]* < B,
1€S(t)
where m,
B:=2og 2"~

Proof: Writing down the SIR inequalities, we get for
every i € S(t),

Pi(t)7i,5:)(t) >3
No + % Zkes(t),k.—,éi Pk(t)’Yk,j(i) ) ~
This is equivalent to:
Pi()vi,0)(t) BL

> .
No+ 1 ZkES(t) Py, (8) — B+ L
Substituting

_ 1
%) = xR

we get the bound:

|Xi(t) — X (1) (3)
B+L P;(t)
- P (t
BL No+ I Tres) it @
B+ Pyt
(1) ()

- BL No+ %(%)%Zkesu) Py(t)
2

since |Xi(t) — X (1) < —=.
S — D pairs at time ¢, we get
D IXi(t) = X ()]
iE€S(t)
B+ L Diesq) Pi(t)
BL No+ 1(5)° Xresw Pr(t)

2(171_7&/2 ﬁ + L

Summing over all active

IA

which proves the Lemma upon setting

B = 2a7r7°‘/2—'6 + L.
g
|

This Lemma shows that the number of simultaneous
long-range communication is limited by interference. Since
the distance between the source and destination is ©(1)
most of the time, this limitation in turn puts a bound
on the performance of any strategy which uses only direct
communication.

Theorem II1.3: Assume that the policy is only allowed to
schedule direct transmission between the source and desti-
nation nodes, i.e., that no relaying is permitted. If ¢ is any
constant satisfying

1
2 L] 1¥e72
> [2‘1 (14——) w*“/2—ﬁ+ ] )
a B



then
Pr {)\(n) —cn TR s feasible} =0

for sufficiently large n.

This result says that without relaying, the achievable
throughput per S-D pair goes to zero at least as fast as
n~ a7z,

Proof: We will argue by contradiction. Fix a ¢ > 0
and a policy 7 that schedules direct transmission only, and
suppose a throughput of A\(n) = cn” T¥a77 R is feasible. Fo-
cus on a source node ¢, and let Ar(i) be the set of time
instants up until time 7" where node 7 is scheduled success-
ful transmission to the destination d(). By definition of
feasible throughputs,

lim inf > en” TFaT (5)
T—o0

| Az (i)
T

Consider the process
Di(t) := | Xi(t) — X (D)%,

By stationarity and ergodicity of this process, (5) implies
that almost surely,

t=1,2,...

1 F_l(cn_ﬁ)
hTIilgéf T Z . D;(t) > /0 zdF(z)
teE AT (7)

where F' is the cdf of the random variable D;(¢). This holds
for all source nodes . Summing over all 4, we have

1 n F_l(cn_ﬁ)
ll.r’rglgf T Z Z | D;(t) > n/o 2dF(z),
=1 teAr (i)

which is equivalent to:

1 T F—l(cn_ﬁ)
thigéf T Z Z) D;(t) > n/o 2dF(2).

t=1icS(t

Here S(t) is the set of source nodes which are scheduled
successful transmission by the policy at time ¢. The last
inequality in turn implies that there must exist a time 7,
such that

F_l(cn_ﬁ)
S Di(r) 2 n /0 2dF(z).  (6)

i€S(T)
Conditional on X;(;)(t) = z in the open disk D, it holds
that for 21/ < |7=1/2 — g,
Pr{D;(t) < 2|X;(;(t) =z} = w22,

the probability that node 4 is within a neighborhood of
radius 2z from node d(i). Hence,

lim F(z)/2%*
z—0

z—0

~ lim ﬂ/a/ Pr {Di(t) < 2 X;(t) = o} da
zeD

/EED l% z 2Py {Di(t) < 2| X5 (t) =z} dz

= 7

where the interchange of limit and integration follows from
the Dominated Convergence Theorem.
Substituting this into the integral in (6), we get

F_l(cn_ﬁ)
lim n/ 2dF(z) =
0

n—oo

C1—}-(1/2
(11 2/a)

If

1
2 ARSI
c> [20‘ <1+—) w“/ﬂL] ,
o B

then

F_l(cn_T}‘/Q)
lim n/ zdF(z) > B
n— o0 0
where

B .= 20‘71'_0‘/2&.

Hence, for sufficiently large mn, inequality (6) contradicts
Lemma ITI.2. For sufficiently large n, the probability that

en” 77 R is a feasible throughput is zero. |

The intuition behind this result is that if transmissions
over long distances are allowed, then there are many S-D
pairs that are within range; however, for the reasons dis-
cussed in the fixed-node case, interference limits the num-
ber of concurrent transmissions over long distances; the
throughput is interference limited. On the other hand, if we
constrain communication to neighboring nodes, then there
is only a small fraction of S-D pairs that are sufficiently
close to transmit a packet. Hence, the throughput is dis-
tance limited. Theorem II1.3 gives the optimal throughput
given these two constraints.

C. Mobile Nodes With Relaying

In the previous section, we have seen that the through-
put per session decreases with n if only direct transmissions
between sources and destinations are allowed. If we want
to increase throughput beyond this limitation, we have
to find a way to communicate only locally (to overcome
the interference limitation), while making sure that there
are actually enough sender-receiver pairs that have packets
to transmit (to overcome the distance limitation). Direct
communication does not suffice; we need to do relaying.

Theorem III.4 below demonstrates that it is in fact pos-
sible to schedule ©(n) concurrent successful transmissions
per time slot with local communication. However, the ques-
tion is how we should forward packets between sources and
destinations such that we can make use of these trans-
missions. We propose to achieve this by spreading the
traffic stream between the source and the destination to
a large number of intermediate relay nodes. Each packet
goes through one relay node that temporarily buffers the
packet until final delivery to the destination is possible. For
a source-destination pair S-D, all the other n — 2 nodes can
serve as relay nodes. The goal is that in steady-state, the
packets of every source node will be distributed across all
the nodes in the network, hence ensuring that every node
in the network will have packets buffered destined to every



other node (except itself). This ensures that a scheduled
sender-receiver pair always has a packet to send, in contrast
to the case of direct transmission.

source

Fig. 1: In phase 1, each packet is transmitted by the source to a
close-by relay node.

The question is how many times a packet has to be re-
layed in order to spread traffic uniformly to all nodes. In
fact, as the node location processes {X;(t)} are indepen-
dent, stationary and ergodic, it is actually sufficient to relay
only once. This is because the probability for an arbitrary
node to be scheduled to receive a packet from a source node
S is equal for all nodes and independent of S. Each packet
then makes two hops, one from the source to its random
relay node, and one from that relay node to the destina-
tion. As no packet is transmitted more than twice, the
achievable total throughput is ©(n).!

We now make the above argument rigorous. We first ex-
hibit a scheduling policy 7 to select random sender-receiver
pairs in each time slot ¢, such that all the pairs can success-
fully transmit in time slot t. We will then use this policy as
a building block to achieve ©(1) throughput per S-D pair
for large n.

The scheduling policy 7 is as follows. Let us focus on a
particular time slot ¢. To simplify notation, we will drop
the time index t in the following discussion. We fix a
sender density parameter § € (0,1). We randomly des-
ignate ng = On of the nodes as senders in each time slot,
and the remaining ng nodes as potential receivers. Specif-

ically, we randomly pick one out of ( nns ) equally likely

partitions of the m nodes into the set of senders S and
the set of potential receivers R. Each sender node trans-
mits packets to its nearest neighbor among all nodes in

1Tt should be emphasized that packets are not copied at a source
and sent along different two-hop routes; rather, the overall packet
stream is split across the different routes.

Fig. 2: In phase 2, a packet is handed off to its destination if the
relay node is close-by.

R, using unit transmit power (P; = 1). Among the ng
sender-receiver pairs, we retain those for which the inter-
ference generated by the other senders is sufficiently small
that transmission is possible. Let NNy be the number of
such pairs. Theorem III.4 below shows that the number of
feasible sender-receiver pairs V; is ©(n). Note that the set
of sender-receiver pairs is random and that it depends only
on the node locations {X;}.

Theorem III.4: For the scheduling policy 7, the expected
number E [Vy] of feasible sender-receiver pairs is ©(n), i.e.,

lim —E (V]

n—oo n

=¢>0. (7)

Furthermore, for two arbitrary nodes ¢ and j, the prob-
ability that (4, 7) is scheduled as a sender-receiver pair is
O(1/n).

We can now apply this scheduling policy 7 to our basic
problem. The overall algorithm is divided into two phases:
(1) scheduling of packet transmissions from sources to re-
lays (or the final destination; cf. Fig. 1), and (2) scheduling
of packet transmissions from relays (or the source) to final
destinations (cf. Fig. 2). These two phases are interleaved:
in the even time-slots, phase 1 is run; in the odd time-slots,
phase 2 is run.

In phase 1, we can apply the scheduling policy 7 to trans-
mit packets from sources to relays or destinations. In phase
2, we again apply the policy m, but this time to transmit
packets from relays to final destinations (or, as in phase
1, from a source directly to the destination). More specifi-
cally, when a receiver is identified for a sender under 7, the
sender checks if it has any packets for which the receiver
is the destination; if so, it will transmit it. It should be
noted that every packet goes through at most two hops: it
is transmitted once in phase 1 from its source to an inter-
mediate relay, and once in phase 2 from a relay to the final



destination. We allow for packets to be directly transmit-
ted from their source to their destinations in both phases,
if a sender-receiver pair happens to be a source-destination
pair as well.

Relay nodes

O
mtm@minaﬁon C
WO

Direct transmission

Source S

n-1routes

phase 1 phase 2

Fig. 3: The two-phase scheduling policy viewed as a queuing system,
for a source-destination pair: in phase 1, a packet at S is served by a
queue of capacity ©(1), and is forwarded either to the destination or
to one of n — 2 relay nodes with equal probability. The service rate
at each relay node R is ©(1/n), for a total session rate of ©(1).

Let us analyze the throughput per S-D pair under this
two-phased scheme. As 7 only depends on node locations
and because the node locations {X;(¢)} are i.i.d., station-
ary, and ergodic, the long-term throughput between any
two nodes is equal to the probability that these two nodes
are selected by 7 as a feasible sender-receiver pair. Accord-
ing to Theorem II1.4, this probability is ©(1/n). Now, for a
given S-D pair, there is one direct route and n — 2 two-hop
routes which go through one relay node R. The throughput
over the direct route is ©(1/n). For each two-hop route,
we can consider the relay node R as a single server queue
(cf. Fig. 3). Applying Theorem II1.4, we see that both the
arrival rate and the service rate of this queue is the same
and ©(1/n). Summing over the throughputs of all the n—1
routes, it can be seen that the total average throughput per
S-D pair is ©(1). We have proved the following Theorem,
which is the main result of this paper.

Theorem III1.5: The two-phased algorithm achieves a
throughput per S-D pair of ©(1), i.e. there exists a con-
stant ¢ > 0 such that

nh_{r;() Pr{\(n) = cR is feasible} = 1.
Note that the largest possible throughput is ¢ = ¢/2.
We now prove Theorem III.4.

Proof: We consider a fixed time ¢t. Let Uy,...Upg be
the random positions of the senders in S. Let Vi,..., Vo,
be the positions of nodes in the receiver set R. These
random variables are i.i.d. uniformly distributed on the
open disk of unit area. For each node s € S, let its intended
receiver r(s) € R be the node which is nearest to s among
all nodes in R.

We now analyze the probability of successful transmis-
sion for each chosen sender-receiver pair. By symmetry,

we can just focus on one such pair, say (1,7(1)). The
event of successful transmission depends on the positions
Ui,...Upg and V4, ..., V,,. Let Q; be the received power
from sender node i at receiver node r(1), and

Qi = Ui = V)| 7%
The node r(1) satisfies:
r(1) = argmin; |U; — Vj].

The total interference at node (1) is given by I = 3, ,; Q.
The signal-to-interference ratio for the transmission from
sender 1 at receiver (1) is given by:

__ O
No+ +I

SIR

Fig. 4: An illustration of random variables used in the proof: sender
location Uy, receiver location V, (1), received signal power Q1, scaled
distance to random receiver Z;, and scaled interfering sender distance

Qi-

We now analyze the asymptotics of ()1 and I as n — oo.
Now,

Q1=

_max Zj,

j=1,...,nr

where Z; = |U; — V;|~%. Let us first condition on U; = u
for some u in the open disk. A disk centered at u and of
radius r < (7=1/2 — |u|) lies entirely inside the unit disk
(cf. Fig. 4). Then for every z > r~ % and for all j,

Pr {Zj > Z|U'Z = U}

Pr{|V; —ul < 27%}

2

= @z = (8)

Conditional on U; = u, the random variables Z;’s are i.i.d.
By a standard result on the asymptotic distribution of ex-
tremum of i.i.d. random variables [1, p.258-260], the ex-
tremum (); of ng i.i.d. random variables whose cdf satis-
fies

. 1-— Fz(.Z') b
nglgloo 1— Fz(kx) (9)
satisfies
lim Pr{Q: < a,z}=exp(—z7"), (10)
NnR—>00
where a,, is given by F;'(1 — 1/ng) = (mng)*/? =

[(1 — §)7n]®/2. Thus, the asymptotic distribution of Q,



conditional on U; = u depends only on the tail of the dis-
tribution of the Z;’s, and is given by:

ILm Pr{Q: < anpz|U; = u} = Fg- () (11)
where @}, has a cdf:

_ ] exp (—x_Q/a) z2>0
FQZ(x)‘{ 0 £<0

Hence, for every z > 0,
lim Pr{Q: < an,x}
n—oo

= lim
n—0o0 =

/ lim Pr{Q; < an,z|Us =u}du

gD N0
= FQ; (.CE)

The interchange of limit and integration follows from the
Dominated Convergence Theorem. We conclude that

Pr{Qi < anpz|U1 =u}du
D

[(1—6)mn] > Q1 3 Q. (12)
We now turn to the interference I = Y75, Q;. Condi-
tional on V,(;) = u, we observe that for i # 1, Q}s are

iid. and have the same distribution as the Z;’s condi-
tional on U; = u. Hence, the distribution of @); conditional
on V1) = u has the same tail as given in (8). From the

theory of stable random variables [3, pp.448, Theorem 2],
it follows that, conditional on V;.(1) = u,

[wr (1 - z) ns] e I= [wr (1 - 3) Hn] o 151, (13)

o

where I} has the stable distribution with characteristic
exponent %, and does not depend on u.

Again, the asymptotic limit above depends only on the
tail of the conditional distributions of the individual Z;’s,
which does not depend on w. Using a similar argument as
above for @)1, we conclude that (13) in fact holds uncondi-
tionally.

Finally, we claim that the signal power ()1 and the to-
tal interference I are asymptotically independent (although
they are in general not independent for finite n.). The ar-
gument is as follows. Eqn. (13) implies that the total
interference I is asymptotically independent of V1), since
the limiting distribution of I conditional on V;.(;jy = u does
not depend on u. Note also that conditional on V1), Ui
and I are independent. Hence, in fact, I is asymptotically
independent of the pair (Ui, V,(1)). But the signal power
@1 is a continuous function of U; and V,(1), and hence by
the Continuous Mapping Theorem, I and )1 are asymp-
totically independent.

Combining this last fact with (12) and (13), we get the
result on the probability of successful transmission from
node 1 to node r(1):

_ Q1 QZ *
PT{SIR>,3}—PT{N0+%I>,3}—)PT{I* > f3 }>0, (14)

(e}

where

. 6 0 2 a/2
reflir(-2)) . w
where T'(s) = [;° 2°~'e~"dz is the standard gamma func-
tion. The last inequality follows from the fact that @}, and
I can be chosen independent and @}, has infinite support.

Therefore, as there are ng = 6On senders attempt-
ing to transmit, the expected number of feasible sender-
receiver pairs is E[Ny] = 6n - Pr{SIR > 3}, ie., ¢ =
6 -Pr{SIR > (}. Furthermore, as 7 only depends on node
locations, and as the node locations {X;} are i.i.d., the
probability of success of any specific sender-receiver pair is
equal, and thus ©(1/n). This completes the proof.

|

The essence of the proof of Theorem I11.4, and the fun-
damental reason why we can have ©(n) concurrent nearest
neighbor transmission, is the fact that the received power
at the nearest neighbor is of the same order as the to-
tal interference from ©(n) number of interferers. A simi-
lar phenomenon has been observed by Hajek et al. [7] in
the cellular setting, where they have shown that, provided
a > 2, the capture probability of the nearest transmitter
to the basestation does not go to zero as the number of
interferers become large. A similar result has also been ob-
tained by Shepard [10]. Although these results may seem
surprising on first sight, they are all based on the following
property: if Wy,..., W, are ii.d. random variables such
that the cdf F(w) decays slower than w=! as w — oo, then
the largest of them is of the same order as the sum. In the
context of our problem, W;’s are the received powers from
the transmitting nodes.

The technical complication in the proof of Theorem III.4
is due to the fact that both the distribution of the received
power from the sender and the distribution of the inter-
ference depends on the location of the receiver. This is
primarily due to the edge effects of the disk, and this de-
pendency would not be present if for example the nodes
are randomly located on the surface of a sphere. Fortu-
nately, in the regime we are interested in, the asymptotic
distributions depends only on what happens in the local
neighborhood around the receiver, and this is independent
of where the receiver is in the open disk.

Our channel model considers only large-scale path-loss
characteristics (power decay with distance), but does not
include multipath fading or shadowing effects. Hajek et al.
[7] showed that the limiting probability of capture in their
problem depends only on the roll-off roll-off exponent a,
but not on these other channel effects even when they are
included. While their results are not directly applicable
to our setting, we nevertheless believe that this robustness
property to other channel effects carries over.

D. Distributed Implementation

Although in our problem formulation, we allow for cen-
tral coordinated scheduling, relaying and routing, it should
be noted that the algorithm obtained in the construc-
tive proof above can be implemented in a completely dis-



tributed manner. At each time instant, each node can ran-
domly and independently decide whether it wants to be a
sender or a potential receiver. Each sender then seeks out a
potential receiver nearest to it, and attempts to send data
to it. In an even phase, senders only forward packets from
sources to relays, and in an odd phase, they only forward
packets from relays to destinations. The access is uncoor-
dinated; in fact, multiple senders may attempt to transmit
to the same receiver. Whether a sender is “captured” is
a random event, much like standard MAC random access
protocols. What our analysis showed is that the probabil-
ity of success is reasonable even in a network with many
users.

Note that the two-phased algorithm used in the proof
was chosen for mathematical convenience. As the capacity
in both phases is identical, the expected delay experienced
by a packet from source to destination would actually be
infinite even for a finite number of nodes n if the capacity of
the first phase is used fully. It is straightforward to fix this
problem, e.g., by allowing both S-R and R-D transmissions
to occur concurrently, but giving absolute priority to R-
D (phase 2) transmission in all scheduled sender-receiver
pairs. A detailed study of local scheduling strategies and
their impact on end-to-end delay is the subject of future
work.

E. Numerical Results

We have examined the throughput capacity both
through numerical evaluation of the asymptotic probability
of capture developed in Section ITI-C, and through simula-
tion of random network topologies.

We have evaluated the asymptotic fraction of feasible
pairs ¢ for the special case a = 4, because for this case,
the normalized interference I* has Lévy distribution? [9],

with cdf
rao=sf-a(D)]

where Q(.) is the standard Gaussian cdf, with o = 1/23.
It is therefore straightforward to numerically evaluate (14)
through Monte-Carlo simulation.

We have compared the fraction of feasible pairs ¢ for 8 =
6dB and L = 1 predicted by our model with simulations
based on n = 1000 nodes (cf. Fig. 5). The simulation
results are averaged over 20 random topologies. Figure 6
shows the simulated normalized throughput for a = 2, 3,
and 4, and the throughput predicted by the asymptotic
model for @ = 4. There is very good agreement between
the analytical model and simulation results.

It is evident from the figure that given «, there exists an
optimal sender density € that maximizes the throughput.
If 8 is too small, then we do not exploit the potential for

(16)

2There is no closed form for the distribution or density function of
I} for general a; only the Laplace transform of its density is known
explicitly [3], [9], and is given by ¢rx (s) = exp(—s2/@).

3This can be seen by comparing the Laplace transform of the den-
sity of non-negative strictly stable random variables in [3, page 448]
with the expression for the characteristic function of general stable
random variables in [9, page 5].
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Fig. 5: An example of a random topology with n = 1000 nodes,
for sender density § = 0.41. Senders are depicted as red squares,
receivers as blue circles. A line connects each sender to its closest
receiver.

spatial channel reuse. If 8 is too large, then the interference
power becomes too dominant. The optimal 6 obviously
depends on «. For small «, interference limits the spatial
channel reuse. Hence, the sender density has to be small.
For large a, interference is more localized, and the optimal
0 and the maximum throughput are larger.

F. Sender-Centric vs. Receiver-Centric Approach

In the proof of Theorem III.4, we have used a sender-
centric approach, in that it is the senders that select the
closest receiver to send to. We could also have considered
a receiver-centric approach, where each receiver selects the
closest sender from which to receive. It might seem that
the situation is symmetric, and that a similar proof would
carry through to arrive at the same result. However, this
is not the case.

In the sender-centric approach, several senders may se-
lect the same receiver. This is not problematic from a tech-
nical point of view. By analogy, in the receiver-centric ap-
proach, it is possible that several receivers select the same
sender. We can either assume that the sender has to select
only one receiver to which to send to, or we can assume
that a sender is indeed able to generate signals for sev-
eral receivers. Both assumptions lead to difficulties in an
analogous proof. Under the former assumption, we have to
account for the elimination of sender-receiver pairs because
the sender has to be unique; simple worst-case bounds can
be found, but turn out to be too crude to improve upon the
sender-centric capacity. Under the latter assumption, we
have to account for the fact that a single sender can gener-
ate several unit-power interference signals (or analogously,
the fact that the desired signal is only a fraction of unit
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Fig. 6: The normalized per-node throughput, as a function of the
sender density 8, for different values of a. For a@ = 4, the throughput
predicted by the model is also shown.

power). We have not found an elegant way to integrate
these complications into the above proof.

However, note that the receiver-centric approach is
preferable in terms of the signal-to-interference ratio for
a single receiver. The reason is that in the receiver-centric
approach, the signal from the selected sender is always the
strongest. If {Q;} are the received powers from the ng
senders, then the received signal power is max(Q);), while
the remaining ng — 1 signals are interference. On the other
hand, in the sender-centric approach used in our proof, the
designated receiver is selected as the maximum of an in-
dependent set {Z;} of ng random variables, where Z; has
identical distribution as Q;*. The received signal power is
max(Z;), and the interference power is ) @; (where the
sum is over ng — 1 terms).

Let us assume first that § = 1/2, i.e., ng = ng = n/2.
The power of the received signal is the maximum of ng
i.i.d. random variables in both cases; hence, they are dis-
tributed equally. However, the interference in the receiver-
centric case is stochastically smaller than in the sender-
centric case: in the former, the interference is the sum of
ng — 1 random signal powers, whereas in the latter, it is
the sum of ng random signal powers minus the strongest
of these signals. Therefore, the SIR for the receiver-centric
approach is larger on average than in the sender-centric
approach. We have simulated the normalized per-node
throughput for the receiver-centric approach as shown in
Fig. 7. As expected, the throughput is slightly higher
than in the sender-centric approach.

IV. DISCUSSION

The central philosophy behind this work is that the delay
tolerance of applications can be usefully exploited in a mo-
bile wireless network. This philosophy has been embodied

4Ignoring edge effects.
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Fig. 7: The normalized per-node throughput for the receiver-centric
case, as a function of the sender density 8, for different values of a.

in earlier work on the Infostation [4], designed for delay-
tolerant data applications. An Infostation is a high-speed
wireless basestation that does not provide ubiquitous cov-
erage but only allows a mobile user to communicate when
the user is nearby. The motivation is that if delay is unim-
portant, then capacity for an user is maximized by using
the entire transmit power budget when the user is close to
the basestation, and no power when the user is far away.
This strategy is motivated by an information theoretic re-
sult on point-to-point fading channels [5].

The work on Infostation focuses on point-to-point links
in isolation and aims to maximize link throughput for a
given power budget. In contrast, the work presented here
shifts the emphasis to the network view of interference
management between many concurrent point-to-point links
(S-D pairs). Theorem ITI.3 says that it is impossible to sup-
port a high throughput per S-D pair by direct communi-
cation even if transmission is scheduled only when sources
and destinations are close by each other. Instead, this basic
idea has to be combined with a two-hop relaying strategy
to achieve high throughput.

Our solution exploits a form of multiuser diversity, and
is best visualized in Figure 8. Focusing on a specific S-D
pair, the direct point-to-point link is a statistically poor
channel, since it is only strong a small fraction of the time
(when the source and destination are close by). By using
all the other nodes in the network as relays, however, com-
munication between the source and destination is now per-
formed through two “multiuser” links: a “downlink” from
the source to all the relays, and an “uplink” from the relays
to the final destination. Due to a multiuser diversity effect,
the throughput of the “downlink” is high: at any one time,
there is likely to be a relay node close to the source, to
whom the source can transmit information. Similarly the
throughput of the “uplink” is also high: at any one time,
there is likely to be a relay node close to the destination,
from whom it can receive information. Hence the overall



throughput is much higher than that of the direct point-
to-point link. This is in essence a statistical multiplexing
effect due to the fact that there is a large number of users
in the network.
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Fig. 8: How relaying can create multiuser diversity.

It should be noted that the view of diversity here is very
different from the more traditional technique of path diver-
sity. In path diversity routing, copies of the same packets
are forwarded along different routes to provide redundancy
against uncertain channel conditions and network connec-
tivity. In multiuser diversity routing, each packet is sent
along only one route to take advantage of the closeness of
the relay node.

V. CONCLUSION

In this paper, we have examined the asymptotic through-
put capacity of large mobile wireless ad-hoc networks. Our
results show that direct communication between sources
and destinations alone cannot achieve high throughput,
because they are too far apart most of the time. We pro-
pose to spread the traffic to intermediate relay nodes to ex-
ploit the multiuser diversity benefits of having additional
“routes” between a source and a destination. Two-hop
routes are sufficient to achieve the maximum throughput
capacity of the network within the limits imposed by the in-
terference model. This explains the dramatic performance
improvement over a fixed ad-hoc network, where ©(y/n)
intermediate relay nodes are necessary.

The improvement in throughput is dramatic, but we
would like to emphasize that this result is obtained under
several idealistic assumptions. In particular, we assume the
complete mixing of the trajectories of the nodes in the net-
work. It would be interesting to study how much through-
put can be achieved when nodes have less random mobility
patterns. Recent results suggest that high throughput per
S-D pair is still achievable even when the nodes’ mobility
is much more constrained [2]. Specifically, it was shown
that if each node is restricted to move along a randomly
placed line segment, the per-node throughput capacity is
still ©(1). Thus, the 2-dimensional mobility pattern as-
sumed in the present paper is not a necessary condition for
the result to hold.

This paper focuses on the performance metric of through-
put without taking into consideration delay. The delay ex-
perienced by the packets under the strategy proposed in
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this paper is large, increasing with the size of the system.
As such, the result should be viewed as a theoretical one.
What the theory does suggest is that for delay tolerant ap-
plications, there is ample opportunity to trade off delay and
throughput by exploiting mobility. The result of this pa-
per can be considered as an extreme point in the tradeoff,
without any constraint on the delay. With a tighter delay
constraint, the maximum acheivable throughput must de-
crease. It would be interesting to characterize the optimal
tradeoff between throughput and delay and to determine
the kind of strategies that achieves this tradeoff.

The ideas in this paper are not very relevant to real-
time applications such as voice communications. However,
wireless data services are expected to grow quickly over the
next few years. A subset of these services, such as email
and database synchronization, do indeed possess very loose
delay constraints (on the order of hours). Also, wireless de-
vices are bound to become smaller and more pervasive in
the future; they will not only be carried by humans, but in-
tegrated into physical objects (such as cars, electrical appli-
ances, etc.) It is unlikely that the density of base-stations
will keep pace, due to regulatory and environmental hur-
dles in deploying them. Thus, there is a clear opportu-
nity for wireless ad-hoc networks to extend the reach of
wireless communication. Our results suggest that delay-
tolerant applications can take advantage of node mobility
to significantly increase the throughput capacity of such
networks.
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